CN104406593A - Method for determining optimal route of airway of unmanned aerial vehicle - Google Patents

Method for determining optimal route of airway of unmanned aerial vehicle Download PDF

Info

Publication number
CN104406593A
CN104406593A CN201410725347.2A CN201410725347A CN104406593A CN 104406593 A CN104406593 A CN 104406593A CN 201410725347 A CN201410725347 A CN 201410725347A CN 104406593 A CN104406593 A CN 104406593A
Authority
CN
China
Prior art keywords
mrow
mtd
msub
mtr
mtable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410725347.2A
Other languages
Chinese (zh)
Inventor
罗淇方
周永权
陈信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University for Nationalities
Original Assignee
Guangxi University for Nationalities
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University for Nationalities filed Critical Guangxi University for Nationalities
Priority to CN201410725347.2A priority Critical patent/CN104406593A/en
Publication of CN104406593A publication Critical patent/CN104406593A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention provides a method for determining an optimal route of the airway of an unmanned aerial vehicle. According to the method, the threat of an operation area is more sufficiently considered, more efficient global searching ability is achieved and a more accurate flying route is provided for the unmanned aerial vehicle. The method comprises the following steps: by adopting a quantum encoding mode, changing the state of a basic quantum bit by using a quantum rotating gate and a quantum not-gate, and further updating the position of a bat individual. Because of the diversity of the quantum state, a quantum bat algorithm (QBA) is relatively high in global searching ability and an available or even optimal route avoiding the threat and limiting conditions can be found for the unmanned aerial vehicle. The experiment result shows that the quantum bat algorithm is an effective and stable method for solving the airway route planning problem of the unmanned aerial vehicle, and the search performance of the quantum bat algorithm is superior to that of other swarm intelligence algorithms.

Description

Method for determining optimal path of unmanned aerial vehicle airway
Technical Field
The invention relates to a method for determining an aircraft airway, in particular to a method for determining an optimal path of an unmanned aerial vehicle airway.
Background
Unmanned Combat Aircraft (UCAV) is a modern aviation weaponry equipment that is one of the potentially necessary trends for future war acts because it can perform dangerous, repetitive tasks in remote and hazardous environments. The goal of the unmanned aerial vehicle routing problem is to find an optimal or near optimal flight path between the initial position and the desired destination with minimal threat cost, subject to certain constraints. In recent years, the problem of unmanned aerial vehicle route planning is widely researched in military and civil fields. Partial intelligent algorithms have been applied to this problem, such as chaotic artificial bee Colony Algorithm (CABC), Genetic Algorithm (GA), particle swarm optimization algorithm (PSO), Differential Evolution (DE), chaotic prey biopsychological algorithm (CPBBO), ant colony Algorithm (ACO), Firefly Algorithm (FA), Artificial Neural Network (ANN), and the like.
The Bat Algorithm (BA) was proposed by x.s.yang in 2010, which was derived from a simulation of the process of searching for, predating food by bats in nature using the principle of echo location. When searching for food, the bat sends out ultrasonic wave pulses, and the sound intensity of the pulses is the largest, so that the ultrasonic waves are facilitated to propagate for a longer distance. During flying to a prey, the sound intensity of the pulses is gradually reduced, and the frequency of the pulses is gradually increased, so that the bat can more accurately acquire the position of food. The bat algorithm has been widely applied in various fields, such as global engineering optimization problem, constraint optimization problem, structure optimization problem, and discrete steel structure size optimization problem. And G.G.Wang applies a basic Bat Algorithm (BA) and an improved bat algorithm (MBA) fused with a variation strategy to solve the unmanned aerial vehicle route planning problem. In the improved bat algorithm (MBA), mutation operations in differential evolution are added to the bat algorithm to speed up the global convergence speed.
The basic bat algorithm in the prior art adopts a real number coding method, and comprises the following specific steps:
the first step is as follows: the mathematical model for the unmanned aerial vehicle air route planning problem (UCAV) is established as follows:
i.e., a threat source model of UCAV, in which a starting point of a route is defined as S and a target point is defined as T. There are many threat areas (e.g., radar, missile, artillery, etc.) within the unmanned aerial vehicle's mission area. The threat areas are all represented in a circular area mode, the closer to the center of the circular area, the more vulnerable the threat areas are, and the more vulnerable the threat areas are, the more non-attacked the threat areas are; the flight mission is to find an optimal route between S and T under the premise of considering all threat areas.
(1) The treatment method is shown in the attached figure 1;
1. connecting S and T;
2. divide ST into D +1 segments (i.e., D nodes), labeled L respectively1,L2,...,Lk,...LD
3. A vertical line of ST is made at each node, forming a set of discrete points:
C={S,L1(x(1),y(1)),L2(x(2),y(2)),...,Lk(x(k),y(k)),...LD(x (D), y (D)), and T, which connect the points in sequence, form a path.
(2) Coordinate system transformation
To speed up the search, the ST can be considered as the x-axis for each discrete point (x)k,yk) For coordinate transformation
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&theta;</mi> </mtd> <mtd> <mi>sin</mi> <mi>&theta;</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&theta;</mi> </mtd> <mtd> <mi>cos</mi> <mi>&theta;</mi> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>y</mi> <mi>s</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mtext>1</mtext> <mo>)</mo> </mrow> </mrow> </math>
Where θ is the angle at which the x-axis of the original coordinate system rotates counterclockwise to be parallel to ST, (x)s,ys) Representing the coordinates in the original coordinate system. Thus, the x coordinate can be expressed asThe set of discrete points C can be converted to:
C'={0,L1(y'(1)),L2(y'(2)),...,Lk(y'(k)),...LD(y'(D)),0}
secondly, establishing a performance evaluation function as follows:
the evaluation of the flight path mainly comprises a threat cost JtAnd oil cost Jf
<math> <mrow> <msub> <mi>J</mi> <mi>t</mi> </msub> <mo>=</mo> <munderover> <mo>&Integral;</mo> <mn>0</mn> <mi>L</mi> </munderover> <msub> <mi>w</mi> <mi>t</mi> </msub> <mi>dl</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>J</mi> <mi>f</mi> </msub> <mo>=</mo> <munderover> <mo>&Integral;</mo> <mn>0</mn> <mi>L</mi> </munderover> <msub> <mi>w</mi> <mi>f</mi> </msub> <mi>dl</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, wtAnd wfThe current path point represents the threat cost and the oil cost of each route respectively, and L is the total length of the route.
With a relatively accurate approximation strategy, the threat cost per route (between two discrete points) is approximated as the sum of five points:
<math> <mrow> <msub> <mi>w</mi> <msub> <mrow> <mi>t</mi> <mo>,</mo> <mi>L</mi> </mrow> <mi>i</mi> </msub> </msub> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mi>i</mi> </msub> <mn>5</mn> </mfrac> <mo>&CenterDot;</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>t</mi> </msub> </munderover> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <msubsup> <mi>d</mi> <mrow> <mn>0.1</mn> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> <mn>4</mn> </msubsup> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <msubsup> <mi>d</mi> <mrow> <mn>0.3</mn> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> <mn>4</mn> </msubsup> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <msubsup> <mi>d</mi> <mrow> <mn>0.5</mn> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> <mn>4</mn> </msubsup> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <msubsup> <mi>d</mi> <mrow> <mn>0.7</mn> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> <mn>4</mn> </msubsup> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <msubsup> <mi>d</mi> <mrow> <mn>0.9</mn> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> <mn>4</mn> </msubsup> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein N istIs the number of threat regions, LiIs the length of the ith sub-section, d0.1,i,kIs the distance from 1/10 minutes point on the i subsection to the kth threat, tkIs the threat level of the kth threat.
Assuming that the speed of UCAV is a constant, the oil cost can be equated to a total length L.
The final total cost is:
J=kJt+(1-k)Jf (5)
where k is 0.5 (varying from 0 to 1), representing the flexibility of the designer, where k approaches 1, the path is shorter, and k approaches 1, the path is longer.
The third step: determining velocity updates and location updates for bats
Assuming that the search space is n-dimensional, the bat i has a position at time tAt a speed ofThen the position at time t +1And velocityThe update formula is as follows:
<math> <mrow> <msubsup> <mi>f</mi> <mi>i</mi> <mi>t</mi> </msubsup> <mo>=</mo> <msub> <mi>f</mi> <mi>min</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>max</mi> </msub> <mo>-</mo> <msub> <mi>f</mi> <mi>min</mi> </msub> <mo>)</mo> </mrow> <mi>&beta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
v i t + 1 = v i t + ( x i t - best ) f i t - - - ( 7 )
x i t + 1 = x i t + v i t + 1 - - - ( 8 )
wherein f isi,fmax,fminRespectively represents the frequency of the sound wave emitted by the bat i at the current moment, and the maximum value and the minimum value of the frequency of the sound wave. Beta is epsilon [0,1 ∈]Is a randomly generated number. best represents the current globally optimal solution.
For a bat group with the size of n, a bat can be randomly selected from the bat group, and the corresponding position of the bat is updated according to the formula (4), and the process can be understood as a local search process, namely, a new solution is generated in the selected solution.
xnew(i)=xold+At (9)
Wherein x isoldRepresenting a solution, A, randomly selected from the current optimal solution settRepresenting the average value of i batloudness just before time t, the elements of the random vector being the interval [ -1,1]The random number of (2).
The fourth step: determining loudness and pulse rate
Generally, when the bat starts to search, the pulse sound intensity is strong and the pulse frequency is low, and in the process of flying to food, the pulse sound intensity is gradually reduced, and the pulse frequency is gradually increased. The bat i pulse sound intensity a (i) and the pulse r (i) can be updated according to the following formulas (5) (6):
rt+1(i)=r0(i)×[1-exp(-γt)] (10)
At+1(i)=αAt(i) (11)
wherein alpha is more than 0 and less than 1, and lambda is a constant value when being more than 0. When a (i) is 0, it means that bat i has just found a game and temporarily stops making any sound, and it is not difficult to find: when t → ∞ at(i)→0,rt(i)=r0(i)。
Fifthly, the basic bat algorithm is implemented according to the following steps
Step1 initialization basic parameters: group size N, pulse sound intensity attenuation coefficient alpha, pulse frequency increase coefficient gamma, maximum pulse frequency r0Maximum pulse sound intensity A and maximum iteration number iterMax;
step 2 defining the pulse frequency Qi∈[Qmin,Qmax]And a velocity v;
step 3 initialization of the bat position xiAnd find the currentOf (d) an optimal solution fmin
Step 4, entering the main circulation if rand < riRespectively updating the speed and the current position of the bat according to formulas (7) and (8), otherwise, randomly disturbing the position of the bat, and entering the step 5;
step 5, if rand < AiAnd f (x)i) If the solution is less than f (x), the new solution is received and the new solution flies to the position after updating;
step 6 if f (x)i)<fminReplacing the former optimum bat and adjusting the pulse sound intensity A according to the formulas (10), (11)iAnd the frequency r of the pulsesi
Step 7, evaluating the bat group to find out the best bat and the position thereof;
step 8, if the termination condition of the algorithm is met (the maximum search times are reached or the search precision is met), the Step 9 is carried out; otherwise, entering step 4, and searching for the next time;
and Step 9, outputting the optimal individual value and the global optimal solution.
Wherein rand is a random number uniformly distributed over [0,1 ].
The applicant of the patent of the invention finds that the basic bat algorithm adopts a real number coding method through a plurality of practices, wherein the diversity of the population is limited, so that the algorithm is easy to fall into local optimization. Once the local optimal solution is entered, the jump-out is difficult, and in practice, the jump-out is often not possible at all. However, in the actual course determination process of the unmanned aerial vehicle, the threat of the combat area can be considered more fully, the global search capability is more efficient, and a more accurate flight path can be provided for the unmanned aerial vehicle and the unmanned aerial vehicle cannot be trapped in local optimization.
Disclosure of Invention
The invention aims to solve the technical problem of providing a method for determining the optimal route of the air route of the unmanned aerial vehicle, which can fully consider the threat of a combat area, has more efficient global search capability and can provide more accurate flight route for the unmanned aerial vehicle.
In order to solve the technical problems, the technical scheme provided by the invention is as follows: a method for determining an optimal path of an unmanned aerial vehicle airway comprises the following steps:
firstly, encoding the bat individuals by adopting the probability amplitude of the qubits on the basis of a basic bat algorithm, namely updating the probability amplitude of the qubits by using a quantum revolving gate, and adopting a quantum not gate as a variation operation to avoid premature convergence of the algorithm; there are two probability magnitudes for each qubit, and thus, each bat can represent two positions of the optimization space;
secondly, in quantum computation, the smallest information unit is stored in a qubit, and the state of the qubit can be '0', or '1', or any state between '0' and '1'; the state of a qubit can be represented as follows:
|Ψ>=α|0>+β|1> (12)
wherein α and β satisfy:
|α|2+|β|2=1 (13)
wherein | α |2And | β | |)2Respectively represent a trend state |0>And |1>The probability of (d);
an n-ary qubit can be defined as:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&beta;</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&beta;</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&beta;</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mi>n</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&beta;</mi> <mi>n</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
the quantum rotating gate is defined as follows:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
the quantum not gate is defined as follows:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&alpha;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&beta;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&beta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&alpha;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
third, generating initial population
The algorithm uses the following coding scheme:
<math> <mrow> <mi>P</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>in</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>in</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mtext>17</mtext> <mo>)</mo> </mrow> </mrow> </math>
wherein, thetaijIs the argument, and it can be seen from the formula (17) that each bat corresponds to two positions of the problem space, corresponding to the quantum state |0>And |1>The probability amplitude of (c):
Pic=(cos(θi1),cos(θi2),...,cos(θin)) (18)
Pis=(sin(θi1),sin(θi2),...,sin(θin)) (19)
the fourth step, solving the spatial transformation
In order to calculate the fitness of an individual and evaluate the quality of the individual, the solution space of a population needs to be converted; each probability amplitude of an individual qubit corresponds to one solution of the solution space of the problem, i.e. each bat corresponds to two solutions of the optimization problem;
<math> <mrow> <msubsup> <mi>X</mi> <mi>ic</mi> <mi>j</mi> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>[</mo> <msub> <mi>X</mi> <mi>max</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&alpha;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>X</mi> <mi>min</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&alpha;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>X</mi> <mi>is</mi> <mi>j</mi> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>[</mo> <msub> <mi>X</mi> <mi>max</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&beta;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>X</mi> <mi>min</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&beta;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,from quantum state |0>Amplitude of probability ofIs obtained byIs formed by quantum state |1>Amplitude of probability ofObtaining;
the fifth step, updating the strategy
In the Quantum Bat Algorithm (QBA), the amplitude and angle increment of the qubit is updated by adopting an updating strategy of the Bat Algorithm (BA), and the updating process is as follows:
Δθij(t+1)=Δθij(t)+Δθg*Q(i)*stepnow (22)
θij(t+1)=θij(t)+Δθij(t+1) (23)
wherein, Delta thetaijAnd thetaijArgument increment and argument respectively;
<math> <mrow> <msub> <mi>&Delta;&theta;</mi> <mi>g</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>2</mn> <mi>&pi;</mi> <mo>+</mo> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>&lt;</mo> <mo>-</mo> <mi>&pi;</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mtd> <mtd> <mrow> <mo>(</mo> <mo>-</mo> <mi>&pi;</mi> <mo>&le;</mo> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>&le;</mo> <mi>&pi;</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <mn>2</mn> <mi>&pi;</mi> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>></mo> <mi>&pi;</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>stepnow</mi> <mo>=</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>Maxgen</mi> <mo>-</mo> <mi>gen</mi> <mo>)</mo> </mrow> <mi>w</mi> </msup> <msup> <mrow> <mo>(</mo> <mi>Maxgen</mi> <mo>)</mo> </mrow> <mi>w</mi> </msup> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&sigma;</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>&sigma;</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&sigma;</mi> <mi>e</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow> </math>
herein, the parameter values in equation (25) are: w is 2, σe=0,σs=2;
And (3) updating the probability amplitude by using a quantum revolving gate:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow> </math>
two new positions are obtained:
<math> <mrow> <mover> <msub> <mi>P</mi> <mi>ic</mi> </msub> <mo>~</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mover> <msub> <mi>P</mi> <mi>is</mi> </msub> <mo>~</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow> </math>
sixth, mutation strategy
In the Quantum Bat Algorithm (QBA), in order to prevent the algorithm from falling into local optima prematurely, a variation strategy is adopted herein to increase the diversity of the population, the variation strategy being implemented by a quantum not gate; if rand () < pmIf so, executing quantum NOT gate operation and exchanging the two probability values; wherein p ismIs the variation probability;
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>+</mo> <mfrac> <mi>&pi;</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>+</mo> <mfrac> <mi>&pi;</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
after the method is adopted, the invention has the following beneficial effects: the algorithm uses the concept of quantum bits as a coding method. The quantum rotating gate is used for changing the state of the quantum bit, and the quantum not gate is used for realizing the variation of the quantum bit so as to avoid premature convergence. Due to the diversity of quantum states, the global search capability of QBA is effectively improved, and bats are prevented from getting into local optimum prematurely. Simulation results show the robustness and effectiveness of the proposed algorithm. QBA can more fully consider the threat in the area of battle, obtain more accurate flight path for unmanned aerial vehicle (UCAV).
Drawings
Fig. 1 is a diagram of an unmanned aerial vehicle combat area model in a basic bat algorithm.
FIG. 2 is a flow chart of a threat cost calculation method in a basic bat algorithm.
Fig. 3 is a graph of the results when the first class example D is 10.
Fig. 4 is a graph of the results when the first class example D is 15.
Fig. 5 is a graph of the results when the first class example D is 20.
Fig. 6 is a graph of the results when the first class example D is 25.
Fig. 7 is a graph of the results when the first class example D is 30.
Fig. 8 is a graph of the results when the first class example D is 35.
Fig. 9 is a fitness map when the first class example D is 10.
Fig. 10 is a fitness map when the first class example D is 15.
Fig. 11 is a fitness map when the first class example D is 20.
Fig. 12 is a fitness map when the first class example D is 25.
Fig. 13 is a fitness map when the first class example D is 30.
Fig. 14 is a fitness map when the first class example D is 35.
Fig. 15 is a graph of the results when the second class of examples D-5.
Fig. 16 is a graph of the results when the second class example D is 10.
Fig. 17 is a graph of the results when the second class of examples D-15.
Fig. 18 is a graph of the results for the second class of examples, D-20.
Fig. 19 is a graph of the results when the second class of examples D-25.
Fig. 20 is a graph of the results when the second class of examples D-30.
Fig. 21 is a graph of the results when the second class of examples D is 35.
Fig. 22 is a graph of the results for the second class of examples, D-40.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings.
With reference to fig. 1 to 22, a method for determining an optimal path of an unmanned aerial vehicle route includes the following steps:
firstly, encoding the bat individuals by adopting the probability amplitude of the qubits on the basis of a basic bat algorithm, namely updating the probability amplitude of the qubits by using a quantum revolving gate, and adopting a quantum not gate as a variation operation to avoid premature convergence of the algorithm; there are two probability magnitudes for each qubit, and thus, each bat can represent two positions of the optimization space;
secondly, in quantum computation, the smallest information unit is stored in a qubit, and the state of the qubit can be '0', or '1', or any state between '0' and '1'; the state of a qubit can be represented as follows:
|Ψ>=α|0>+β|1> (12)
wherein α and β satisfy:
|α|2+|β|2=1 (13)
wherein | α |2And | β | |)2Respectively represent a trend state |0>And |1>The probability of (d);
an n-ary qubit can be defined as:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&beta;</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&beta;</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&beta;</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mi>n</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&beta;</mi> <mi>n</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
the quantum rotating gate is defined as follows:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
the quantum not gate is defined as follows:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&alpha;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&beta;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&beta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&alpha;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
third, generating initial population
The algorithm uses the following coding scheme:
<math> <mrow> <mi>P</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>in</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>in</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mtext>17</mtext> <mo>)</mo> </mrow> </mrow> </math>
wherein, thetaijIs the argument, and it can be seen from the formula (17) that each bat corresponds to two positions of the problem space, corresponding to the quantum state |0>And |1>The probability amplitude of (c):
Pic=(cos(θi1),cos(θi2),...,cos(θin)) (18)
Pis=(sin(θi1),sin(θi2),...,sin(θin)) (19)
the fourth step, solving the spatial transformation
In order to calculate the fitness of an individual and evaluate the quality of the individual, the solution space of a population needs to be converted; each probability amplitude of an individual qubit corresponds to one solution of the solution space of the problem, i.e. each bat corresponds to two solutions of the optimization problem;
<math> <mrow> <msubsup> <mi>X</mi> <mi>ic</mi> <mi>j</mi> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>[</mo> <msub> <mi>X</mi> <mi>max</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&alpha;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>X</mi> <mi>min</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&alpha;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>X</mi> <mi>is</mi> <mi>j</mi> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>[</mo> <msub> <mi>X</mi> <mi>max</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&beta;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>X</mi> <mi>min</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&beta;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,from quantum state |0>Amplitude of probability ofIs obtained byIs formed by quantum state |1>Amplitude of probability ofObtaining;
the fifth step, updating the strategy
In the Quantum Bat Algorithm (QBA), the amplitude and angle increment of the qubit is updated by adopting an updating strategy of the Bat Algorithm (BA), and the updating process is as follows:
Δθij(t+1)=Δθij(t)+Δθg*Q(i)*stepnow (22)
θij(t+1)=θij(t)+Δθij(t+1) (23)
wherein, Delta thetaijAnd thetaijArgument increment and argument respectively;
<math> <mrow> <msub> <mi>&Delta;&theta;</mi> <mi>g</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>2</mn> <mi>&pi;</mi> <mo>+</mo> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>&lt;</mo> <mo>-</mo> <mi>&pi;</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mtd> <mtd> <mrow> <mo>(</mo> <mo>-</mo> <mi>&pi;</mi> <mo>&le;</mo> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>&le;</mo> <mi>&pi;</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <mn>2</mn> <mi>&pi;</mi> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>></mo> <mi>&pi;</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>stepnow</mi> <mo>=</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>Maxgen</mi> <mo>-</mo> <mi>gen</mi> <mo>)</mo> </mrow> <mi>w</mi> </msup> <msup> <mrow> <mo>(</mo> <mi>Maxgen</mi> <mo>)</mo> </mrow> <mi>w</mi> </msup> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&sigma;</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>&sigma;</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&sigma;</mi> <mi>e</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow> </math>
herein, the parameter values in equation (25) are: w is 2, σe=0,σs=2;
And (3) updating the probability amplitude by using a quantum revolving gate:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow> </math>
two new positions are obtained:
<math> <mrow> <mover> <msub> <mi>P</mi> <mi>ic</mi> </msub> <mo>~</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mover> <msub> <mi>P</mi> <mi>is</mi> </msub> <mo>~</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow> </math>
sixth, mutation strategy
In the Quantum Bat Algorithm (QBA), in order to prevent the algorithm from falling into local optima prematurely, a variation strategy is adopted herein to increase the diversity of the population, the variation strategy being implemented by a quantum not gate; if rand () < pmIf so, executing quantum NOT gate operation and exchanging the two probability values; wherein p ismIs the variation probability;
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>+</mo> <mfrac> <mi>&pi;</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>+</mo> <mfrac> <mi>&pi;</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
the Quantum Bat Algorithm (QBA) is converted into a computer execution flow as follows:
the simulation experiment concerning the algorithm according to the present invention is as follows
1 simulation platform
In order to verify the correctness and effectiveness of the algorithm in solving the actual problem, a quantum bat algorithm, a basic bat algorithm and a differential evolution algorithm are subjected to a comparative test experiment. A simulation test platform: matlab R2012 (a); a CPU: AMD Athlon (tm) IIX 4640 Processor, dominant frequency: 3.00 GHz; RAM: 3 GB; operating the system: windows 7.
2 parameter setting
The parameter settings of the bat algorithm are as follows:
after 20 independent experimental comparisons, the following settings are made for each parameter in the algorithm:
in the basic bat algorithm, according to experience, the parameters are generally set as follows: search pulse frequency range of [0,2 ]]Maximum pulse frequency r0The maximum pulse sound intensity a is 0.5, the pulse sound intensity attenuation coefficient α is 0.95, and the pulse frequency increase coefficient γ is 0.05.
In the differential evolution algorithm, the scaling factor F is 0.5, and the crossover probability CR is 0.9.
The basic parameters in the quantum bat algorithm are the same as the basic bat algorithm, and the range of the quantum argument is set as thetaij∈[-π,π]. Wherein, the other parameters in the formula (25) are respectively set as: w is 2, σe=0,σs=2。
3 results and analysis of the experiments
Two test examples are adopted to verify the performance of the QBA algorithm in solving the unmanned aerial vehicle route planning problem. In the test experiments in this section, the population size is set to 30 for Popsize, and 200 for max iterations of the three algorithms.
TABLE 1 relevant information for threat regions for a first set of test cases
The unmanned aerial vehicle route planning problem is to find an optimal or suboptimal route with the minimum threat cost, and when D takes different values, different optimization results of the problem can be obtained. As can be seen from the experimental results of table 2, initially, the accuracy of the flight path starts to decrease as the division dimension D increases, but when the division dimension D exceeds 30. For the first set of test cases, we can set the more appropriate segmentation dimension D to 20. In table 2, the optimal value, the average value, and the worst value of the Quantum Bat Algorithm (QBA) are all better than those of the Bat Algorithm (BA) and the Differential Evolution (DE). Therefore, the optimization performance of the algorithm provided by the method is obviously superior to that of a Bat Algorithm (BA) and Differential Evolution (DE). The result of the standard deviation shows that the Quantum Bat Algorithm (QBA) has the strongest robustness and can stably and effectively solve the optimization problem.
TABLE 2 Experimental results for the first set of test cases
From fig. 3 to fig. 8, we can see that the flight path is divided into D equally divided units. The drone attempts to evade the threat zone to find a route with the least threat cost. From the convergence graphs of the three algorithms of fig. 9 to fig. 14, it can be seen that the convergence speed of the Quantum Bat Algorithm (QBA) is the fastest and is not easy to fall into local optimum. Analysis of the experimental results of table 2 reveals that the optimization performance (i.e., flight path) of the algorithm is not simply a direct proportional relationship with the segmentation dimension D. The better the result is not optimized for larger segmentation dimensions D.
In the following test examples, to more fully verify the validity of the quantum bat algorithm, QBA and a plurality of intelligent algorithms were used[12]Comparative experiments were performed and the results are shown in tables 4, 5 and 6. In the test experiments in this section, the population size was set to Popsize 30, and the maximum number of iterations for each algorithm was 200 for Maxgen.
TABLE 3 relevant information for second set of test case threat regions
TABLE 4 optimal solutions for different dimensions for the second set of test cases
TABLE 5 worst solution for different dimensions for the second set of test cases
TABLE 6 average solutions for different dimensions for the second set of test cases
Fig. 15 to 22 are the results of the Quantum Bat Algorithm (QBA) optimization for the second class of test examples. It can be seen from the figure that, aiming at different division dimensions D, QBA can find a path avoiding a threat area for the unmanned aerial vehicle, so that the threat cost is as low as possible to ensure the safety of the aircraft.
Due to the diversity of particle states, the quantum bat algorithm has strong global search capability. As can be seen from the experimental results of the second set of test examples in tables 4, 5 and 6, the quantum bat algorithm can achieve better optimal solutions under different division dimensions D, with the average solution being slightly worse than the mixed Bat Algorithm (BAM) only in two cases, D25 and D40, and being worse than the Differential Evolution (DE) only in 5 cases, and the worst solution being worse than the BAM only in 5 cases. The optimal solution, the worst solution and the average solution are comprehensively evaluated, and the comprehensive search performance of the Quantum Bat Algorithm (QBA) is superior to that of other 10 algorithms. Compared with the basic Bat Algorithm (BA), the optimization performance is improved by times, and compared with the hybrid Bat Algorithm (BAM), the optimization performance is also obviously improved. For the problem of unmanned aerial vehicle (UCAV) route planning, the quantum bat algorithm has higher optimizing precision, so that a more optimal flight route can be obtained.
A novel Quantum Bat Algorithm (QBA) path planning problem for unmanned combat aircraft is presented. QBA has an extremely strong global search capability in terms of probability due to its diversity. Simulation experiments show that the proposed algorithm is a feasible and effective way to plan the path of the unmanned fighter. The QBA can find a safe flight path by minimizing the threat of node connection costs for the empty room with the lowest fuel costs.
The invention and its embodiments have been described above, without limitation. In summary, those skilled in the art should appreciate that methods and embodiments similar to those described above can be devised without departing from the spirit and scope of the present invention.

Claims (1)

1. A method for determining an optimal path of an unmanned aerial vehicle airway is characterized in that: it comprises the following steps:
firstly, encoding the bat individuals by adopting the probability amplitude of the qubits on the basis of a basic bat algorithm, namely updating the probability amplitude of the qubits by using a quantum revolving gate, and adopting a quantum not gate as a variation operation to avoid premature convergence of the algorithm; there are two probability magnitudes for each qubit, and thus, each bat can represent two positions of the optimization space;
secondly, in quantum computation, the smallest information unit is stored in a qubit, and the state of the qubit can be '0', or '1', or any state between '0' and '1'; the state of a qubit can be represented as follows:
|Ψ>=α|0>+β|1> (12)
wherein α and β satisfy:
|α|2+|β|2=1 (13)
wherein | α |2And | β | |)2Respectively represent a trend state |0>And |1>The probability of (d);
an n-ary qubit can be defined as:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&beta;</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&beta;</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&beta;</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <msub> <mi>&alpha;</mi> <mi>n</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&beta;</mi> <mi>n</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
the quantum rotating gate is defined as follows:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&Delta;&theta;</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
the quantum not gate is defined as follows:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&alpha;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&beta;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&beta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&alpha;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
third, generating initial population
The algorithm uses the following coding scheme:
<math> <mrow> <mi>P</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ik</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>in</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>in</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, thetaijIs the argument, and it can be seen from the formula (17) that each bat corresponds to two positions of the problem space, corresponding to the quantum state |0>And |1>The probability amplitude of (c):
Pic=(cos(θi1),cos(θi2),...,cos(θin)) (18)
Pis=(sin(θi1),sin(θi2),...,sin(θin)) (19)
the fourth step, solving the spatial transformation
In order to calculate the fitness of an individual and evaluate the quality of the individual, the solution space of a population needs to be converted; each probability amplitude of an individual qubit corresponds to one solution of the solution space of the problem, i.e. each bat corresponds to two solutions of the optimization problem;
<math> <mrow> <msubsup> <mi>X</mi> <mi>ic</mi> <mi>j</mi> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>[</mo> <msub> <mi>X</mi> <mi>max</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&alpha;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>X</mi> <mi>min</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&alpha;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>X</mi> <mi>is</mi> <mi>j</mi> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>[</mo> <msub> <mi>X</mi> <mi>max</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&beta;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>X</mi> <mi>min</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&beta;</mi> <mi>i</mi> <mi>j</mi> </msubsup> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,from quantum state |0>Amplitude of probability ofIs obtained byIs formed by quantum state |1>Amplitude of probability ofObtaining;
the fifth step, updating the strategy
In the Quantum Bat Algorithm (QBA), the amplitude and angle increment of the qubit is updated by adopting an updating strategy of the Bat Algorithm (BA), and the updating process is as follows:
Δθij(t+1)=Δθij(t)+Δθg*Q(i)*stepnow (22)
θij(t+1)=θij(t)+Δθij(t+1) (23)
wherein, Delta thetaijAnd thetaijArgument increment and argument respectively;
<math> <mrow> <msub> <mi>&Delta;&theta;</mi> <mi>g</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>2</mn> <mi>&pi;</mi> <mo>+</mo> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>&lt;</mo> <mo>-</mo> <mi>&pi;</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> </mtd> <mtd> <mrow> <mo>(</mo> <mo>-</mo> <mi>&pi;</mi> <mo>&le;</mo> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>&le;</mo> <mi>&pi;</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>-</mo> <mn>2</mn> <mi>&pi;</mi> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>gj</mi> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>></mo> <mi>&pi;</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>stepnow</mi> <mo>=</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>Maxgen</mi> <mo>-</mo> <mi>gen</mi> <mo>)</mo> </mrow> <mi>w</mi> </msup> <msup> <mrow> <mo>(</mo> <mi>Maxgen</mi> <mo>)</mo> </mrow> <mi>w</mi> </msup> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&sigma;</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>&sigma;</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&sigma;</mi> <mi>e</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow> </math>
herein, the parameter values in equation (25) are: w is 2, σe=0,σs=2;
And (3) updating the probability amplitude by using a quantum revolving gate:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow> </math>
two new positions are obtained:
<math> <mrow> <mover> <msub> <mi>P</mi> <mi>ic</mi> </msub> <mo>~</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mover> <msub> <mi>P</mi> <mi>is</mi> </msub> <mo>~</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>+</mo> <msub> <mi>&Delta;&theta;</mi> <mi>ij</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow> </math>
sixth, mutation strategy
In the Quantum Bat Algorithm (QBA), in order to prevent the algorithm from falling into local optima prematurely, a variation strategy is adopted herein to increase the diversity of the population, the variation strategy being implemented by a quantum not gate; if rand () < pmIf so, executing quantum NOT gate operation and exchanging the two probability values; wherein p ismIs the variation probability;
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>+</mo> <mfrac> <mi>&pi;</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>+</mo> <mfrac> <mi>&pi;</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
CN201410725347.2A 2014-12-03 2014-12-03 Method for determining optimal route of airway of unmanned aerial vehicle Pending CN104406593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410725347.2A CN104406593A (en) 2014-12-03 2014-12-03 Method for determining optimal route of airway of unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410725347.2A CN104406593A (en) 2014-12-03 2014-12-03 Method for determining optimal route of airway of unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
CN104406593A true CN104406593A (en) 2015-03-11

Family

ID=52644240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410725347.2A Pending CN104406593A (en) 2014-12-03 2014-12-03 Method for determining optimal route of airway of unmanned aerial vehicle

Country Status (1)

Country Link
CN (1) CN104406593A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834317A (en) * 2015-04-24 2015-08-12 华北计算技术研究所 Flying path planning method of unmanned plane capable of intelligently identifying threat types
CN105841702A (en) * 2016-03-10 2016-08-10 赛度科技(北京)有限责任公司 Method for planning routes of multi-unmanned aerial vehicles based on particle swarm optimization algorithm
CN106197455A (en) * 2016-07-28 2016-12-07 武汉大学 A kind of urban road network Real-time and Dynamic Multiple Intersections path navigation quantum searching method
CN106595661A (en) * 2016-11-16 2017-04-26 桂林电子科技大学 Reconstruction method of inertial sensor signal
CN107037827A (en) * 2017-04-14 2017-08-11 合肥工业大学 Unmanned plane aviation job task is distributed and trajectory planning combined optimization method and device
CN107184145A (en) * 2017-06-21 2017-09-22 武汉洁美雅科技有限公司 A kind of intelligent power saving environment friendly dust aspirator control system
CN107219858A (en) * 2017-04-26 2017-09-29 西北工业大学 A kind of multiple no-manned plane collaboration coupling task distribution method for improving glowworm swarm algorithm
CN107677273A (en) * 2017-09-11 2018-02-09 哈尔滨工程大学 A kind of cluster unmanned plane Multiple routes planning method based on two-dimensional grid division
CN107968613A (en) * 2017-11-20 2018-04-27 无锡开放大学 A kind of permanent magnet synchronous motor rotational speed governor based on Recurrent Fuzzy Neural Network
CN108473201A (en) * 2015-12-29 2018-08-31 乐天株式会社 Unmanned vehicle keeps out of the way system, unmanned vehicle back-off method and program
CN108501948A (en) * 2018-04-16 2018-09-07 北京京大律业知识产权代理有限公司 A kind of pilotless automobile control method based on virtual reality
CN108880368A (en) * 2018-06-08 2018-11-23 湖南机电职业技术学院 Permanent magnet synchronous motor efficiency optimization control method based on modified Fibonacci method
CN109019796A (en) * 2018-08-06 2018-12-18 甘肃农业大学 Lacquer mist coagulant, preparation system and method for paint spray booth circulating water treatment
CN109085877A (en) * 2018-07-24 2018-12-25 上海电力学院 QAPSO algorithm photovoltaic system MPPT control method is based under the conditions of local shades
CN109089874A (en) * 2018-08-16 2018-12-28 安徽省农业科学院土壤肥料研究所 The selection of leaf mustard cytoplasmic male sterile line, breeding system, control method
CN109144102A (en) * 2018-09-19 2019-01-04 沈阳航空航天大学 A kind of Path Planning for UAV based on improvement bat algorithm
CN109397294A (en) * 2018-12-05 2019-03-01 南京邮电大学 A kind of robot cooperated localization method based on BA-ABC converged communication algorithm
CN109445463A (en) * 2018-12-21 2019-03-08 山东理工大学 A kind of unmanned plane dynamic lane planing method
CN109495245A (en) * 2018-11-07 2019-03-19 广东水利电力职业技术学院(广东省水利电力技工学校) A kind of maximum is true to tangle the shared classical secret information method and system of six side's states
CN110632922A (en) * 2019-09-10 2019-12-31 青岛理工大学 Path planning method based on bat algorithm and reinforcement learning
CN110991545A (en) * 2019-12-10 2020-04-10 中国人民解放军军事科学院国防科技创新研究院 Multi-agent confrontation oriented reinforcement learning training optimization method and device
CN111024092A (en) * 2019-12-31 2020-04-17 西南交通大学 Method for rapidly planning tracks of intelligent aircraft under multi-constraint conditions
CN111024086A (en) * 2019-12-19 2020-04-17 哈尔滨工程大学 Multi-unmanned aerial vehicle flight path planning method based on crowd bird optimization technology
CN111189455A (en) * 2020-01-14 2020-05-22 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Unmanned aerial vehicle route planning method and system based on combination of improved biophysical algorithm and Bessel function and storage medium
CN112330001A (en) * 2020-10-27 2021-02-05 河南大学 Logistics distribution vehicle route optimization method based on discrete bat algorithm
CN112578812A (en) * 2020-12-01 2021-03-30 一飞智控(天津)科技有限公司 Unmanned aerial vehicle formation and path planning target point exchange method, system, medium and terminal
CN112596373A (en) * 2020-10-27 2021-04-02 西北工业大学 Unmanned aerial vehicle attitude control parameter intelligent setting method based on quantum firefly algorithm
CN113361753A (en) * 2021-05-26 2021-09-07 中国电子技术标准化研究院 Method, system, and medium for determining optimal path based on quantum genetic algorithm
CN113759927A (en) * 2021-09-16 2021-12-07 重庆邮电大学 Warehousing robot path planning method based on artificial bee colony-adaptive genetic algorithm
CN117146833A (en) * 2023-10-31 2023-12-01 北京卓翼智能科技有限公司 Unmanned aerial vehicle path planning method and device based on improved bat algorithm

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856894B1 (en) * 2003-10-23 2005-02-15 International Business Machines Corporation Navigating a UAV under remote control and manual control with three dimensional flight depiction
US20060031004A1 (en) * 2003-10-13 2006-02-09 Kristian Lundberg Method and device for planning a trajectory
CN101739602A (en) * 2009-09-07 2010-06-16 北京邮电大学 Multi-factor decision quantum variation method for quantum genetic algorithm
CN102788581A (en) * 2012-07-17 2012-11-21 哈尔滨工程大学 Ship route planning method based on modified differential evolution algorithm
CN103471592A (en) * 2013-06-08 2013-12-25 哈尔滨工程大学 Multi-unmanned aerial vehicle route planning method based on bee colony collaborative foraging algorithm
CN103697896A (en) * 2014-01-13 2014-04-02 西安电子科技大学 Unmanned aerial vehicle route planning method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060031004A1 (en) * 2003-10-13 2006-02-09 Kristian Lundberg Method and device for planning a trajectory
US6856894B1 (en) * 2003-10-23 2005-02-15 International Business Machines Corporation Navigating a UAV under remote control and manual control with three dimensional flight depiction
CN101739602A (en) * 2009-09-07 2010-06-16 北京邮电大学 Multi-factor decision quantum variation method for quantum genetic algorithm
CN102788581A (en) * 2012-07-17 2012-11-21 哈尔滨工程大学 Ship route planning method based on modified differential evolution algorithm
CN103471592A (en) * 2013-06-08 2013-12-25 哈尔滨工程大学 Multi-unmanned aerial vehicle route planning method based on bee colony collaborative foraging algorithm
CN103697896A (en) * 2014-01-13 2014-04-02 西安电子科技大学 Unmanned aerial vehicle route planning method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GAIGE WANG 等: "A Bat Algorithm with Mutation for UCAV Path Planning", 《THE SCIENTIFIC WORLD JOURNAL》 *
李枝勇 等: "函数优化的量子蝙蝠算法", 《系统管理学报》 *
李枝勇 等: "整数规划的量子行为蝙蝠算法", 《计算机工程与科学》 *
黎成: "新型元启发式蝙蝠算法", 《电脑知识与技术》 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834317B (en) * 2015-04-24 2017-05-24 华北计算技术研究所 Flying path planning method of unmanned plane capable of intelligently identifying threat types
CN104834317A (en) * 2015-04-24 2015-08-12 华北计算技术研究所 Flying path planning method of unmanned plane capable of intelligently identifying threat types
CN108473201A (en) * 2015-12-29 2018-08-31 乐天株式会社 Unmanned vehicle keeps out of the way system, unmanned vehicle back-off method and program
CN108473201B (en) * 2015-12-29 2021-11-05 乐天集团股份有限公司 Unmanned aerial vehicle retraction system, unmanned aerial vehicle retraction method, and recording medium
CN105841702A (en) * 2016-03-10 2016-08-10 赛度科技(北京)有限责任公司 Method for planning routes of multi-unmanned aerial vehicles based on particle swarm optimization algorithm
CN106197455A (en) * 2016-07-28 2016-12-07 武汉大学 A kind of urban road network Real-time and Dynamic Multiple Intersections path navigation quantum searching method
CN106595661A (en) * 2016-11-16 2017-04-26 桂林电子科技大学 Reconstruction method of inertial sensor signal
CN107037827A (en) * 2017-04-14 2017-08-11 合肥工业大学 Unmanned plane aviation job task is distributed and trajectory planning combined optimization method and device
CN107219858A (en) * 2017-04-26 2017-09-29 西北工业大学 A kind of multiple no-manned plane collaboration coupling task distribution method for improving glowworm swarm algorithm
CN107184145A (en) * 2017-06-21 2017-09-22 武汉洁美雅科技有限公司 A kind of intelligent power saving environment friendly dust aspirator control system
CN107677273A (en) * 2017-09-11 2018-02-09 哈尔滨工程大学 A kind of cluster unmanned plane Multiple routes planning method based on two-dimensional grid division
CN107677273B (en) * 2017-09-11 2020-09-25 哈尔滨工程大学 Cluster unmanned aerial vehicle multi-track planning method based on two-dimensional grid division
CN107968613A (en) * 2017-11-20 2018-04-27 无锡开放大学 A kind of permanent magnet synchronous motor rotational speed governor based on Recurrent Fuzzy Neural Network
CN108501948A (en) * 2018-04-16 2018-09-07 北京京大律业知识产权代理有限公司 A kind of pilotless automobile control method based on virtual reality
CN108880368A (en) * 2018-06-08 2018-11-23 湖南机电职业技术学院 Permanent magnet synchronous motor efficiency optimization control method based on modified Fibonacci method
CN109085877A (en) * 2018-07-24 2018-12-25 上海电力学院 QAPSO algorithm photovoltaic system MPPT control method is based under the conditions of local shades
CN109019796A (en) * 2018-08-06 2018-12-18 甘肃农业大学 Lacquer mist coagulant, preparation system and method for paint spray booth circulating water treatment
CN109089874A (en) * 2018-08-16 2018-12-28 安徽省农业科学院土壤肥料研究所 The selection of leaf mustard cytoplasmic male sterile line, breeding system, control method
CN109144102B (en) * 2018-09-19 2021-08-20 沈阳航空航天大学 Unmanned aerial vehicle route planning method based on improved bat algorithm
CN109144102A (en) * 2018-09-19 2019-01-04 沈阳航空航天大学 A kind of Path Planning for UAV based on improvement bat algorithm
CN109495245A (en) * 2018-11-07 2019-03-19 广东水利电力职业技术学院(广东省水利电力技工学校) A kind of maximum is true to tangle the shared classical secret information method and system of six side's states
CN109397294A (en) * 2018-12-05 2019-03-01 南京邮电大学 A kind of robot cooperated localization method based on BA-ABC converged communication algorithm
CN109445463B (en) * 2018-12-21 2021-07-27 山东理工大学 Unmanned aerial vehicle dynamic route planning method
CN109445463A (en) * 2018-12-21 2019-03-08 山东理工大学 A kind of unmanned plane dynamic lane planing method
CN110632922A (en) * 2019-09-10 2019-12-31 青岛理工大学 Path planning method based on bat algorithm and reinforcement learning
CN110632922B (en) * 2019-09-10 2022-06-17 青岛理工大学 Path planning method based on bat algorithm and reinforcement learning
CN110991545A (en) * 2019-12-10 2020-04-10 中国人民解放军军事科学院国防科技创新研究院 Multi-agent confrontation oriented reinforcement learning training optimization method and device
CN111024086A (en) * 2019-12-19 2020-04-17 哈尔滨工程大学 Multi-unmanned aerial vehicle flight path planning method based on crowd bird optimization technology
CN111024092A (en) * 2019-12-31 2020-04-17 西南交通大学 Method for rapidly planning tracks of intelligent aircraft under multi-constraint conditions
CN111189455A (en) * 2020-01-14 2020-05-22 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Unmanned aerial vehicle route planning method and system based on combination of improved biophysical algorithm and Bessel function and storage medium
CN111189455B (en) * 2020-01-14 2022-02-01 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Unmanned aerial vehicle route planning method, system and storage medium
CN112596373A (en) * 2020-10-27 2021-04-02 西北工业大学 Unmanned aerial vehicle attitude control parameter intelligent setting method based on quantum firefly algorithm
CN112330001A (en) * 2020-10-27 2021-02-05 河南大学 Logistics distribution vehicle route optimization method based on discrete bat algorithm
CN112596373B (en) * 2020-10-27 2023-05-23 西北工业大学 Unmanned aerial vehicle attitude control parameter intelligent setting method based on quantum firefly algorithm
CN112578812A (en) * 2020-12-01 2021-03-30 一飞智控(天津)科技有限公司 Unmanned aerial vehicle formation and path planning target point exchange method, system, medium and terminal
CN113361753A (en) * 2021-05-26 2021-09-07 中国电子技术标准化研究院 Method, system, and medium for determining optimal path based on quantum genetic algorithm
CN113361753B (en) * 2021-05-26 2023-07-04 中国电子技术标准化研究院 Method, system and medium for determining optimal path based on quantum genetic algorithm
CN113759927A (en) * 2021-09-16 2021-12-07 重庆邮电大学 Warehousing robot path planning method based on artificial bee colony-adaptive genetic algorithm
CN113759927B (en) * 2021-09-16 2023-09-05 重庆邮电大学 Warehouse robot path planning method based on artificial bee colony-self-adaptive genetic algorithm
CN117146833A (en) * 2023-10-31 2023-12-01 北京卓翼智能科技有限公司 Unmanned aerial vehicle path planning method and device based on improved bat algorithm
CN117146833B (en) * 2023-10-31 2024-01-05 北京卓翼智能科技有限公司 Unmanned aerial vehicle path planning method and device based on improved bat algorithm

Similar Documents

Publication Publication Date Title
CN104406593A (en) Method for determining optimal route of airway of unmanned aerial vehicle
CN110488872B (en) Unmanned aerial vehicle real-time path planning method based on deep reinforcement learning
CN113589842B (en) Unmanned cluster task cooperation method based on multi-agent reinforcement learning
CN107063255B (en) Three-dimensional route planning method based on improved drosophila optimization algorithm
CN101286071B (en) Multiple no-manned plane three-dimensional formation reconfiguration method based on particle swarm optimization and genetic algorithm
Jia et al. Operational effectiveness evaluation of the swarming UAVs combat system based on a system dynamics model
CN114413906A (en) Three-dimensional trajectory planning method based on improved particle swarm optimization algorithm
Rasmussen et al. Tree search algorithm for assigning cooperating UAVs to multiple tasks
CN108153328B (en) Multi-missile collaborative track planning method based on segmented Bezier curve
CN106908066A (en) The path planning method of the unmanned plane monitoring covering single step optimizing based on genetic algorithm
CN105278542A (en) Counter-attack countermeasure optimal strategy method for multi-unmanned plane cooperative strike task
CN110928329A (en) Multi-aircraft track planning method based on deep Q learning algorithm
CN105005820A (en) Target assignment optimizing method based on particle swarm algorithm of population explosion
CN111797966B (en) Multi-machine collaborative global target distribution method based on improved flock algorithm
Yan et al. Research on route planning of AUV based on genetic algorithms
CN113625569B (en) Small unmanned aerial vehicle prevention and control decision method and system based on hybrid decision model
CN113159266B (en) Air combat maneuver decision method based on sparrow searching neural network
Zhou et al. Chaotic differential evolution approach for 3D trajectory planning of unmanned aerial vehicle
CN114063644B (en) Unmanned fighter plane air combat autonomous decision-making method based on pigeon flock reverse countermeasure learning
CN112666981A (en) Unmanned aerial vehicle cluster dynamic route planning method based on dynamic group learning of original pigeon group
Luo et al. A quantum encoding bat algorithm for uninhabited combat aerial vehicle path planning
CN114638339A (en) Intelligent agent task allocation method based on deep reinforcement learning
CN115951709A (en) Multi-unmanned aerial vehicle air combat strategy generation method based on TD3
CN116050515B (en) XGBoost-based parallel deduction multi-branch situation prediction method
Ha et al. A stochastic game-based approach for multiple beyond-visual-range air combat

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150311