CN104398508A - 双吲哚马来酰亚胺衍生物在制备治疗慢性粒细胞白血病药物中的应用 - Google Patents

双吲哚马来酰亚胺衍生物在制备治疗慢性粒细胞白血病药物中的应用 Download PDF

Info

Publication number
CN104398508A
CN104398508A CN201410709220.1A CN201410709220A CN104398508A CN 104398508 A CN104398508 A CN 104398508A CN 201410709220 A CN201410709220 A CN 201410709220A CN 104398508 A CN104398508 A CN 104398508A
Authority
CN
China
Prior art keywords
cell
bisindolylmaleimide
bcr
abl
bisindole maleimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410709220.1A
Other languages
English (en)
Other versions
CN104398508B (zh
Inventor
李保界
张辛
刘慧娟
贺林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201410709220.1A priority Critical patent/CN104398508B/zh
Publication of CN104398508A publication Critical patent/CN104398508A/zh
Application granted granted Critical
Publication of CN104398508B publication Critical patent/CN104398508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/4045Indole-alkylamines; Amides thereof, e.g. serotonin, melatonin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及医药领域,特别涉及双吲哚马来酰亚胺衍生物(Bisindolylmaleimide)在制备治疗慢性粒细胞白血病药物中的应用。本发明公开了双吲哚马来酰亚胺衍生物在制备治疗慢性粒细胞白血病药物中的应用。与现有技术相比,双吲哚马来酰亚胺衍生物通过引起DNA损伤激活抑癌基因p53,导致细胞周期停滞在G2/M期,通过抑制BCR-ABL的下游成瘾依赖的Raf-Erk通路,从而抑制拓扑异构酶活性并增强细胞对双吲哚马来酰亚胺衍生物的敏感性来达到治疗BCR-ABL阳性白血病的目的。

Description

双吲哚马来酰亚胺衍生物在制备治疗慢性粒细胞白血病药物中的应用
技术领域
本发明涉及医药领域,特别涉及双吲哚马来酰亚胺衍生物(Bisindolylmaleimide)在制备治疗慢性粒细胞白血病药物中的应用。
背景技术
肿瘤是一类多基因改变、多阶段发生、多因素参与的复杂性疾病。世界卫生组织(WHO)《全球癌症报告2014》称2012年全世界癌症病例新增1400万,其中约820万人死亡。新增癌症病例约50%出现在亚洲,其中大部分在中国。中国癌症患者新增307万,死亡约220万,分别占全球总量的21.9%和26.8%。该报告预测全球癌症病例将呈现迅猛增长态势,由2012年的1400万人,在2025年将增至1900万人。因此对肿瘤治疗问题的研究解决无论在社会问题还是科学问题上的重要性不言而喻。目前,癌症的治疗手段主要有外科手术治疗、放疗和化疗三种。其中,化疗药物又可分为以下类别:烷基化药物、抗代谢药物、细胞骨架解聚剂、拓扑异构酶抑制剂、激酶抑制剂、脱乙酰酶抑制剂以及细胞毒素抗体等。由于现有抗肿瘤药物引起抗药性、疗效不足以及疗效具有片面性等原因,开发新的化疗药物正在成为一个新的研究热点。以慢性粒细胞白血病(chronic myeloid leukemia,简称CML)为例。慢性粒细胞白血病是由于染色体易位形成BCR-ABL融合蛋白而引起的,这种融合蛋白具有持续激活酪氨酸激酶的活性。伊马替尼是一种ABL激酶抑制剂,起初在治疗慢性粒细胞白血病方面具有很好的疗效,然而后来许多慢性粒细胞白血病患者对该药产生了抗药性,这是由于BCR-ABL融合蛋白突变T315I(即蛋白链上的第315位苏氨酸突变为异亮氨酸)影响伊马替尼与作用位点的结合而造成的。大部分抗伊马替尼的BCR-ABL突变病人对第二代药物尼罗替尼和达沙替尼药物治疗敏感,然而却不包括T315I突变。因此,需要能够克服抗药性治疗慢性粒细胞白血病的新药。
发明内容
本发明目的在于提供双吲哚马来酰亚胺衍生物在制备治疗慢性粒细胞白血病药物中的应用。
本发明目的通过以下的技术方案实现:
双吲哚马来酰亚胺衍生物在制备治疗慢性粒细胞白血病药物中的应用。
所述的药物是BCR-ABL阳性细胞增殖的抑制剂。
所述的药物是BCR-ABL阳性细胞死亡的诱导剂。
所述双吲哚马来酰亚胺衍生物选自双吲哚马来酰亚胺I、双吲哚马来酰亚胺II、双吲哚马来酰亚胺III、双吲哚马来酰亚胺IV、双吲哚马来酰亚胺V、双吲哚马来酰亚胺VI、双吲哚马来酰亚胺VII、双吲哚马来酰亚胺VIII、双吲哚马来酰亚胺IX、双吲哚马来酰亚胺X或双吲哚马来酰亚胺XI的至少一种。
所述双吲哚马来酰亚胺I的化学结构式为:
所述双吲哚马来酰亚胺II的化学结构式为:
所述双吲哚马来酰亚胺III的化学结构式为:
所述双吲哚马来酰亚胺IV的化学结构式为:
所述双吲哚马来酰亚胺V的化学结构式为:
所述双吲哚马来酰亚胺VI的化学结构式为:
所述双吲哚马来酰亚胺VII的化学结构式为:
所述双吲哚马来酰亚胺VIII的化学结构式为:
所述双吲哚马来酰亚胺IX的化学结构式为:
所述双吲哚马来酰亚胺X的化学结构式为:
所述双吲哚马来酰亚胺XI的化学结构式为:
与现有技术相比,本发明有以下有益效果:
1、双吲哚马来酰亚胺衍生物通过引起DNA损伤激活抑癌基因p53,导致细胞周期停滞在G2/M期,通过抑制BCR-ABL的下游成瘾依赖的Raf-Erk通路,从而抑制拓扑异构酶活性并增强细胞对双吲哚马来酰亚胺衍生物的敏感性来达到治疗BCR-ABL阳性白血病的目的;
2、双吲哚马来酰亚胺衍生物通过抑制Raf-Erk信号通路使包括T315I突变在内的带有BCR-ABL细胞对其细胞毒性敏感,而对原代MEF细胞仅表现出较轻微的毒性。
附图说明
图1为实施例1中Western blot分析的示意图;
图2为实施例2中Bisindolylmaleimide IX抑制拓扑异构酶的活性实验示意图;
图3为实施例2中Bisindolylmaleimide IX等物质的拓扑异构酶抑制剂活性实验的示意图;
图4为实施例2中Bisindolylmaleimide IX引起DNA损伤的示意图;
图5为实施例3中Bisindolylmaleimide IX诱导细胞周期阻滞的示意图;
图6为实施例3中Bisindolylmaleimide IX导致细胞死亡的示意图;
图7为实施例3中Bisindolylmaleimide IX以剂量依赖的方式激活Atm、Chk2的示意图(其中,A为在MEF细胞中Bisindolylmaleimide IX以剂量依赖性的方式激活Atm-Chk2通路的示意图;B为在HCT116细胞中Bisindolylmaleimide IX以剂量依赖性方式激活Atm-Chk2通路的示意图);
图8为实施例4中Bisindolylmaleimide IX诱导K562细胞死亡的示意图(其中,A为慢性髓系白血病细胞系K562;B为急性早幼粒髓系细胞系HL-60;C为乳腺癌细胞系MCF7;D为胶质瘤细胞系U251;E为胃癌细胞系AGS;F为胃癌细胞系MGC-803;G为骨肉瘤细胞系U2OS和Saos-2);
图9为实施例5中表达了BCR-ABL的细胞增加了对Bisindolylmaleimide IX毒性敏感性的示意图;
图10为实施例5中BaF3T315I BCR-ABL、BaF3WT BCR-ABL细胞对Bisindolylmaleimide IX敏感性相似的示意图;
图11为实施例6中Bisindolylmaleimide IX对HL60细胞、K562细胞的G2/M期阻滞效果的示意图;
图12为实施例6中Bisindolylmaleimide IX对BaF3Vector细胞、BaF3BCR-ABL细胞周期阻滞的反应敏感性示意图;
图13为实施例7中多个双吲哚马来酰亚胺衍生物对BaF3Vector和BaF3BCR-ABL的细胞毒性的示意图;
图14为实施例8中Bisindolylmaleimide IX对BaF3Vector细胞、BaF3BCR-ABL细胞处理后γH2AX损伤灶增加的示意图;
图15为实施例8中Bisindolylmaleimide IX抑制拓扑异构酶IIa的表达的示意图;
图16为实施例9中Bisindolylmaleimide IX抑制BaF3BCR-ABL细胞RAF-ERK的激活,激活凋亡的示意图;
图17为实施例10中Bisindolylmaleimide IX有效对抗BCR-ABL阳性的肿瘤增长的示意图(A为Bisindolylmaleimide IX抑制BCR-ABLWT BCR-ABL(病毒转染了bcr-abl野生型质粒)细胞的裸鼠肿瘤增长的示意图;B为BisindolylmaleimideIX抑制BCR-ABLT315I BCR-ABL(病毒转染T315I bcr-abl质粒)细胞的裸鼠的肿瘤增长的示意图);
图18为实施例10中A为Bisindolylmaleimide IX延长了带有BCR-ABLWT BCR-ABL细胞的裸鼠生存期示意图;B为Bisindolylmaleimide IX延长了带有BCR-ABLT315I BCR-ABL细胞的裸鼠生存期的示意图);
具体实施方式
以下结合实施例对本发明做详细说明。
实施例1 双吲哚马来酰亚胺IX(Bisindolylmaleimide IX)激活p53的实验
主要实验材料:
MEF(原代细胞)细胞株、HCT116、Bisindolylmaleimide IX、DMEM培养基和胎牛血清。
材料的配置:
1、用含有DMSO的PBS溶解Bisindolylmaleimide IX,配成储液浓度1mM。
2、取MEF(WT)、HCT116的细胞接种到六孔板中,每孔加入2ml含10%胎牛血清的DMEM培养基。
3、待细胞稳定生长到约占培养皿面积的70-80%时,进行加药处理。
加药步骤如下:
将Bisindolylmaleimide IX溶液加入到2ml培养基中,使其终浓度达到2.5μM,培养1、2、4、8h后,吸去培养基,用预冷的PBS清洗细胞2遍后用RIPA裂解液裂解细胞提取蛋白,以加入等体积1%DMSO的PBS细胞作为对照。上样进行Western blot分析,结果如图1所示。实验结果表明:BisindolylmaleimideIX刺激MEF细胞、HCT116细胞中的p53表达。
实施例2 Bisindolylmaleimide IX诱导DNA损伤的实验
主要实验材料:
细胞株MEF(WT)、Bisindolylmaleimide IX,转染bcr-abl基因的BaF3(小鼠前B淋巴细胞)细胞株,购自中国医学科学院基础医学研究所(协和细胞库)。Bisindolylmaleimide IX购自Cayman公司。Topoisomerase I Assay Kit TG 1015-1,购自TopoGEN公司。
实验方法:
1、取MEF(WT)细胞接种到已铺有无菌盖玻片的十二孔板中,每孔加入1ml含10%胎牛血清的DMEM培养基。待细胞稳定生长到约占培养皿面积的70-80%时,将细胞分为两组,一组加入5mM咖啡因,另一组无处理。1小时后同时在两组培养基中按照1:100加入10μl 250μM的Bisindolylmaleimide IX,使其终浓度为2.5μM,处理4h(以相同体积的含有1%DMSO的PBS作为阴性对照)。对细胞爬片进行免疫荧光染色,用激光共聚焦显微镜检测细胞损伤的特异蛋白γH2AX,p-ATM。
2、分别以0、4、8μM Bisindolylmaleimide IX处理MEF细胞,提取含有拓扑异构酶的裂解液与pBluescript一起37℃孵育30分钟。DNA样品在琼脂糖凝胶上进行分析,结果如图2中左边的示意图所示。
3、分别以0、2、4、8μM Bisindolylmaleimide IX与BaF3BCR-ABL细胞裂解液,37℃一起孵育30分钟,之后的混合物按照TopoGEN提供的方法提取Topoisomerase I,II。再按照Topoisomerase I Assay Kit TG 1015-1的操作说明将其与提取混合液共同孵育1小时。DNA样品在琼脂糖凝胶上进行分析,结果如图2中右边的示意图所示。
4、2μM Bisindolylmaleimide IX、Bisindolylmaleimide XI和0.2μM星形孢菌素(Stau)处理MEF细胞,细胞裂解物与拓扑异构酶测定试剂盒提供的DNA样品一起37℃孵育30分钟。DNA样品在琼脂糖凝胶上进行分析,结果如图3所示。
按照TG 1015-1提供的说明书提取BaF3细胞的Topoisomerase。1.5%琼脂糖电泳检测超螺旋质粒解螺旋情况。
实验结果:
在经Bisindolylmaleimide IX处理的MEF和HCT116细胞中发现磷酸化的组蛋白γH2AX灶,这种细胞核内γH2AX聚集灶是Atm-Chk2信号通路的产物,是DNA损伤反应发生时的一种特异性表现,是DNA断裂的指示剂。当使用咖啡因抑制Atm的活性时,γH2AX、p-Atm灶明显减少。同时我们还发现Bisindolylmaleimide IX能够通过磷酸化作用特异性激活Atm和Chk2。这两个结果表明Bisindolylmaleimide IX是基因毒性药物,且对BCR-ABL阳性细胞具有显著毒性作用,如图4所示。
进一步以螺旋质粒pBluescript为模板进行实验发现Bisindolylmaleimide IX能够抑制DNA拓扑异构酶的活性,这一结果通过拓扑异构酶分析试剂盒检验得到确认。这些实验结果表明Bisindolylmaleimide IX是通过抑制拓扑异构酶活性来引起DNA损伤的。
实施例3 Bisindolylmaleimide IX阻滞细胞周期进而诱导细胞死亡的检测实验
主要实验材料:
MEF细胞、人结肠癌细胞系HCT116(p53+/+)、HCT116(p53-/-)。碘化丙锭,购于索莱宝公司。McCoy’s 5a细胞培养基(Saos-2细胞系专用),购自上海生工生物公司,DMEM、RPMI-1640培养基,购自Hyclone公司。
实验方法:
1、将MEF(WT)、HCT116(p53+/+)、HCT116(p53-/-)细胞接种在6孔板培养皿中。使用2ml含有10%胎牛血清的DMEM培养基培养24小时,当它们达到总表面的60%-70%后,细胞用不同浓度(0μM、2μM、4μM、8μM)的Bisindolylmaleimide IX处理24小时之后将细胞通过胰蛋白酶消化收集,再悬浮于200μl PBS中,加入1毫升的100%乙醇后,将细胞于-20℃冰箱过夜。第二天将固定的细胞以1000rpm离心,在室温下用PBS洗涤2遍后,再悬浮于800μlPBS中,添加10μl的核糖核酸酶A(10mg/ml),温育30分钟,加入10μl碘化丙锭(PI,4mg/ml)。使用FACS Calibur流式细胞(BD公司)对样品进行细胞周期分析。
2、分别用0、1、2、4、8μM的Bisindolylmaleimide IX处理原代MEF细胞24小时,细胞存活率通过WST-1法测定。N=3,*P<0.05,以未经处理细胞的吸光度值作为100%与经过处理的细胞吸光度值进行比较。
3、在HCT116 p53+/+和HCT116 p53-/-细胞中使用0、2、4、8μMBisindolylmaleimide IX处理24小时,细胞存活率通过WST-1法测定。N=3,*P<0.05,HCT116 p53-/-、p53+/+细胞以未加药组吸光度值作为各自的100%,其它浓度梯度与之相比。
4、分别用不同浓度的Bisindolylmaleimide IX(0,0.5,1,2,4μM)的处理原代MEF细胞4小时,并收集细胞。Western Blot检测p53、p-p53(s15)、Atm、p-Atm(s1981)、chk2、p-chk2(T68)、β-actin。
实验结果:
我们发现Bisindolylmaleimide IX能够对细胞周期检验点产生影响。我们分别对MEFs和HCT116细胞进行药物处理,结果如图5所示:BisindolylmaleimideIX能够使处在G2/M期的细胞数目增加,处于G1和S期的细胞数目减少。这一结果表明,Bisindolylmaleimide IX能够激活G2/M期检验点。同时,我们在p53-/-HCT116细胞中同样能观察到G2/M期细胞周期阻滞的现象。综合以上结果我们可以得出以下结论:Bisindolylmaleimide IX能够引起DNA损伤导致细胞周期阻滞,进一步引起细胞凋亡,如图6所示。而这一系列过程都是依赖p53的。
我们通过WST-1分析法检测不同剂量的Bisindolylmaleimide IX对MEF细胞和HCT116细胞的毒性。进一步比较p53+/+和p53-/-的HCT116细胞发现,p53缺陷能够在一定程度上抵抗Bisindolylmaleimide IX产生的细胞毒性。
基因毒性应激通常经由p53诱导细胞凋亡,或者激活Atm/Atr以及下游Chk1/2监测点、p53使细胞周期停滞。在MEF和HCT116细胞中通过这些蛋白质的特定磷酸化、形成p-Atm的损伤灶,我们可以知道Bisindolylmaleimide IX以剂量依赖的方式激活Atm、Chk2以及p53,如图7所示。
实施例4 Bisindolylmaleimide IX对BCR-ABL阳性的K562细胞的毒性实验。
主要实验材料:
K562、HL-60、人骨肉瘤细胞系U2 OS和Saos-2、人乳腺癌细胞系MCF7、人胃腺癌细胞系AGS、人胃癌细胞系MGC-803、人类星形胶质细胞瘤细胞系U251、McCoy’s 5a细胞培养基(Saos-2细胞系专用),McCoy’s 5a细胞培养基购自上海生工生物公司,DMEM、RPMI-1640培养基购自Hyclone公司。
实验方法:
为了确定能够被Bisindolylmaleimide IX标记的癌细胞种类,我们对多种不同来源的癌细胞进行Bisindolylmaleimide IX细胞毒性的检测。将处于对数生长期的细胞K562、HL-60、U2 OS、Saos-2、MCF7、AGS、MGC-803、U251按每孔103-104的数量范围接种于96孔板中(3个复孔),每孔加入细胞悬液100μl,待细胞贴壁后加入不同浓度的Bisindolylmaleimide IX使其终浓度分别为(1、2、4、8μM),培养24h和48h后加入10μl WST-1检测液,继续培养培养1h,使用酶标仪在450nm波长下测定不同浓度药物处理的细胞的吸光度值。
实验结果:
实验结果表明,相对于HL-60(BCR-ABL阴性的白血病细胞系)、Saos-2和U2OS(骨肉瘤细胞系)、AGS和MGC-803(胃癌细胞系)和U251(恶性胶质瘤细胞系)等细胞系来说,BCR-ABL阳性的慢性粒细胞白血病细胞系K562对Bisindolylmaleimide IX的细胞毒性具有高敏感性。低剂量的Bisindolylmaleimide IX就能够杀死BCR-ABL阳性的K562细胞,如图8所示。
实施例5 BCR-ABL使细胞对Bisindolylmaleimide IX诱导的细胞死亡及细胞周期阻滞更加敏感的实验
从实施例1到实施例4的研究结果表明Bisindolylmaleimide IX可能抑制带有BCR-ABL激酶的细胞生长,而慢性粒细胞白血病的发生95%是由BCR-ABL所造成的,所以我们推测Bisindolylmaleimide IX可能具有抑制CML的作用。为了验证我们的发现,我们利用p53基因缺陷的BaF3细胞(该细胞系被广泛用于研究BCR-ABL的功能)来测试抗CML的药物,我们使用逆转录病毒载体在BaF3细胞中表达BCR-ABL,以导入逆转录病毒空载体作为对照。这些细胞在不同剂量Bisindolylmaleimide IX处理24小时后,细胞存活率通过WST-1法测定。该结果清楚地表明,BCR-ABL表达的细胞对Bisindolylmaleimide IX的细胞毒性作用变敏感。MEF细胞中的异位表达BCR-ABL也使细胞对Bisindolylmaleimide IX诱导的细胞死亡敏感。
主要实验材料:
转染BCR-ABL、Vector(空载体)、BCR-ABL T315I(BCRABL第315位苏氨酸突变为异亮氨酸)的BaF3细胞系、MEF细胞。
实验方法:
1、BaF3Vector、BaF3BCR-ABL、BaF3T315I BCR-ABL细胞分别用0、2、4、8μMBisindolylmaleimide IX处理24小时,细胞存活率采用WST-1测定法测定。N=3,*P<0.05以未经处理的细胞吸光度值作为100%与经过药物处理的细胞吸光度值进行比较。
2、MEFVector、MEFBCR-ABL分别用0、2、4、8μM的Bisindolylmaleimide IX处理24小时,细胞存活率采用WST-1测定法测定。N=3,*P<0.05以未经处理的细胞吸光度值作为100%与经过处理的细胞吸光度值进行比较。
实验结果:
表达了BCR-ABL的BaF3细胞对Bisindolylmaleimide IX的毒性更加敏感,结果如图9中左边的示意图所示。在MEF细胞中异位表达BCR-ABL同样能得到相同的结果,Bisindolylmaleimide IX能够诱导这些细胞凋亡,结果如图9中左边的示意图所示。同时,我们还测试了伊马替尼耐药的BaF3T315I BCR-ABL细胞,发现该突变体呈现与转染WT BCR-ABL的BaF3细胞相似的药物敏感性,如图10所示。
这些结果表明Bisindolylmaleimide IX可能是治疗BCR-ABL阳性白血病的药物,甚至能治疗目前达沙替尼、尼洛替尼都无法抑制的T315I突变的慢粒白血病。这也表明尽管BCR-ABL对慢性粒细胞白血病的发展具有促生存作用,但带有BCR-ABL蛋白的细胞对该Bisindolylmaleimide IX敏感。
实施例6 Bisindolylmaleimide IX使细胞周期停滞在G2/M期
为了测试Bisindolylmaleimide IX是否有对其他细胞的周期检查点也有效果,进行以下实验。
实验材料与方法:
K562细胞、HL60细胞使用0、3、4μM、BaF3Vector和BaF3BCR-ABL细胞使用0、4、8μMBisindolylmaleimide IX处理24小时。具体操作同实例3,通过FACS分析确定细胞周期。
实验结果:
我们用Bisindolylmaleimide IX处理K562、HL-60,并发现Bisindolylmaleimide IX仍然导致G2/M期细胞的百分比增加,表明它激活G2/M期检查点。而与HL60细胞相比,Bisindolylmaleimide IX对K562细胞的G2/M期阻滞效果更明显,如图11所示。我们接着在BaF3Vector、BaF3BCR-ABL细胞中对此进行验证,如图12所示。上述结果表明BCR-ABL的存在更有利于细胞周期停滞和G2/M期检查点的激活。
实施例7其他双吲哚马来酰亚胺衍生物对BaF3Vector和BaF3BCR-ABL的细胞毒性作用实验。
主要实验材料:
转染BCR-ABL、Vector(空载体)的BaF3细胞系。不同剂量的双吲哚马来酰亚胺衍生物(Bisindolylmaleimide I至XI除了IX)(图12)
实验方法:
将处于对数生长期的细胞BaF3Vector、BaF3BCR-ABL细胞按每孔103-104的数量范围接种于96孔板中(3个复孔),每孔加入细胞悬液100μl,待细胞贴壁后加入不同浓度的Bisindolylmaleimide I、II、III、IV、V、VI、VII、VIII、X、XI使各个双吲哚马来酰亚胺衍生物的终浓度分别为(1、2、4、8μM),培养24h后加入10μl WST-1检测液,继续培养培养1h,使用酶标仪在450nm波长下测定不同浓度药物处理的细胞的吸光度值。
实验结果如图13所示,结果显示Bisindolylmaleimide I、II、III、IV、V、VI、VII、VIII、X、XI均对BaF3Vector、BaF3BCR-ABL细胞有细胞毒性。
实施例8 BCR-ABL下调DNA拓扑异构酶II(Topo II)增强Bisindolylmaleimide IX诱导的DNA损伤实验
实验材料:
BaF3Vector、BaF3BCR-ABL细胞、Bisindolylmaleimide IX、RNA抽提试剂(TRIzolreagent)和RNA逆转录试剂,RNA逆转录试剂盒购自天根公司。
实验方法:
1、取BaF3Vector,BaF3BCR-ABL细胞接种到已铺有多聚赖氨酸处理过的无菌盖玻片的十二孔板中,每孔加入1ml含10%胎牛血清的1640培养基。待细胞稳定生长到约占玻璃面积的70-80%时,以0、0.5、1μM Bisindolylmaleimide IX处理4h(以加有相同体积含有1%DMSO PBS的细胞作为阴性对照)。对细胞爬片进行免疫荧光染色,用激光共聚焦显微镜检测细胞损伤的特异蛋白γH2AX。
2、用Trizol试剂(Invitrogen公司)从经过不同浓度(0、1、2、4μΜ)Bisindolylmaleimide IX处理过的BaF3vector或BaF3BCR-ABL细胞中分离提取总RNA,使用罗氏逆转录第一链cDNA合成试剂盒将其反转录成cDNA。使用如下引物进行荧光定量PCR。
Topo I:
Forward GAGGGAACCACCCCAAGATG,
Reverse TCCAGGAGACCAGCCAAGTA;
Topo IIa:
Forward GGAGTCCGATGACGATGACG,
Reverse TGCATCACGTCAGAGGTTGAG;
Topo IIb:
Forward ATGTAGGGATGAACTGCAGGG,
Reverse TTCTTGTCCCTCTGCTTGTTGT.
3、0、1、2、4μΜBisindolylmaleimide IX作用8小时,以相应的BaF3Vector作为对照,Bisindolylmaleimide IX处理BaF3BCR-ABL细胞的拓扑异构酶I,IIa,IIb mRNA转录水平。荧光定量PCR检测拓扑异构酶I mRNA转录水平。重复实验3次。
实验结果:
由于BCR-ABL导致基因组的不稳定性,增加了相应细胞中DNA突变的机会。我们发现相比BaF3Vector细胞,Bisindolylmaleimide IX诱导中BaF3BCR-ABL细胞的γH2AX灶数量增加,如图14所示。
BCR-ABL增强了Bisindolylmaleimide IX导致的DNA损伤。然后我们分析BaF3Vector和BaF3BCR-ABL细胞中DNA拓扑异构酶的表达情况。通过荧光定量PCR检测DNA拓扑异构酶异构体I、IIa、IIb的mRNA水平,发现在BaF3Vector和BaF3BCR-ABL细胞中拓扑异构酶I转录水平相似,并不随着Bisindolylmaleimide IX的处理而改变,结果如图15中A部分的示意图所示。在另一方面,Topo IIa的转录在BCR-ABL阳性的BaF3细胞中显著下降,Bisindolylmaleimide IX的处理进一步抑制其转录水平,结果如图15中B部分的示意图所示。BaF3BCR-ABL细胞表达的Topo IIb转录水平较BaF3Vector低,也不随Bisindolylmaleimide IX处理浓度的增加而发生较大的改变,结果如图15中C部分的示意图所示。这些结果表明Bisindolylmaleimide IX抑制Topo IIa,BCR-ABL进一步使拓扑异构酶IIa和IIb两亚基的转录下调。拓扑异构酶水平的下降可能增加细胞中药物靶点对Bisindolylmaleimide IX的敏感性。
实施例9 BCR-ABL通过癌基因成瘾途径使细胞对Bisindolylmaleimide Ⅸ诱导的死亡敏感实验
酶活性分析
重组蛋白表达于大肠杆菌菌株BL21(DE3)中,通过GSTrap亲和层析纯化,并通过凝血酶裂解。MEK1和Erk1用Ni-NTA琼脂糖试剂盒(QIAGEN公司)分离纯化。激酶活性测定,根据Z'-LYTETM激酶检测试剂盒纯化丝氨酸/苏氨酸9肽底物(Invitrogen公司)在10μl反应体积含有2μM的底物,50nM的酶和30μM的ATP。极光激酶、IKKβ、SYK、BCR-ABL和JAK2具有N-末端His-标签使用杆状病毒表达系统表达,镍珠纯化。B-RAF蛋白购自日本Carna生物科学公司。相关激酶反应最终测定使用HTRF检测试剂盒(CISBIO,Codolet)在10μl反应体系中与(0、2、4、8、10、20、45μΜ的Bisindolylmaleimide IX反应。所有反应同时重复三份采用EnVision多标记微孔板检测仪(珀金埃尔默公司)进行检测,数据以均数±标准差表示。
细胞通路检测
BaF3Vector和BaF3BCR-ABL细胞使用0、2、4、8μΜBisindolylmaleimide IX处理4小时。接着进行western检测。
实验结果
体外激酶分析表明,Bisindolylmaleimide IX是B-Raf(MEK-ERK的主要调节器)强效抑制剂(IC50=1.14μM),如表1所示。另一方面,BisindolylmaleimideIX对MEK和Erk活性几乎没有影响,IC 50值大于45μM见表1。所以Bisindolylmaleimide IX可能通过抑制PKC来抑制Raf进而抑制ERK的激活。
表1 Bisindolylmaleimide IX对各激酶的抑制效果
Table2-1 Inhibitory effects of Bisindolylmalemide IX on a variety of kinases.
N.D.:not determined
Bisindolylmaleimide IX可以针对BCR-ABL下游通路,尤其是由其造成的成瘾途径的下游分子,如激酶Akt1酶和Erks。它在BaF3BCR-ABL细胞中抑制ERK的激活,而对BaF3Vector细胞作用很小,在BaF3BCR-ABL中出现随着Bisindolylmaleimide IX剂量升高,凋亡指示蛋白caspase 3表达升高,而在BaF3Vector细胞中无明显变化,如图16所示。
实施例10 Bisindolylmaleimide IX具有体内抗癌活性的效果实验
主要实验材料:
4周龄的雄性裸鼠,购自上海斯莱克公司。BCR-ABLBaF3、BCR-ABLT315IBaF3细胞株和HCT116细胞。
实验方法:
1)A裸鼠在饲养期间稳定生长1周后进行肿瘤细胞接种。分别将200μl含有约106个BCR-ABLBaF3、BCR-ABLT315I BaF3分别接种于裸鼠大腿背面左侧皮下。阴性对照组3只,2mg/kg组8只,4mg/kg组8只分别饲养在3个鼠笼中,阴性对照组注射含有与加药浓度相同含量DMSO的生理盐水,加药组注射2mg/kg、4mg/kg的Bisindolylmaleimide IX溶液(其中的2mg、4mg为BisindolylmaleimideIX的质量),按照公式肿瘤体积=1/2长轴×短轴×短轴计算肿瘤体积。每天测量组内各鼠的肿瘤大小,取平均值做折线图。并称取小鼠体重以观察药物浓度是否对其有较大影响。
2)B裸鼠在饲养期间稳定生长2周后将200μl含有约106个BCR-ABLBaF3,BCR-ABLT315I BaF3尾静脉注射到其体内。72小时后将裸鼠分为两大组。并根据注射药物剂量的不同再分别各自分成3个小组分别为阴性对照组、2mg/kg组和4mg/kg组。每天注射相应浓度的药物,阴性对照组注射含有与加药浓度相同含量DMSO的生理盐水,加药组注射2mg/kg、4mg/kg的Bisindolylmaleimide IX溶液(其中的2mg、4mg为Bisindolylmaleimide IX的质量),并称量小鼠体重,记录其死亡日期。
实验结果:
方法1)的实验结果:在使用BCR-ABL阳性的BaF3细胞诱导成瘤的裸鼠上注射Bisindolylmaleimide IX,结果发现在实体瘤模型中,4mg/kg的治疗剂量也可以使肿瘤的缩小,如图17所示,表明BisindolylmaleimideIX能有效抑制BaF3WT BCR-ABL及BaF3T315I BCR-ABL肿瘤增长。
方法2)的实验结果:尾静脉注射BaF3 WT BCR-ABL,BaF3 T315I BCR-ABL细胞,三天后,每天腹腔注射2、4mg/kg Bisindolylmaleimide IX或PBS(1%DMSO),并对其生存期进行监测。结果发现Bisindolylmaleimide IX能够延长携带BCR-ABL BaF3细胞裸鼠的生存期,如图18所示。
上述结果表明Bisindolylmaleimide IX对BCR-ABL及T315I BCR-ABL诱发的肿瘤具有治疗效果。这些结果令人信服地表明,Bisindolylmaleimide IX是治疗BCR-ABL阳性癌症的有效药物。
我们首次发现双吲哚马来酰亚胺衍生物是一种DNA拓扑异构酶抑制剂和基因毒性剂,可导致细胞周期阻滞和凋亡。我们的研究中发现双吲哚马来酰亚胺衍生物可以通过产生DNA断裂,激活DNA损伤反应抑制细胞增殖。在大多数肿瘤细胞系的测试中,它们一般表现出适度的细胞毒活性,需要较高剂量才能杀死这些细胞。
本项研究发现,双吲哚马来酰亚胺衍生物对BCR-ABL阳性细胞具有较强遗传毒性的物质,在BCR-ABL阳性细胞中可以引起DNA损伤,激活DNA损伤应激反应中的抑癌基因p53通路,引起依赖抑癌基因p53的肿瘤细胞凋亡以及阻滞细胞周期停留在G2/M期。具有体内抑制肿瘤生长的功能,且具有较严格的专一性,因此副作用少,可以开发为癌症化疗药物。
以上公开的仅为本申请的几个具体实施例,但本申请并非局限于此,任何本领域的技术人员能思之的变化,都应落在本申请的保护范围内。

Claims (5)

1.双吲哚马来酰亚胺衍生物在制备治疗慢性粒细胞白血病药物中的应用。
2.如权利要求1所述的应用,其特征在于,所述的药物是BCR-ABL阳性细胞增殖的抑制剂。
3.如权利要求1所述的应用,其特征在于,所述的药物是BCR-ABL阳性细胞死亡的诱导剂。
4.如权利要求1所述的应用,其特征在于,所述双吲哚马来酰亚胺衍生物选自双吲哚马来酰亚胺I、双吲哚马来酰亚胺II、双吲哚马来酰亚胺III、双吲哚马来酰亚胺IV、双吲哚马来酰亚胺V、双吲哚马来酰亚胺VI、双吲哚马来酰亚胺VII、双吲哚马来酰亚胺VIII、双吲哚马来酰亚胺IX、双吲哚马来酰亚胺X或双吲哚马来酰亚胺XI的至少一种。
5.如权利要求4所述的应用,其特征在于,
所述双吲哚马来酰亚胺I的化学结构式为:
所述双吲哚马来酰亚胺II的化学结构式为:
所述双吲哚马来酰亚胺III的化学结构式为:
所述双吲哚马来酰亚胺IV的化学结构式为:
所述双吲哚马来酰亚胺V的化学结构式为:
所述双吲哚马来酰亚胺VI的化学结构式为:
所述双吲哚马来酰亚胺VII的化学结构式为:
所述双吲哚马来酰亚胺VIII的化学结构式为:
所述双吲哚马来酰亚胺IX的化学结构式为:
所述双吲哚马来酰亚胺X的化学结构式为:
所述双吲哚马来酰亚胺XI的化学结构式为:
CN201410709220.1A 2014-11-28 2014-11-28 双吲哚马来酰亚胺衍生物在制备治疗慢性粒细胞白血病药物中的应用 Active CN104398508B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410709220.1A CN104398508B (zh) 2014-11-28 2014-11-28 双吲哚马来酰亚胺衍生物在制备治疗慢性粒细胞白血病药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410709220.1A CN104398508B (zh) 2014-11-28 2014-11-28 双吲哚马来酰亚胺衍生物在制备治疗慢性粒细胞白血病药物中的应用

Publications (2)

Publication Number Publication Date
CN104398508A true CN104398508A (zh) 2015-03-11
CN104398508B CN104398508B (zh) 2017-06-13

Family

ID=52636218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410709220.1A Active CN104398508B (zh) 2014-11-28 2014-11-28 双吲哚马来酰亚胺衍生物在制备治疗慢性粒细胞白血病药物中的应用

Country Status (1)

Country Link
CN (1) CN104398508B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019000224A1 (zh) * 2017-06-27 2019-01-03 中国海洋大学 双吲哚马来酰亚胺衍生物及其制备方法和用途
CN111544432A (zh) * 2020-05-25 2020-08-18 闽江学院 双吲哚马来酰亚胺类pkc抑制剂在制备治疗心肌炎心律失常药物中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017182A1 (en) * 1993-12-23 1995-06-29 Eli Lilly And Company Protein kinase c inhibitors
WO1995035294A1 (en) * 1994-06-22 1995-12-28 Eli Lilly And Company Protein kinase c inhibitors
CN101802182A (zh) * 2007-08-21 2010-08-11 诺达利蒂公司 用于诊断、预后和治疗方法的方法
CN101812097A (zh) * 2010-04-17 2010-08-25 中国海洋大学 吲哚咔唑和双吲哚马来酰亚胺生物碱及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017182A1 (en) * 1993-12-23 1995-06-29 Eli Lilly And Company Protein kinase c inhibitors
WO1995035294A1 (en) * 1994-06-22 1995-12-28 Eli Lilly And Company Protein kinase c inhibitors
CN101802182A (zh) * 2007-08-21 2010-08-11 诺达利蒂公司 用于诊断、预后和治疗方法的方法
CN101812097A (zh) * 2010-04-17 2010-08-25 中国海洋大学 吲哚咔唑和双吲哚马来酰亚胺生物碱及其制备方法和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
bisindolylmalimide IX is a potent incucer of apoptosis in chronic lymphocytic leukaemic cells and activates cleavage of MCL-1;R T Snowden等;《leukemia》;20031231;第17卷;1981-1989 *
Induced dendritic cell differentiation of chronic myeloid leukemia blasts is associated with down-regulation of BCR-ABL;Inna Lindner等;《the journal of immunology》;20031231;第171卷;1780-1791 *
INNA LINDNER等: "Induced dendritic cell differentiation of chronic myeloid leukemia blasts is associated with down-regulation of BCR-ABL", 《THE JOURNAL OF IMMUNOLOGY》 *
R T SNOWDEN等: "bisindolylmalimide IX is a potent incucer of apoptosis in chronic lymphocytic leukaemic cells and activates cleavage of MCL-1", 《LEUKEMIA》 *
一种新的吲哚咔唑类化合物(ZWM233)的体外抗肿瘤作用及机制探讨;刘书娟 等;《中国药理学通报》;20120630;第28卷(第6期);828-832 *
刘书娟 等: "一种新的吲哚咔唑类化合物(ZWM233)的体外抗肿瘤作用及机制探讨", 《中国药理学通报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019000224A1 (zh) * 2017-06-27 2019-01-03 中国海洋大学 双吲哚马来酰亚胺衍生物及其制备方法和用途
CN111544432A (zh) * 2020-05-25 2020-08-18 闽江学院 双吲哚马来酰亚胺类pkc抑制剂在制备治疗心肌炎心律失常药物中的应用

Also Published As

Publication number Publication date
CN104398508B (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
Jiao et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer
Vasudevan et al. AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer
Bhagyaraj et al. TGF-β induced chemoresistance in liver cancer is modulated by xenobiotic nuclear receptor PXR
Dal Col et al. Distinct functional significance of Akt and mTOR constitutive activation in mantle cell lymphoma
Terés et al. 2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy
Holm et al. Retinoic acid-inducible gene-I and interferon-β promoter stimulator-1 augment proapoptotic responses following mammalian reovirus infection via interferon regulatory factor-3
Goyette et al. AXL knockdown gene signature reveals a drug repurposing opportunity for a class of antipsychotics to reduce growth and metastasis of triple-negative breast cancer
Wang et al. Integrin beta-8 (ITGB8) silencing reverses gefitinib resistance of human hepatic cancer HepG2/G cell line
Naderi Coagulation factor VII is regulated by androgen receptor in breast cancer
Ooi et al. Novel antiviral host factor, TNK1, regulates IFN signaling through serine phosphorylation of STAT1
Chayka et al. Identification and pharmacological inactivation of the MYCN gene network as a therapeutic strategy for neuroblastic tumor cells
Dong et al. Involvement of autophagy induction in penta-1, 2, 3, 4, 6-O-galloyl-β-D-glucose-induced senescence-like growth arrest in human cancer cells
Yuen et al. Impact of oncogenic driver mutations on feedback between the PI3K and MEK pathways in cancer cells
Hayward et al. Identification by high-throughput screening of viridin analogs as biochemical and cell-based inhibitors of the cell cycle–regulated Nek2 kinase
Jiang et al. Human melanoma cells under endoplasmic reticulum stress acquire resistance to microtubule-targeting drugs through XBP-1-mediated activation of Akt
Yadunandam et al. Prospective impact of 5-FU in the induction of endoplasmic reticulum stress, modulation of GRP78 expression and autophagy in Sk-Hep1 cells
Chen et al. Everolimus reverses palbociclib resistance in ER+ human breast cancer cells by inhibiting phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway
Wang et al. COPB2 suppresses cell proliferation and induces cell cycle arrest in human colon cancer by regulating cell cycle‑related proteins
Varma et al. Mutant huntingtin alters cell fate in response to microtubule depolymerization via the GEF-H1-RhoA-ERK pathway
Klippel et al. Methyljasmonate displays in vitro and in vivo activity against multiple myeloma cells
Wang et al. Bevacizumab induces A549 cell apoptosis through the mechanism of endoplasmic reticulum stress in vitro
Guo et al. Fangchinoline as a kinase inhibitor targets FAK and suppresses FAK-mediated signaling pathway in A549
Chen et al. Mertk inhibition: potential as a treatment strategy in egfr tyrosine kinase inhibitor-resistant non-small cell lung cancer
Hofmann et al. PI 3K‐dependent multiple myeloma cell survival is mediated by the PIK 3 CA isoform
Wang et al. Bile salt (glycochenodeoxycholate acid) induces cell survival and chemoresistance in hepatocellular carcinoma

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant