CN104383919B - Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity - Google Patents

Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity Download PDF

Info

Publication number
CN104383919B
CN104383919B CN201410525739.4A CN201410525739A CN104383919B CN 104383919 B CN104383919 B CN 104383919B CN 201410525739 A CN201410525739 A CN 201410525739A CN 104383919 B CN104383919 B CN 104383919B
Authority
CN
China
Prior art keywords
trypsin
acid
visible light
nanocluster
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410525739.4A
Other languages
Chinese (zh)
Other versions
CN104383919A (en
Inventor
王光丽
金璐怡
吴秀明
陶慧
杨璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201410525739.4A priority Critical patent/CN104383919B/en
Publication of CN104383919A publication Critical patent/CN104383919A/en
Application granted granted Critical
Publication of CN104383919B publication Critical patent/CN104383919B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明提供具有可见光光活性的纳米簇模拟酶的制备及其比色法检测胰蛋白酶应用。牛血清白蛋白、巯基丁二酸为表面修饰剂的金/银纳米簇在可见光照射下具有类似过氧化物酶的催化特性,能够催化色原底物的氧化。与过氧化物酶相比,此光活性纳米材料模拟酶不需要使用高浓度的氧化剂,催化活性高,稳定性好,催化条件更加环保绿色。胰蛋白酶分解纳米簇表面的蛋白质模板,导致纳米簇表面状态改变引起聚集从而引起其催化活性的降低。本发明检测胰蛋白酶的线性范围为9.0×10‑7‑1.0×10‑3g/mL,检测限为0.6μg/mL,远低于病人的尿液与血液中的胰蛋白酶含量。

The invention provides the preparation of the nano-cluster mimic enzyme with visible light activity and the application of the colorimetric method to detect trypsin. Gold/silver nanoclusters with bovine serum albumin and mercaptosuccinic acid as surface modifiers have catalytic properties similar to peroxidase under visible light irradiation, and can catalyze the oxidation of chromogen substrates. Compared with peroxidase, this photoactive nanomaterial mimic enzyme does not need to use a high concentration of oxidant, has high catalytic activity, good stability, and the catalytic conditions are more environmentally friendly and green. Trypsin decomposes the protein template on the surface of the nanoclusters, resulting in changes in the surface state of the nanoclusters leading to aggregation and a decrease in its catalytic activity. The linear range of the detection of trypsin by the present invention is 9.0× 10-7-1.0 × 10-3 g/mL, and the detection limit is 0.6 μg/mL, which is far lower than the trypsin content in the patient's urine and blood.

Description

以具有可见光光活性的纳米簇模拟酶为基础的胰蛋白酶比色 检测方法Colorimetry of trypsin based on nanocluster-mimicking enzymes with visible-light photoactivity Detection method

技术领域:Technical field:

本发明涉及纳米科技领域和生物分析检测领域,尤其涉及新型的可见光诱导纳米簇模拟酶的制备及其在检测胰蛋白酶方面的应用。The invention relates to the field of nanotechnology and the field of biological analysis and detection, in particular to the preparation of a novel visible light-induced nano-cluster imitation enzyme and its application in the detection of trypsin.

背景技术:Background technique:

天然酶可以催化化学反应,对比化学催化,天然酶具有更高的催化活性。因而,天然酶在农药生产、制药过程和食品工业等各个领域有着广泛的应用[JamesB.Chem.Soc.Rev.2009,38,185-196]。但是,天然酶易受外界影响失活并且一般对酸、碱、热不稳定,而且价格昂贵,这些因素都限制了它们的广泛应用。因此,模拟酶的研究引起了广泛兴趣。Natural enzymes can catalyze chemical reactions, and compared with chemical catalysis, natural enzymes have higher catalytic activity. Therefore, natural enzymes are widely used in various fields such as pesticide production, pharmaceutical process and food industry [James B. Chem. Soc. Rev. 2009, 38, 185-196]. However, natural enzymes are easily inactivated by external influences and are generally unstable to acids, alkalis, and heat, and are expensive, which limit their wide application. Therefore, the study of mimetic enzymes has aroused widespread interest.

最近研究显示,纳米技术的快速发展为模拟酶的研究提供了更为广阔的空间。到目前为止,人们发现多种纳米材料如金属和双金属纳米材料[Jv Y.;Li B.X,;CaoR.Chem.Commun.2010,46,8017-8019;He W.W.;Wu X.C.;Liu J.B.;Hu X.N.;Zhang K.;HouS.;Zhou W.Y.;Xie,S.S.Chem.Mater.2010,22,2988-2994]、金属氧化物纳米材料[GaoL.Z.;Zhuang J.;Nie L.;Zhang J.B.;Zhang Y.;Gu N.;Wang T.H.;Feng J.;Yang D.L.;Perrett S.;Yan X.Nat.Nanotechnol.2007,2,577-583;Mu J.S.;Wang Y.;Zhao M.;ZhangL.Chem.Commun.2012,48,2540-2542]、碳纳米材料[Song Y.J.;Qu K.G.;Zhao C.;RenJ.S.;Qu X.G.Adv.Mater.2010,22,2206-2210]等都具有类似过氧化物酶的活性,即在过氧化氢的存在下催化特征底物的氧化反应。对比天然酶,纳米材料模拟酶具有许多优点如成本低廉、合成可控、高的催化活性和更好的稳定性。但是在使用天然过氧化物酶或者纳米材料过氧化物模拟酶时需加入大量腐蚀性的H2O2作为氧化剂以使其具有理想的催化活性。高浓度H2O2的使用使得利用过氧化物酶或者纳米材料过氧化物模拟酶进行生物体系的测定变得较为困难[Cook C.J.Nat.Biotechnol.1997,15,467-471]。Recent studies have shown that the rapid development of nanotechnology provides a broader space for the study of mimic enzymes. So far, a variety of nanomaterials such as metal and bimetallic nanomaterials have been discovered [Jv Y.; Li BX,; Cao R. Chem. Commun. 2010, 46, 8017-8019; He WW; Wu XC; Liu JB; Hu XN; Zhang K.; HouS.; Zhou WY; Xie, SSChem.Mater.2010, 22, 2988-2994], metal oxide nanomaterials [GaoL.Z.; Zhuang J.; Y.; Gu N.; Wang TH; Feng J.; Yang DL; Perrett S.; Yan X. Nat. Nanotechnol. 2007, 2, 577-583; .Commun.2012,48,2540-2542], carbon nanomaterials [Song YJ; Qu KG; Zhao C.; RenJ.S.; Qu XGAdv.Mater.2010, 22, 2206-2210], etc. The activity of a biocatalyst, which catalyzes the oxidation of a characteristic substrate in the presence of hydrogen peroxide. Compared with natural enzymes, nanomaterial mimic enzymes have many advantages such as low cost, controllable synthesis, high catalytic activity and better stability. However, when using natural peroxidase or nanomaterial peroxidase mimetic enzyme, a large amount of corrosive H 2 O 2 should be added as an oxidant to make it have ideal catalytic activity. The use of high concentrations of H 2 O 2 makes it difficult to measure biological systems using peroxidase or nanomaterial peroxide-mimicking enzymes [Cook CJ Nat. Biotechnol. 1997, 15, 467-471].

金属纳米簇材料的发现,引起了大家广泛的关注。由于量子局限效应的提高,使得这些超小金属纳米簇具有不寻常的光学、电学特性[Wang G.;Huang T.;Murray R.W.;Menard L.;J.Am.Chem.Soc.2005,127,812-813;Ramakrishna G.;Varnavski O.;Kim J.;Lee D.;Goodson T.J.Am.Chem.Soc.2008,130,5032-5033;Zhu M.;Aikens C.M.;Hollander F.J.;Schatz G.C.;Jin R.J.Am.Chem.Soc.2008,130,5883-5885]。蛋白酶参与多种重要的生理和病理的控制流程并且蛋白酶的活性与疾病相关联,比如胰蛋白酶在控制胰腺外分泌功能中扮演着重要角色,是胰腺炎的生物标志物[Byrne M.F.;Mitchell R.M.;Stiffler H.;Jowell P.S.;Branch M.S.;Pappas T.N.;Tyler D.;BaillieJ.Can.J.Gastroenterol.2002,16,849-854]。本发明提供了一种具有可见光光活性的纳米簇模拟酶的制备方法并将其应用于胰蛋白酶的比色法检测。金/银纳米簇不需要任何强氧化剂,在可见光的诱导下呈现出了较高的类酶催化活性。据我们所知,这是首次发现的金/银纳米簇的一项新的光化学性质。所发现的具有类酶催化活性的纳米簇制备简单,催化活性高,稳定性好,催化条件更加环保绿色。通过胰蛋白酶分解纳米簇表面的蛋白质模板,导致纳米簇表面状态改变引起聚集从而引起催化活性的降低。基于其高效的类酶催化性能,实现了胰蛋白酶的高效、方便检测。检测胰蛋白酶的检测限为0.6μg/mL,远低于病人的尿液与血液中的胰蛋白酶含量。The discovery of metal nanocluster materials has aroused widespread concern. Due to the improvement of the quantum confinement effect, these ultra-small metal nanoclusters have unusual optical and electrical properties [Wang G.; Huang T.; Murray R.W.; Menard L.; J.Am.Chem.Soc.2005, 127, 812-813; Ramakrishna G.; Varnavski O.; Kim J.; Lee D.; Goodson T.J.Am.Chem.Soc.2008, 130, 5032-5033; R. J. Am. Chem. Soc. 2008, 130, 5883-5885]. Proteases are involved in a variety of important physiological and pathological control processes and the activity of proteases is associated with diseases. For example, trypsin plays an important role in controlling exocrine function of the pancreas and is a biomarker of pancreatitis [Byrne M.F.; Mitchell R.M.; Stiffler H.; Jowell P.S.; Branch M.S.; Pappas T.N.; Tyler D.; The invention provides a preparation method of nano-cluster mimic enzyme with visible light activity and its application in colorimetric detection of trypsin. Au/Ag nanoclusters do not require any strong oxidant, and exhibit high enzyme-like catalytic activity under the induction of visible light. To the best of our knowledge, this is the first discovery of a new photochemical property of gold/silver nanoclusters. The discovered nanoclusters with enzyme-like catalytic activity are simple to prepare, have high catalytic activity, good stability, and the catalytic conditions are more environmentally friendly and green. The protein template on the surface of the nanoclusters was decomposed by trypsin, resulting in changes in the surface state of the nanoclusters leading to aggregation and a decrease in catalytic activity. Based on its high-efficiency enzyme-like catalytic performance, the efficient and convenient detection of trypsin is realized. The detection limit of trypsin is 0.6μg/mL, which is much lower than the trypsin content in the patient's urine and blood.

发明内容:Invention content:

本发明的目的是提供一种新型的光活性纳米簇模拟酶,同时利用其光活性模拟酶性质,可以方便、快速地检测胰蛋白酶。The purpose of the present invention is to provide a novel photoactive nano-cluster mimic enzyme, and simultaneously use its photoactive mimic enzyme property to detect trypsin conveniently and rapidly.

本发明的目的可通过如下技术措施来实现:The purpose of the present invention can be achieved through the following technical measures:

a、一定量的牛血清白蛋白、巯基丁二酸与氯金(III)酸或硝酸银(I)溶液混合后,加入适量还原剂并使用NaOH溶液调节pH至碱性;在37℃条件下搅拌24h后,得到金/银纳米簇材料;a. After mixing a certain amount of bovine serum albumin, mercaptosuccinic acid and chloroauric (III) acid or silver (I) nitrate solution, add an appropriate amount of reducing agent and use NaOH solution to adjust the pH to alkaline; at 37 ° C After stirring for 24h, the gold/silver nano-cluster material is obtained;

b、将所得的金/银纳米簇材料透析48h以除去反应杂质;取100μL的金/银纳米簇材料,加入不同浓度的胰蛋白酶,在37℃条件下放置2h后,然后加入特征底物和2mL pH为4.0的0.2mol/L的醋酸缓冲溶液,定容到5mL,在室温下,放置在氙灯下用可见光照射10min后显色。b. Dialyze the obtained gold/silver nanocluster material for 48 hours to remove reaction impurities; take 100 μL of gold/silver nanocluster material, add different concentrations of trypsin, place it at 37°C for 2 hours, then add the characteristic substrate and 2 mL of 0.2 mol/L acetic acid buffer solution with a pH of 4.0, dilute to 5 mL, place under a xenon lamp at room temperature and irradiate with visible light for 10 min to develop color.

本发明的目的还可通过如下技术措施来实现:The purpose of the present invention can also be achieved through the following technical measures:

所述的牛血清白蛋白、巯基丁二酸的物质的量的总和为氯金(III)酸或硝酸银(I)的物质的量的1/30-1/10,牛血清白蛋白与巯基丁二酸的物质的量之比为1∶1-1∶10;所述的还原剂,选自过氧化氢、抗坏血酸、没食子酸、甲醛、葡萄糖,还原剂的量为氯金(III)酸或硝酸银(I)的物质的量的0.1-3倍;所述的特征底物有3,4-二羟基苯乙酸,3,3’,5,5’-四甲基联苯胺,2,2’-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐,3,3’-二氨基联苯胺,特征底物浓度为0.1mM-10mM。The sum of the amount of substances of described bovine serum albumin and mercaptosuccinic acid is 1/30-1/10 of the amount of substances of chloroauric (III) acid or silver nitrate (I), bovine serum albumin and sulfhydryl The ratio of the amount of substances of succinic acid is 1:1-1:10; the reducing agent is selected from hydrogen peroxide, ascorbic acid, gallic acid, formaldehyde, glucose, and the amount of the reducing agent is chloroauric (III) acid Or 0.1-3 times the amount of substance of silver nitrate (I); the characteristic substrate has 3,4-dihydroxyphenylacetic acid, 3,3',5,5'-tetramethylbenzidine, 2, 2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 3,3'-diaminobenzidine, the characteristic substrate concentration is 0.1mM-10mM.

附图说明:Description of drawings:

图1是不存在纳米簇材料在光照条件下(a)、存在纳米簇材料无光照条件下(b)以及存在纳米簇材料在光照条件下(c)和3×10-4mol/L的3,3’,5,5’-四甲基联苯胺反应的吸收光谱图。Figure 1 shows the 3×10 -4 mol/L 3 without nanocluster material under light condition (a), the presence of nanocluster material without light condition (b) and the presence of nanocluster material under light condition (c) , 3',5,5'-Tetramethylbenzidine reaction absorption spectrum.

图2是不同的活性中间体清除剂对金纳米簇的模拟酶性能的影响(底物为3,3’,5,5’-四甲基联苯胺)。Figure 2 is the effect of different active intermediate scavengers on the simulated enzyme performance of gold nanoclusters (the substrate is 3,3',5,5'-tetramethylbenzidine).

图3是金纳米簇光活性模拟酶体系使用3,3’,5,5’-四甲基联苯胺作底物检测胰蛋白酶的选择性。Figure 3 shows the selectivity of the gold nanocluster photoactive mimic enzyme system using 3,3',5,5'-tetramethylbenzidine as a substrate to detect trypsin.

图4是金纳米簇光活性模拟酶体系使用3,3’,5,5’-四甲基联苯胺作底物检测胰蛋白酶的线性关系图。Figure 4 is a linear relationship diagram for the detection of trypsin by the photoactive analog enzyme system of gold nanoclusters using 3,3',5,5'-tetramethylbenzidine as a substrate.

实施实例1:Implementation example 1:

a、5mL 50mg/mL的牛血清白蛋白、1mL 1.25×10-3mol/L的巯基丁二酸与5ml0.01mol/L的氯金(III)酸混合后,加入1mL 5.0×10-2mol/L的过氧化氢溶液并使用NaOH调节pH至pH=9;在37℃条件下搅拌24h后,得金纳米簇材料;a. After mixing 5mL of 50mg/mL bovine serum albumin, 1mL of 1.25× 10-3 mol/L mercaptosuccinic acid and 5ml of 0.01mol/L chloroauric acid (III), add 1mL of 5.0× 10-2 mol /L of hydrogen peroxide solution and use NaOH to adjust the pH to pH=9; after stirring at 37°C for 24 hours, a gold nanocluster material is obtained;

b、将所得的金纳米簇材料透析48h(每隔四小时换一次水)以除去反应杂质;取100μL的金纳米簇材料,加入不同浓度的胰蛋白酶,在37℃条件下放置2h后,然后加入0.3mL5.0×10-3mol/L的特征底物3,3’,5,5’-四甲基联苯胺和2mL pH=4.0的0.2mol/L的醋酸缓冲液,定容到5mL,放置在可见光下光照10min后显色。在3,3’,5,5’-四甲基联苯胺的氧化产物的特征吸收(λmax=652nm)处测定体系的吸光度。b. Dialyze the obtained gold nanocluster material for 48 hours (change the water every four hours) to remove reaction impurities; take 100 μL of gold nanocluster material, add different concentrations of trypsin, and place it at 37° C. for 2 hours, then Add 0.3mL of 5.0×10 -3 mol/L characteristic substrate 3,3',5,5'-tetramethylbenzidine and 2mL of 0.2mol/L acetate buffer solution with pH=4.0, and dilute to 5mL , placed under visible light for 10 min to develop color. The absorbance of the system was measured at the characteristic absorption (λ max =652nm) of the oxidation product of 3,3',5,5'-tetramethylbenzidine.

实施实例2:Implementation example 2:

a、5mL的50mg/mL牛血清白蛋白、1mL 1.75×10-3mol/L的巯基丁二酸与5ml0.01mol/L的氯金(III)酸混合后,逐滴加入500μL 1.0×10-3mol/L的抗坏血酸,并使用NaOH调节pH至11;在37℃条件下搅拌12h后,得金纳米簇材料;a. After mixing 5mL of 50mg/mL bovine serum albumin, 1mL of 1.75×10 -3 mol/L mercaptosuccinic acid and 5ml of 0.01mol/L chloroauric acid (III), add 500μL of 1.0×10 - 3 mol/L ascorbic acid, and use NaOH to adjust the pH to 11; after stirring at 37°C for 12 hours, the gold nanocluster material was obtained;

b、将所得的金纳米簇材料透析48h(每隔四小时换一次水)以除去反应杂质;取100μL的金纳米簇材料,加入不同浓度的胰蛋白酶,在37℃条件下放置2h后,然后加入0.5mL5.0×10-3mol/L的特征底物2,2’-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐和2mL pH=4.0的0.2mol/L的醋酸缓冲液,定容到5mL,放置在可见光下光照10min后显色。在2,2’-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐的氧化产物的特征吸收(λmax=417nm)处测定体系的吸光度。b. Dialyze the obtained gold nanocluster material for 48 hours (change the water every four hours) to remove reaction impurities; take 100 μL of gold nanocluster material, add different concentrations of trypsin, and place it at 37° C. for 2 hours, then Add 0.5 mL of 5.0×10 -3 mol/L characteristic substrate 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and 2 mL of 0.2 mol/L acetate buffer solution, dilute to 5mL, and place under visible light for 10min to develop color. The absorbance of the system was measured at the characteristic absorption (λ max =417nm) of the oxidation product of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt.

实施实例3:Implementation example 3:

a、5mL 50mg/mL的牛血清白蛋白、1mL 4.25×10-3mol/L的巯基丁二酸与5ml0.01mol/L的硝酸银混合后,逐滴加入1mL 5.0×10-2mol/L的甲醛,并使用NaOH调节pH至11;在37℃条件下搅拌12h后,得银纳米簇材料;a. After mixing 5mL 50mg/mL bovine serum albumin, 1mL 4.25× 10-3 mol/L mercaptosuccinic acid and 5ml 0.01mol/L silver nitrate, add 1mL 5.0× 10-2 mol/L dropwise formaldehyde, and use NaOH to adjust the pH to 11; after stirring at 37°C for 12 hours, silver nanocluster materials were obtained;

b、将所得的银纳米簇材料透析48h(每隔四小时换一次水)以除去反应杂质;取100μL的银纳米簇材料,加入不同浓度的胰蛋白酶,在37℃条件下放置2h后,加入0.5mL 5.0×10-3mol/L的特征底物3,3’,5,5’-四甲基联苯胺和2mL pH=4.0的0.2mol/L的醋酸缓冲液,定容到5mL,放置在可见光下光照10min后显色。在3,3’,5,5’-四甲基联苯胺的氧化产物的特征吸收(λmax=652nm)处测定体系的吸光度。b. Dialyze the obtained silver nanocluster material for 48 hours (change the water every four hours) to remove reaction impurities; take 100 μL of silver nanocluster material, add different concentrations of trypsin, place it at 37°C for 2 hours, add 0.5mL 5.0×10 -3 mol/L characteristic substrate 3,3',5,5'-tetramethylbenzidine and 2mL 0.2mol/L acetate buffer solution with pH=4.0, dilute to 5mL, place The color develops after 10 min of exposure to visible light. The absorbance of the system was measured at the characteristic absorption (λ max =652nm) of the oxidation product of 3,3',5,5'-tetramethylbenzidine.

Claims (3)

1.以具有可见光光活性的纳米簇模拟酶为基础的胰蛋白酶比色检测方法,其特征在于:1. The trypsin colorimetric detection method based on the nano-cluster mimic enzyme with visible light photoactivity, is characterized in that: a、将牛血清白蛋白与相当于其物质的量为1-10倍的巯基丁二酸制成混合物,该混合物与相当于其总的物质的量的10-30倍的氯金(III)酸或硝酸银(I)溶液混合后,加入相当于氯金(III)酸或硝酸银(I)的物质量的0.1-3倍的还原剂并使用NaOH溶液调节pH至碱性;在37℃条件下搅拌反应24h后,得到金/银纳米簇材料;a, bovine serum albumin and mercaptosuccinic acid equivalent to 1-10 times the amount of its substance are made into a mixture, and the mixture is mixed with gold chloride (III) equivalent to 10-30 times the amount of its total substance After mixing the acid or silver (I) nitrate solution, add a reducing agent equivalent to 0.1-3 times the amount of chloroauric (III) acid or silver (I) nitrate and use NaOH solution to adjust the pH to alkaline; at 37 ° C After stirring and reacting for 24 hours under the same conditions, a gold/silver nano-cluster material is obtained; b、将所得的金/银纳米簇材料透析48h以除去反应杂质;取100μL的金/银纳米簇材料,加入不同浓度的胰蛋白酶,在37℃条件下放置2h后,然后加入特征底物和2mL pH为4.0的0.2mol/L的醋酸缓冲溶液,定容到5mL;室温下,放置在氙灯下用可见光照射10min后显色。b. Dialyze the obtained gold/silver nanocluster material for 48 hours to remove reaction impurities; take 100 μL of gold/silver nanocluster material, add different concentrations of trypsin, place it at 37°C for 2 hours, then add the characteristic substrate and 2mL of 0.2mol/L acetic acid buffer solution with a pH of 4.0, dilute to 5mL; place under a xenon lamp at room temperature and irradiate with visible light for 10min to develop color. 2.根据权利要求1所述的以具有可见光光活性的纳米簇模拟酶为基础的胰蛋白酶比色检测方法,其特征在于所述的还原剂,选自过氧化氢、抗坏血酸、没食子酸、甲醛、葡萄糖。2. the trypsin colorimetric detection method based on the nanocluster mimic enzyme with visible light photoactivity according to claim 1, is characterized in that described reducing agent is selected from hydrogen peroxide, ascorbic acid, gallic acid, formaldehyde ,glucose. 3.根据权利要求1所述的以具有可见光光活性的纳米簇模拟酶为基础的胰蛋白酶比色检测方法,其特征在于所述的特征底物有3,4-二羟基苯乙酸,3,3’,5,5’-四甲基联苯胺,2,2’-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐,3,3’-二氨基联苯胺,特征底物浓度为0.1mM-10mM。3. the trypsin colorimetric detection method based on the nanocluster mimetic enzyme with visible light light activity according to claim 1, is characterized in that described characteristic substrate has 3,4-dihydroxyphenylacetic acid, 3, 3',5,5'-tetramethylbenzidine, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 3,3'-diaminobenzidine Aniline, the characteristic substrate concentration is 0.1mM-10mM.
CN201410525739.4A 2014-09-30 2014-09-30 Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity Active CN104383919B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410525739.4A CN104383919B (en) 2014-09-30 2014-09-30 Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410525739.4A CN104383919B (en) 2014-09-30 2014-09-30 Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity

Publications (2)

Publication Number Publication Date
CN104383919A CN104383919A (en) 2015-03-04
CN104383919B true CN104383919B (en) 2017-02-08

Family

ID=52601930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410525739.4A Active CN104383919B (en) 2014-09-30 2014-09-30 Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity

Country Status (1)

Country Link
CN (1) CN104383919B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502614B (en) * 2015-01-26 2016-05-25 湖南科技大学 A kind of based on gold nanoclusters analogue enztme kit and preparation method thereof and application
CN104722776B (en) * 2015-04-09 2018-03-06 中南大学 A kind of silver receives the synthesis technique of cluster
CN104807795A (en) * 2015-05-06 2015-07-29 江南大学 Fast preparation method of biological affinity copper nanometer cluster
CN105458288B (en) * 2015-12-02 2018-06-12 青岛大学 A kind of preparation method of nanogold particle
CN105537621B (en) * 2016-01-14 2017-09-12 南阳师范学院 A kind of golden nanometer particle preparation method using protein as reducing agent
CN105798324B (en) * 2016-03-21 2017-11-10 中山大学 One kind is based on self-assembled structures analogue enztme and preparation method and application
CN106092930B (en) * 2016-06-14 2019-01-18 江南大学 Copper ion detection method and copper ion detection kit
CN106984826B (en) * 2016-11-17 2019-05-17 湖南科技大学 A kind of method for the silver nanoclusters that there is hyperfluorescence to emit for the preparation of pH regulation
CN107116232A (en) * 2017-06-14 2017-09-01 江南大学 A kind of synthetic method of pltine nano-cluster
CN107418561B (en) * 2017-06-29 2019-03-22 吉林大学 Blue-fluorescence gold nano point, preparation method and its application in bivalent cupric ion context of detection
CN107356578B (en) * 2017-08-16 2019-07-26 广西师范大学 A method for the determination of Hg2+ by regulating silica nanozyme activity with aptamer-resonance scattering spectroscopy
CN107807117B (en) * 2017-08-16 2019-09-24 广西师范大学 It is a kind of to measure Hg with aptamers regulation silica nanometer enzymatic activity Surface enhanced Raman spectroscopy2+Method
CN109115740B (en) * 2018-08-10 2020-08-28 江苏大学 Preparation method and application of a ratio-type CNQDs/TiO2/AuNCs composite fluorescent microspheres
CN110508828B (en) * 2019-08-28 2022-05-03 淮北师范大学 Preparation method of orange-red fluorescent copper nanoclusters based on L-methionine
CN111965149B (en) * 2020-07-30 2022-12-09 济南大学 A method for the determination of total antioxidant capacity based on the light-induced oxidase-like enzyme activity of gold nanoclusters
CN112748105B (en) * 2020-12-30 2022-08-12 临沂大学 A kind of preparation method of single-atom catalyst-based colorimetric test paper for rapid detection of blood sugar/urine sugar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590166A (en) * 2012-02-10 2012-07-18 中国科学院长春应用化学研究所 Test method for trypsin
CN103175800A (en) * 2013-03-11 2013-06-26 中国科学院苏州生物医学工程技术研究所 Colorimetric analysis method for quickly measuring trypsin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590166A (en) * 2012-02-10 2012-07-18 中国科学院长春应用化学研究所 Test method for trypsin
CN103175800A (en) * 2013-03-11 2013-06-26 中国科学院苏州生物医学工程技术研究所 Colorimetric analysis method for quickly measuring trypsin

Also Published As

Publication number Publication date
CN104383919A (en) 2015-03-04

Similar Documents

Publication Publication Date Title
CN104383919B (en) Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity
Li et al. Regulating the N coordination environment of Co single-atom nanozymes for highly efficient oxidase mimics
Stasyuk et al. Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: A review
Tian et al. Plasmon-mediated oxidase-like activity on Ag@ ZnS heterostructured hollow nanowires for rapid visual detection of nitrite
Xu et al. Polyoxometalate nanostructures decorated with CuO nanoparticles for sensing ascorbic acid and Fe2+ ions
Sohal et al. Biosensors based on MnO2 nanostructures: A review
Wang et al. Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection
Jin et al. Si doped CoO nanorods as peroxidase mimics for colorimetric sensing of reduced glutathione
Alshatteri et al. Enhanced peroxidase-mimic catalytic activity via cerium doping of strontium-based metal–organic frameworks with design of a smartphone-based sensor for on-site salivary total antioxidant capacity detection in lung cancer patients
Hu et al. Self-cascade reaction catalyzed by CuO nanoparticle-based dual-functional enzyme mimics
Dong et al. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay
Liu et al. Platinum nanoparticles: efficient and stable catechol oxidase mimetics
Lin et al. Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection
Zhang et al. A tunable bifunctional hollow Co 3 O 4/MO 3 (M= Mo, W) mixed-metal oxide nanozyme for sensing H 2 O 2 and screening acetylcholinesterase activity and its inhibitor
Hu et al. Colorimetric sensing of bithiols using photocatalytic UiO-66 (NH2) as H2O2-free peroxidase mimics
CN104551000B (en) A kind of platinum-cobalt nano-alloy mimic enzyme and its preparation method and application
Ye et al. Peroxidase-like properties of ruthenium nanoframes
Cheng et al. Signal on–off electrochemical sensor for glutathione based on a AuCu-decorated Zr-containing metal–organic framework via solid-state electrochemistry of cuprous chloride
Humphreys et al. Galactose oxidase as a model for reactivity at a copper superoxide center
CN103217406B (en) Based on halfcystine and the Cu of Au/Ag core/shell quantum dot 2+the method for making of fluorescence probe
Lyu et al. Recent advances in single-atom nanozymes for colorimetric biosensing
CN104155248A (en) Preparation method of nano material for detecting glucose
CN104897846B (en) A kind of based on the alkaline phosphatase activities detection method being formed in situ non-photoactive nanoparticles material simulation enzyme
CN107376961A (en) Preparation and application of the integrated CoP nano-chip arrays as monoblock type class peroxidase
CN113861962B (en) Ratiometric fluorescent probe, preparation method thereof and application thereof in detecting hydrogen peroxide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant