CN104383919B - Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity - Google Patents
Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity Download PDFInfo
- Publication number
- CN104383919B CN104383919B CN201410525739.4A CN201410525739A CN104383919B CN 104383919 B CN104383919 B CN 104383919B CN 201410525739 A CN201410525739 A CN 201410525739A CN 104383919 B CN104383919 B CN 104383919B
- Authority
- CN
- China
- Prior art keywords
- trypsin
- acid
- visible light
- nanocluster
- silver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 102000004190 Enzymes Human genes 0.000 title claims abstract description 24
- 108090000790 Enzymes Proteins 0.000 title claims abstract description 24
- 102000004142 Trypsin Human genes 0.000 title claims abstract description 23
- 108090000631 Trypsin Proteins 0.000 title claims abstract description 23
- 239000012588 trypsin Substances 0.000 title claims abstract description 23
- 238000001514 detection method Methods 0.000 title claims abstract description 12
- 230000003278 mimic effect Effects 0.000 title claims abstract description 11
- 230000000694 effects Effects 0.000 title claims abstract description 8
- 239000010931 gold Substances 0.000 claims abstract description 18
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052737 gold Inorganic materials 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 229910052709 silver Inorganic materials 0.000 claims abstract description 11
- 239000004332 silver Substances 0.000 claims abstract description 11
- 108091003079 Bovine Serum Albumin Proteins 0.000 claims abstract description 8
- 229940098773 bovine serum albumin Drugs 0.000 claims abstract description 8
- NJRXVEJTAYWCQJ-UHFFFAOYSA-N thiomalic acid Chemical compound OC(=O)CC(S)C(O)=O NJRXVEJTAYWCQJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 12
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical group OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 6
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- CFFZDZCDUFSOFZ-UHFFFAOYSA-N 3,4-Dihydroxy-phenylacetic acid Chemical compound OC(=O)CC1=CC=C(O)C(O)=C1 CFFZDZCDUFSOFZ-UHFFFAOYSA-N 0.000 claims description 4
- OHDRQQURAXLVGJ-AXMZSLBLSA-N azane;(2z)-3-ethyl-2-[(z)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N\N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-AXMZSLBLSA-N 0.000 claims description 4
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 claims description 4
- 229960005070 ascorbic acid Drugs 0.000 claims description 3
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 2
- 235000010323 ascorbic acid Nutrition 0.000 claims description 2
- 239000011668 ascorbic acid Substances 0.000 claims description 2
- 239000007853 buffer solution Substances 0.000 claims description 2
- 229940074391 gallic acid Drugs 0.000 claims description 2
- 235000004515 gallic acid Nutrition 0.000 claims description 2
- 239000008103 glucose Substances 0.000 claims description 2
- 229960001031 glucose Drugs 0.000 claims description 2
- 235000001727 glucose Nutrition 0.000 claims description 2
- 229960002163 hydrogen peroxide Drugs 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 2
- SERKKZYZIKVKIB-UHFFFAOYSA-N NC1=CC=CC=C1.NC=1C=C(C=CC1N)C1=CC(=C(N)C=C1)N Chemical compound NC1=CC=CC=C1.NC=1C=C(C=CC1N)C1=CC(=C(N)C=C1)N SERKKZYZIKVKIB-UHFFFAOYSA-N 0.000 claims 1
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 abstract description 13
- 239000002086 nanomaterial Substances 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 102000013415 peroxidase activity proteins Human genes 0.000 abstract description 5
- 108040007629 peroxidase activity proteins Proteins 0.000 abstract description 5
- 239000007800 oxidant agent Substances 0.000 abstract description 3
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract description 3
- 230000002776 aggregation Effects 0.000 abstract description 2
- 238000004220 aggregation Methods 0.000 abstract description 2
- 210000004369 blood Anatomy 0.000 abstract description 2
- 239000008280 blood Substances 0.000 abstract description 2
- 102000004169 proteins and genes Human genes 0.000 abstract description 2
- 108090000623 proteins and genes Proteins 0.000 abstract description 2
- 210000002700 urine Anatomy 0.000 abstract description 2
- 238000004737 colorimetric analysis Methods 0.000 abstract 1
- 239000003607 modifier Substances 0.000 abstract 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- 238000002835 absorbance Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000008351 acetate buffer Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910001961 silver nitrate Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- HSTOKWSFWGCZMH-UHFFFAOYSA-N 3,3'-diaminobenzidine Chemical compound C1=C(N)C(N)=CC=C1C1=CC=C(N)C(N)=C1 HSTOKWSFWGCZMH-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- 206010033645 Pancreatitis Diseases 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011942 biocatalyst Substances 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明提供具有可见光光活性的纳米簇模拟酶的制备及其比色法检测胰蛋白酶应用。牛血清白蛋白、巯基丁二酸为表面修饰剂的金/银纳米簇在可见光照射下具有类似过氧化物酶的催化特性,能够催化色原底物的氧化。与过氧化物酶相比,此光活性纳米材料模拟酶不需要使用高浓度的氧化剂,催化活性高,稳定性好,催化条件更加环保绿色。胰蛋白酶分解纳米簇表面的蛋白质模板,导致纳米簇表面状态改变引起聚集从而引起其催化活性的降低。本发明检测胰蛋白酶的线性范围为9.0×10‑7‑1.0×10‑3g/mL,检测限为0.6μg/mL,远低于病人的尿液与血液中的胰蛋白酶含量。
The invention provides the preparation of the nano-cluster mimic enzyme with visible light activity and the application of the colorimetric method to detect trypsin. Gold/silver nanoclusters with bovine serum albumin and mercaptosuccinic acid as surface modifiers have catalytic properties similar to peroxidase under visible light irradiation, and can catalyze the oxidation of chromogen substrates. Compared with peroxidase, this photoactive nanomaterial mimic enzyme does not need to use a high concentration of oxidant, has high catalytic activity, good stability, and the catalytic conditions are more environmentally friendly and green. Trypsin decomposes the protein template on the surface of the nanoclusters, resulting in changes in the surface state of the nanoclusters leading to aggregation and a decrease in its catalytic activity. The linear range of the detection of trypsin by the present invention is 9.0× 10-7-1.0 × 10-3 g/mL, and the detection limit is 0.6 μg/mL, which is far lower than the trypsin content in the patient's urine and blood.
Description
技术领域:Technical field:
本发明涉及纳米科技领域和生物分析检测领域,尤其涉及新型的可见光诱导纳米簇模拟酶的制备及其在检测胰蛋白酶方面的应用。The invention relates to the field of nanotechnology and the field of biological analysis and detection, in particular to the preparation of a novel visible light-induced nano-cluster imitation enzyme and its application in the detection of trypsin.
背景技术:Background technique:
天然酶可以催化化学反应,对比化学催化,天然酶具有更高的催化活性。因而,天然酶在农药生产、制药过程和食品工业等各个领域有着广泛的应用[JamesB.Chem.Soc.Rev.2009,38,185-196]。但是,天然酶易受外界影响失活并且一般对酸、碱、热不稳定,而且价格昂贵,这些因素都限制了它们的广泛应用。因此,模拟酶的研究引起了广泛兴趣。Natural enzymes can catalyze chemical reactions, and compared with chemical catalysis, natural enzymes have higher catalytic activity. Therefore, natural enzymes are widely used in various fields such as pesticide production, pharmaceutical process and food industry [James B. Chem. Soc. Rev. 2009, 38, 185-196]. However, natural enzymes are easily inactivated by external influences and are generally unstable to acids, alkalis, and heat, and are expensive, which limit their wide application. Therefore, the study of mimetic enzymes has aroused widespread interest.
最近研究显示,纳米技术的快速发展为模拟酶的研究提供了更为广阔的空间。到目前为止,人们发现多种纳米材料如金属和双金属纳米材料[Jv Y.;Li B.X,;CaoR.Chem.Commun.2010,46,8017-8019;He W.W.;Wu X.C.;Liu J.B.;Hu X.N.;Zhang K.;HouS.;Zhou W.Y.;Xie,S.S.Chem.Mater.2010,22,2988-2994]、金属氧化物纳米材料[GaoL.Z.;Zhuang J.;Nie L.;Zhang J.B.;Zhang Y.;Gu N.;Wang T.H.;Feng J.;Yang D.L.;Perrett S.;Yan X.Nat.Nanotechnol.2007,2,577-583;Mu J.S.;Wang Y.;Zhao M.;ZhangL.Chem.Commun.2012,48,2540-2542]、碳纳米材料[Song Y.J.;Qu K.G.;Zhao C.;RenJ.S.;Qu X.G.Adv.Mater.2010,22,2206-2210]等都具有类似过氧化物酶的活性,即在过氧化氢的存在下催化特征底物的氧化反应。对比天然酶,纳米材料模拟酶具有许多优点如成本低廉、合成可控、高的催化活性和更好的稳定性。但是在使用天然过氧化物酶或者纳米材料过氧化物模拟酶时需加入大量腐蚀性的H2O2作为氧化剂以使其具有理想的催化活性。高浓度H2O2的使用使得利用过氧化物酶或者纳米材料过氧化物模拟酶进行生物体系的测定变得较为困难[Cook C.J.Nat.Biotechnol.1997,15,467-471]。Recent studies have shown that the rapid development of nanotechnology provides a broader space for the study of mimic enzymes. So far, a variety of nanomaterials such as metal and bimetallic nanomaterials have been discovered [Jv Y.; Li BX,; Cao R. Chem. Commun. 2010, 46, 8017-8019; He WW; Wu XC; Liu JB; Hu XN; Zhang K.; HouS.; Zhou WY; Xie, SSChem.Mater.2010, 22, 2988-2994], metal oxide nanomaterials [GaoL.Z.; Zhuang J.; Y.; Gu N.; Wang TH; Feng J.; Yang DL; Perrett S.; Yan X. Nat. Nanotechnol. 2007, 2, 577-583; .Commun.2012,48,2540-2542], carbon nanomaterials [Song YJ; Qu KG; Zhao C.; RenJ.S.; Qu XGAdv.Mater.2010, 22, 2206-2210], etc. The activity of a biocatalyst, which catalyzes the oxidation of a characteristic substrate in the presence of hydrogen peroxide. Compared with natural enzymes, nanomaterial mimic enzymes have many advantages such as low cost, controllable synthesis, high catalytic activity and better stability. However, when using natural peroxidase or nanomaterial peroxidase mimetic enzyme, a large amount of corrosive H 2 O 2 should be added as an oxidant to make it have ideal catalytic activity. The use of high concentrations of H 2 O 2 makes it difficult to measure biological systems using peroxidase or nanomaterial peroxide-mimicking enzymes [Cook CJ Nat. Biotechnol. 1997, 15, 467-471].
金属纳米簇材料的发现,引起了大家广泛的关注。由于量子局限效应的提高,使得这些超小金属纳米簇具有不寻常的光学、电学特性[Wang G.;Huang T.;Murray R.W.;Menard L.;J.Am.Chem.Soc.2005,127,812-813;Ramakrishna G.;Varnavski O.;Kim J.;Lee D.;Goodson T.J.Am.Chem.Soc.2008,130,5032-5033;Zhu M.;Aikens C.M.;Hollander F.J.;Schatz G.C.;Jin R.J.Am.Chem.Soc.2008,130,5883-5885]。蛋白酶参与多种重要的生理和病理的控制流程并且蛋白酶的活性与疾病相关联,比如胰蛋白酶在控制胰腺外分泌功能中扮演着重要角色,是胰腺炎的生物标志物[Byrne M.F.;Mitchell R.M.;Stiffler H.;Jowell P.S.;Branch M.S.;Pappas T.N.;Tyler D.;BaillieJ.Can.J.Gastroenterol.2002,16,849-854]。本发明提供了一种具有可见光光活性的纳米簇模拟酶的制备方法并将其应用于胰蛋白酶的比色法检测。金/银纳米簇不需要任何强氧化剂,在可见光的诱导下呈现出了较高的类酶催化活性。据我们所知,这是首次发现的金/银纳米簇的一项新的光化学性质。所发现的具有类酶催化活性的纳米簇制备简单,催化活性高,稳定性好,催化条件更加环保绿色。通过胰蛋白酶分解纳米簇表面的蛋白质模板,导致纳米簇表面状态改变引起聚集从而引起催化活性的降低。基于其高效的类酶催化性能,实现了胰蛋白酶的高效、方便检测。检测胰蛋白酶的检测限为0.6μg/mL,远低于病人的尿液与血液中的胰蛋白酶含量。The discovery of metal nanocluster materials has aroused widespread concern. Due to the improvement of the quantum confinement effect, these ultra-small metal nanoclusters have unusual optical and electrical properties [Wang G.; Huang T.; Murray R.W.; Menard L.; J.Am.Chem.Soc.2005, 127, 812-813; Ramakrishna G.; Varnavski O.; Kim J.; Lee D.; Goodson T.J.Am.Chem.Soc.2008, 130, 5032-5033; R. J. Am. Chem. Soc. 2008, 130, 5883-5885]. Proteases are involved in a variety of important physiological and pathological control processes and the activity of proteases is associated with diseases. For example, trypsin plays an important role in controlling exocrine function of the pancreas and is a biomarker of pancreatitis [Byrne M.F.; Mitchell R.M.; Stiffler H.; Jowell P.S.; Branch M.S.; Pappas T.N.; Tyler D.; The invention provides a preparation method of nano-cluster mimic enzyme with visible light activity and its application in colorimetric detection of trypsin. Au/Ag nanoclusters do not require any strong oxidant, and exhibit high enzyme-like catalytic activity under the induction of visible light. To the best of our knowledge, this is the first discovery of a new photochemical property of gold/silver nanoclusters. The discovered nanoclusters with enzyme-like catalytic activity are simple to prepare, have high catalytic activity, good stability, and the catalytic conditions are more environmentally friendly and green. The protein template on the surface of the nanoclusters was decomposed by trypsin, resulting in changes in the surface state of the nanoclusters leading to aggregation and a decrease in catalytic activity. Based on its high-efficiency enzyme-like catalytic performance, the efficient and convenient detection of trypsin is realized. The detection limit of trypsin is 0.6μg/mL, which is much lower than the trypsin content in the patient's urine and blood.
发明内容:Invention content:
本发明的目的是提供一种新型的光活性纳米簇模拟酶,同时利用其光活性模拟酶性质,可以方便、快速地检测胰蛋白酶。The purpose of the present invention is to provide a novel photoactive nano-cluster mimic enzyme, and simultaneously use its photoactive mimic enzyme property to detect trypsin conveniently and rapidly.
本发明的目的可通过如下技术措施来实现:The purpose of the present invention can be achieved through the following technical measures:
a、一定量的牛血清白蛋白、巯基丁二酸与氯金(III)酸或硝酸银(I)溶液混合后,加入适量还原剂并使用NaOH溶液调节pH至碱性;在37℃条件下搅拌24h后,得到金/银纳米簇材料;a. After mixing a certain amount of bovine serum albumin, mercaptosuccinic acid and chloroauric (III) acid or silver (I) nitrate solution, add an appropriate amount of reducing agent and use NaOH solution to adjust the pH to alkaline; at 37 ° C After stirring for 24h, the gold/silver nano-cluster material is obtained;
b、将所得的金/银纳米簇材料透析48h以除去反应杂质;取100μL的金/银纳米簇材料,加入不同浓度的胰蛋白酶,在37℃条件下放置2h后,然后加入特征底物和2mL pH为4.0的0.2mol/L的醋酸缓冲溶液,定容到5mL,在室温下,放置在氙灯下用可见光照射10min后显色。b. Dialyze the obtained gold/silver nanocluster material for 48 hours to remove reaction impurities; take 100 μL of gold/silver nanocluster material, add different concentrations of trypsin, place it at 37°C for 2 hours, then add the characteristic substrate and 2 mL of 0.2 mol/L acetic acid buffer solution with a pH of 4.0, dilute to 5 mL, place under a xenon lamp at room temperature and irradiate with visible light for 10 min to develop color.
本发明的目的还可通过如下技术措施来实现:The purpose of the present invention can also be achieved through the following technical measures:
所述的牛血清白蛋白、巯基丁二酸的物质的量的总和为氯金(III)酸或硝酸银(I)的物质的量的1/30-1/10,牛血清白蛋白与巯基丁二酸的物质的量之比为1∶1-1∶10;所述的还原剂,选自过氧化氢、抗坏血酸、没食子酸、甲醛、葡萄糖,还原剂的量为氯金(III)酸或硝酸银(I)的物质的量的0.1-3倍;所述的特征底物有3,4-二羟基苯乙酸,3,3’,5,5’-四甲基联苯胺,2,2’-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐,3,3’-二氨基联苯胺,特征底物浓度为0.1mM-10mM。The sum of the amount of substances of described bovine serum albumin and mercaptosuccinic acid is 1/30-1/10 of the amount of substances of chloroauric (III) acid or silver nitrate (I), bovine serum albumin and sulfhydryl The ratio of the amount of substances of succinic acid is 1:1-1:10; the reducing agent is selected from hydrogen peroxide, ascorbic acid, gallic acid, formaldehyde, glucose, and the amount of the reducing agent is chloroauric (III) acid Or 0.1-3 times the amount of substance of silver nitrate (I); the characteristic substrate has 3,4-dihydroxyphenylacetic acid, 3,3',5,5'-tetramethylbenzidine, 2, 2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 3,3'-diaminobenzidine, the characteristic substrate concentration is 0.1mM-10mM.
附图说明:Description of drawings:
图1是不存在纳米簇材料在光照条件下(a)、存在纳米簇材料无光照条件下(b)以及存在纳米簇材料在光照条件下(c)和3×10-4mol/L的3,3’,5,5’-四甲基联苯胺反应的吸收光谱图。Figure 1 shows the 3×10 -4 mol/L 3 without nanocluster material under light condition (a), the presence of nanocluster material without light condition (b) and the presence of nanocluster material under light condition (c) , 3',5,5'-Tetramethylbenzidine reaction absorption spectrum.
图2是不同的活性中间体清除剂对金纳米簇的模拟酶性能的影响(底物为3,3’,5,5’-四甲基联苯胺)。Figure 2 is the effect of different active intermediate scavengers on the simulated enzyme performance of gold nanoclusters (the substrate is 3,3',5,5'-tetramethylbenzidine).
图3是金纳米簇光活性模拟酶体系使用3,3’,5,5’-四甲基联苯胺作底物检测胰蛋白酶的选择性。Figure 3 shows the selectivity of the gold nanocluster photoactive mimic enzyme system using 3,3',5,5'-tetramethylbenzidine as a substrate to detect trypsin.
图4是金纳米簇光活性模拟酶体系使用3,3’,5,5’-四甲基联苯胺作底物检测胰蛋白酶的线性关系图。Figure 4 is a linear relationship diagram for the detection of trypsin by the photoactive analog enzyme system of gold nanoclusters using 3,3',5,5'-tetramethylbenzidine as a substrate.
实施实例1:Implementation example 1:
a、5mL 50mg/mL的牛血清白蛋白、1mL 1.25×10-3mol/L的巯基丁二酸与5ml0.01mol/L的氯金(III)酸混合后,加入1mL 5.0×10-2mol/L的过氧化氢溶液并使用NaOH调节pH至pH=9;在37℃条件下搅拌24h后,得金纳米簇材料;a. After mixing 5mL of 50mg/mL bovine serum albumin, 1mL of 1.25× 10-3 mol/L mercaptosuccinic acid and 5ml of 0.01mol/L chloroauric acid (III), add 1mL of 5.0× 10-2 mol /L of hydrogen peroxide solution and use NaOH to adjust the pH to pH=9; after stirring at 37°C for 24 hours, a gold nanocluster material is obtained;
b、将所得的金纳米簇材料透析48h(每隔四小时换一次水)以除去反应杂质;取100μL的金纳米簇材料,加入不同浓度的胰蛋白酶,在37℃条件下放置2h后,然后加入0.3mL5.0×10-3mol/L的特征底物3,3’,5,5’-四甲基联苯胺和2mL pH=4.0的0.2mol/L的醋酸缓冲液,定容到5mL,放置在可见光下光照10min后显色。在3,3’,5,5’-四甲基联苯胺的氧化产物的特征吸收(λmax=652nm)处测定体系的吸光度。b. Dialyze the obtained gold nanocluster material for 48 hours (change the water every four hours) to remove reaction impurities; take 100 μL of gold nanocluster material, add different concentrations of trypsin, and place it at 37° C. for 2 hours, then Add 0.3mL of 5.0×10 -3 mol/L characteristic substrate 3,3',5,5'-tetramethylbenzidine and 2mL of 0.2mol/L acetate buffer solution with pH=4.0, and dilute to 5mL , placed under visible light for 10 min to develop color. The absorbance of the system was measured at the characteristic absorption (λ max =652nm) of the oxidation product of 3,3',5,5'-tetramethylbenzidine.
实施实例2:Implementation example 2:
a、5mL的50mg/mL牛血清白蛋白、1mL 1.75×10-3mol/L的巯基丁二酸与5ml0.01mol/L的氯金(III)酸混合后,逐滴加入500μL 1.0×10-3mol/L的抗坏血酸,并使用NaOH调节pH至11;在37℃条件下搅拌12h后,得金纳米簇材料;a. After mixing 5mL of 50mg/mL bovine serum albumin, 1mL of 1.75×10 -3 mol/L mercaptosuccinic acid and 5ml of 0.01mol/L chloroauric acid (III), add 500μL of 1.0×10 - 3 mol/L ascorbic acid, and use NaOH to adjust the pH to 11; after stirring at 37°C for 12 hours, the gold nanocluster material was obtained;
b、将所得的金纳米簇材料透析48h(每隔四小时换一次水)以除去反应杂质;取100μL的金纳米簇材料,加入不同浓度的胰蛋白酶,在37℃条件下放置2h后,然后加入0.5mL5.0×10-3mol/L的特征底物2,2’-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐和2mL pH=4.0的0.2mol/L的醋酸缓冲液,定容到5mL,放置在可见光下光照10min后显色。在2,2’-联氮基双(3-乙基苯并噻唑啉-6-磺酸)二铵盐的氧化产物的特征吸收(λmax=417nm)处测定体系的吸光度。b. Dialyze the obtained gold nanocluster material for 48 hours (change the water every four hours) to remove reaction impurities; take 100 μL of gold nanocluster material, add different concentrations of trypsin, and place it at 37° C. for 2 hours, then Add 0.5 mL of 5.0×10 -3 mol/L characteristic substrate 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and 2 mL of 0.2 mol/L acetate buffer solution, dilute to 5mL, and place under visible light for 10min to develop color. The absorbance of the system was measured at the characteristic absorption (λ max =417nm) of the oxidation product of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt.
实施实例3:Implementation example 3:
a、5mL 50mg/mL的牛血清白蛋白、1mL 4.25×10-3mol/L的巯基丁二酸与5ml0.01mol/L的硝酸银混合后,逐滴加入1mL 5.0×10-2mol/L的甲醛,并使用NaOH调节pH至11;在37℃条件下搅拌12h后,得银纳米簇材料;a. After mixing 5mL 50mg/mL bovine serum albumin, 1mL 4.25× 10-3 mol/L mercaptosuccinic acid and 5ml 0.01mol/L silver nitrate, add 1mL 5.0× 10-2 mol/L dropwise formaldehyde, and use NaOH to adjust the pH to 11; after stirring at 37°C for 12 hours, silver nanocluster materials were obtained;
b、将所得的银纳米簇材料透析48h(每隔四小时换一次水)以除去反应杂质;取100μL的银纳米簇材料,加入不同浓度的胰蛋白酶,在37℃条件下放置2h后,加入0.5mL 5.0×10-3mol/L的特征底物3,3’,5,5’-四甲基联苯胺和2mL pH=4.0的0.2mol/L的醋酸缓冲液,定容到5mL,放置在可见光下光照10min后显色。在3,3’,5,5’-四甲基联苯胺的氧化产物的特征吸收(λmax=652nm)处测定体系的吸光度。b. Dialyze the obtained silver nanocluster material for 48 hours (change the water every four hours) to remove reaction impurities; take 100 μL of silver nanocluster material, add different concentrations of trypsin, place it at 37°C for 2 hours, add 0.5mL 5.0×10 -3 mol/L characteristic substrate 3,3',5,5'-tetramethylbenzidine and 2mL 0.2mol/L acetate buffer solution with pH=4.0, dilute to 5mL, place The color develops after 10 min of exposure to visible light. The absorbance of the system was measured at the characteristic absorption (λ max =652nm) of the oxidation product of 3,3',5,5'-tetramethylbenzidine.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410525739.4A CN104383919B (en) | 2014-09-30 | 2014-09-30 | Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410525739.4A CN104383919B (en) | 2014-09-30 | 2014-09-30 | Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104383919A CN104383919A (en) | 2015-03-04 |
CN104383919B true CN104383919B (en) | 2017-02-08 |
Family
ID=52601930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410525739.4A Active CN104383919B (en) | 2014-09-30 | 2014-09-30 | Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104383919B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104502614B (en) * | 2015-01-26 | 2016-05-25 | 湖南科技大学 | A kind of based on gold nanoclusters analogue enztme kit and preparation method thereof and application |
CN104722776B (en) * | 2015-04-09 | 2018-03-06 | 中南大学 | A kind of silver receives the synthesis technique of cluster |
CN104807795A (en) * | 2015-05-06 | 2015-07-29 | 江南大学 | Fast preparation method of biological affinity copper nanometer cluster |
CN105458288B (en) * | 2015-12-02 | 2018-06-12 | 青岛大学 | A kind of preparation method of nanogold particle |
CN105537621B (en) * | 2016-01-14 | 2017-09-12 | 南阳师范学院 | A kind of golden nanometer particle preparation method using protein as reducing agent |
CN105798324B (en) * | 2016-03-21 | 2017-11-10 | 中山大学 | One kind is based on self-assembled structures analogue enztme and preparation method and application |
CN106092930B (en) * | 2016-06-14 | 2019-01-18 | 江南大学 | Copper ion detection method and copper ion detection kit |
CN106984826B (en) * | 2016-11-17 | 2019-05-17 | 湖南科技大学 | A kind of method for the silver nanoclusters that there is hyperfluorescence to emit for the preparation of pH regulation |
CN107116232A (en) * | 2017-06-14 | 2017-09-01 | 江南大学 | A kind of synthetic method of pltine nano-cluster |
CN107418561B (en) * | 2017-06-29 | 2019-03-22 | 吉林大学 | Blue-fluorescence gold nano point, preparation method and its application in bivalent cupric ion context of detection |
CN107356578B (en) * | 2017-08-16 | 2019-07-26 | 广西师范大学 | A method for the determination of Hg2+ by regulating silica nanozyme activity with aptamer-resonance scattering spectroscopy |
CN107807117B (en) * | 2017-08-16 | 2019-09-24 | 广西师范大学 | It is a kind of to measure Hg with aptamers regulation silica nanometer enzymatic activity Surface enhanced Raman spectroscopy2+Method |
CN109115740B (en) * | 2018-08-10 | 2020-08-28 | 江苏大学 | Preparation method and application of a ratio-type CNQDs/TiO2/AuNCs composite fluorescent microspheres |
CN110508828B (en) * | 2019-08-28 | 2022-05-03 | 淮北师范大学 | Preparation method of orange-red fluorescent copper nanoclusters based on L-methionine |
CN111965149B (en) * | 2020-07-30 | 2022-12-09 | 济南大学 | A method for the determination of total antioxidant capacity based on the light-induced oxidase-like enzyme activity of gold nanoclusters |
CN112748105B (en) * | 2020-12-30 | 2022-08-12 | 临沂大学 | A kind of preparation method of single-atom catalyst-based colorimetric test paper for rapid detection of blood sugar/urine sugar |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590166A (en) * | 2012-02-10 | 2012-07-18 | 中国科学院长春应用化学研究所 | Test method for trypsin |
CN103175800A (en) * | 2013-03-11 | 2013-06-26 | 中国科学院苏州生物医学工程技术研究所 | Colorimetric analysis method for quickly measuring trypsin |
-
2014
- 2014-09-30 CN CN201410525739.4A patent/CN104383919B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590166A (en) * | 2012-02-10 | 2012-07-18 | 中国科学院长春应用化学研究所 | Test method for trypsin |
CN103175800A (en) * | 2013-03-11 | 2013-06-26 | 中国科学院苏州生物医学工程技术研究所 | Colorimetric analysis method for quickly measuring trypsin |
Also Published As
Publication number | Publication date |
---|---|
CN104383919A (en) | 2015-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104383919B (en) | Trypsin colorimetric detection method based on nanocluster mimic enzyme with visible-light activity | |
Li et al. | Regulating the N coordination environment of Co single-atom nanozymes for highly efficient oxidase mimics | |
Stasyuk et al. | Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: A review | |
Tian et al. | Plasmon-mediated oxidase-like activity on Ag@ ZnS heterostructured hollow nanowires for rapid visual detection of nitrite | |
Xu et al. | Polyoxometalate nanostructures decorated with CuO nanoparticles for sensing ascorbic acid and Fe2+ ions | |
Sohal et al. | Biosensors based on MnO2 nanostructures: A review | |
Wang et al. | Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection | |
Jin et al. | Si doped CoO nanorods as peroxidase mimics for colorimetric sensing of reduced glutathione | |
Alshatteri et al. | Enhanced peroxidase-mimic catalytic activity via cerium doping of strontium-based metal–organic frameworks with design of a smartphone-based sensor for on-site salivary total antioxidant capacity detection in lung cancer patients | |
Hu et al. | Self-cascade reaction catalyzed by CuO nanoparticle-based dual-functional enzyme mimics | |
Dong et al. | Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay | |
Liu et al. | Platinum nanoparticles: efficient and stable catechol oxidase mimetics | |
Lin et al. | Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection | |
Zhang et al. | A tunable bifunctional hollow Co 3 O 4/MO 3 (M= Mo, W) mixed-metal oxide nanozyme for sensing H 2 O 2 and screening acetylcholinesterase activity and its inhibitor | |
Hu et al. | Colorimetric sensing of bithiols using photocatalytic UiO-66 (NH2) as H2O2-free peroxidase mimics | |
CN104551000B (en) | A kind of platinum-cobalt nano-alloy mimic enzyme and its preparation method and application | |
Ye et al. | Peroxidase-like properties of ruthenium nanoframes | |
Cheng et al. | Signal on–off electrochemical sensor for glutathione based on a AuCu-decorated Zr-containing metal–organic framework via solid-state electrochemistry of cuprous chloride | |
Humphreys et al. | Galactose oxidase as a model for reactivity at a copper superoxide center | |
CN103217406B (en) | Based on halfcystine and the Cu of Au/Ag core/shell quantum dot 2+the method for making of fluorescence probe | |
Lyu et al. | Recent advances in single-atom nanozymes for colorimetric biosensing | |
CN104155248A (en) | Preparation method of nano material for detecting glucose | |
CN104897846B (en) | A kind of based on the alkaline phosphatase activities detection method being formed in situ non-photoactive nanoparticles material simulation enzyme | |
CN107376961A (en) | Preparation and application of the integrated CoP nano-chip arrays as monoblock type class peroxidase | |
CN113861962B (en) | Ratiometric fluorescent probe, preparation method thereof and application thereof in detecting hydrogen peroxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |