CN104378432B - 一种考虑时序约束的移动服务组合选择方法 - Google Patents
一种考虑时序约束的移动服务组合选择方法 Download PDFInfo
- Publication number
- CN104378432B CN104378432B CN201410653425.2A CN201410653425A CN104378432B CN 104378432 B CN104378432 B CN 104378432B CN 201410653425 A CN201410653425 A CN 201410653425A CN 104378432 B CN104378432 B CN 104378432B
- Authority
- CN
- China
- Prior art keywords
- constraint
- mobile service
- state
- information mobile
- temporal constraint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002123 temporal effect Effects 0.000 title claims abstract description 38
- 238000010187 selection method Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 27
- 238000005457 optimization Methods 0.000 claims abstract description 22
- 210000000349 chromosome Anatomy 0.000 claims description 22
- 230000035772 mutation Effects 0.000 claims description 3
- 238000010186 staining Methods 0.000 claims description 2
- 230000035699 permeability Effects 0.000 description 3
- 239000000975 dye Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/51—Discovery or management thereof, e.g. service location protocol [SLP] or web services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/14—Session management
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种考虑时序约束的移动服务组合选择方法,包括如下步骤:收集移动服务提供者的实时信息;根据服务提供者提供的信息建立服务提供者的概率移动模型;根据用户需求建立服务组合的质量约束和时序约束模型;基于差分进化方法的多约束优化方法进行组合优化,得到服务组合的选择策略,提供的考虑时序约束的移动服务组合选择方法,通过收集统计移动服务提供者的服务信息,建立针对移动服务提供者的概率移动模型,再根据用户提供的关于服务组合的质量及时序约束采用基于差分进化的多约束优化算法进行组合优化,得到具有更高执行成功率的移动服务组合;从而克服了仅仅针对传统互联网中的服务进行组合导致无法直接应用于移动环境的问题。
Description
技术领域
本发明涉移动环境下的服务组合选择问题,尤其涉及一种考虑时序约束的移动服务组合选择方法。
背景技术
近年来,随着移动互联网以及移动终端(智能手机、PDA、平板电脑等)的飞速发展,Web服务不再受限于传统的网络环境,它们可以通过移动终端提供服务,变得更加灵活也更加复杂。一方面,由于移动终端近些年取得了众多技术突破,使得移动设备的计算能力和存储能力都有了大幅提高,利用移动终端设备可以完成更多的任务和功能。另一方面,无线通信技术的发展提升了移动设备之间数据传输的速度和稳定性,通过移动设备直接交付服务变得更加可靠便捷。基于以上技术基础,利用移动终端提供Web服务将成为未来的发展趋势。移动用户会利用移动终端调用更为复杂的服务应用,即多个服务有机地组合在一起共同完成一个复杂的任务。由于用户在调用服务的过程中会处在移动的状态中,会对移动服务的可用性造成影响。同时,在某些服务组合流程中会存在时序约束,即某些任务之间调用的时间间隔必须满足一定约束条件。因此,没有考虑服务移动特性、服务组合时序约束的传统服务组合选择方法很难保证在移动环境下获取到确保成功执行的服务组合结果。因为它们仅仅针对服务自身的服务质量进行选择,而没有考虑到移动服务的不确定性以及服务组合内部的时序约束。
发明内容
针对上述技术缺陷,本发明针对移动网络环境下服务提供者的移动特性提出一种考虑时序约束的移动服务组合选择方法。该方法通过一个概率移动模型,并为服务组合中的质量及时序约束进行了建模,基于移动模型和约束模型提出了服务组合选择方法以得到近似最优服务组合结果。
一种考虑时序约束的移动服务组合选择方法,包括如下步骤:
11)收集移动服务提供者的实时信息;
12)根据服务提供者提供的信息建立服务提供者的概率移动模型;
13)根据用户需求建立服务组合的质量约束和时序约束模型;
14)基于差分进化方法的多约束优化方法进行组合优化,得到服务组合的选择策略。
进一步的,所述步骤12)中建立服务提供者的概率移动模型,包括如下步骤:建模一个二元组,m=([ta,tb],f),其中:
[ta,tb]是服务提供者声明的离开时间窗孔,在时刻ta之前用户是始终可用的,在时刻tb之后是一定不可用;
f=Porb(Avi≥t)是用户在[ta,tb]之间保持可用的概率密度函数,Avi是表示用户在[ta,tb]之间保持可用的随机变量。
进一步的,所述步骤13)中建立服务组合的质量约束和时序约束模型包括如下步骤:
将服务组合质量约束建模为一个三元组conq=(attr,opr,threshold),其中:attr表示一个服务质量(QoS)属性;opr表示操作符;threshold表示约束阈值;所述服务组合质量约束是对整个服务组合的QoS属性的约束;
将服务时序约束被建模为一个六元组cont=(type,ti,statei,tj,statej,dur),其中:type表示约束类型,包括上限约束L和下限约束U;ti表示前置任务;statei表示ti的状态,可以为开始状态b或结束状态e;tj表示后续任务;statej表示tj的状态,可以为开始状态b或结束状态e;dur表示时间的约束值。
进一步的,所述步骤14)中基于差分进化方法的多约束优化方法进行组合优化,包括如下步骤:
41)初始化阶段,生成种群及染色体,确定终止条件;
42)变异阶段:对染色体进行变异操作;
43)交叉阶段:对染色体进行交叉操作;
44)选择阶段:选择染色体作为下一代进化;
45)重复42)-44)步骤,直到终止条件达成。
进一步的,所述终止条件为:初始化阶段中设定的最大循环次数。
本发明的有益效果在于:本发明提供的考虑时序约束的移动服务组合选择方法,通过收集统计移动服务提供者的服务信息,建立针对移动服务提供者的概率移动模型,再根据用户提供的关于服务组合的质量及时序约束采用基于差分进化的多约束优化算法进行组合优化,得到具有更高执行成功率的移动服务组合,最后根据得到的服务组合方案选择备选服务;从而克服了仅仅针对传统互联网中的服务进行组合导致无法直接应用于移动环境的问题,也克服了现有技术中的方法在规划服务组合方案时没有考虑服务组合的质量约束及时学约束等问题,进而提高移动环境下服务组合的执行成功率。
附图说明
图1是本发明实施例1提供的考虑时序约束的移动服务组合选择方法的流程示意图;
图2是本发明实施例1提供的考虑时序约束的移动服务组合选择方法的示例图;图3是基于差分进化方法的服务组合选择方法流程图。
具体实施方式
下面将结合附图和具体实施例对本发明做进一步的说明。
实施例1:
如图1~图3所示,本发明实施例1提供的考虑时序约束的移动服务组合选择方法包括:收集移动服务提供者的实时信息;根据服务提供者提供的信息建立服务提供者的概率移动模型;根据用户需求建立服务组合的质量约束和时序约束模型;基于差分进化方法的多约束优化方法进行组合优化,得到服务组合的选择策略;根据服务组合选择策略选择服务组合中的具体服务进行调用。
在本发明实施例1提供的考虑时序约束的移动服务组合方法中,建立针对服务提供者的移动模型的方法包括:
服务提供者的移动模型被建模为一个二元组,m=([ta,tb],f),其中:
[ta,tb]是服务提供者声明的离开时间窗孔,也就是说用户有可能会在时刻ta到tb之间离开,在时刻ta之前用户是始终可用的,在时刻tb之后是一定不可用;
f=Porb(Avi≥t)是用户在[ta,tb]之间保持可用的概率密度函数。Avi是表示用户在[ta,tb]之间保持可用的随机变量。例如Porb(Avi≥t0)即表示用户在时刻t0之前可用的概率。
本发明实施例1建立服务组合的质量和时序约束模型的方法包括:
服务组合质量约束被建模为一个三元组conq=(attr,opr,threshold),其中:
(1)attr表示一个服务质量(QoS)属性,例如执行时间、价格、可靠性等
(2)opr表示操作符,例如=,≠,<,>,≤,≥,∈,
(3)threshold表示约束阈值,可以是数值或者数据集合。
服务时序约束被建模为一个六元组cont=(type,ti,statei,tj,statej,dur),其中:
(1)type表示约束类型,包括上限约束L和下限约束U;
(2)ti表示前置任务;
(3)statei表示ti的状态,可以为开始状态b或结束状态e;
(4)tj表示后续任务;
(5)statej表示tj的状态,可以为开始状态b或结束状态e;
(6)dur表示时间的约束值
本发明实施例1根据该移动模型,针对用户发起的服务组合请求以及关于服务组合结果的质量及时序约束,选择出每个任务的组件服务,以获取到执行成功率最高的移动服务组合结果。
本发明所针对的移动环境下满足时序约束的服务组合选择问题可以描述如下:
给定一个服务组合流程scp,存在若干服务提供者p1,p2,…能够提供满足scp中的任务的备选服务。
此外,还已知用户对于服务组合结果存在若干时序约束Cont和质量约束Conq。本发明的目标是从服务备选集中选择出一组可行的服务组合sc=(s1,s2,…),使得:
(1)sc在执行过程中满足时序约束条件Cont;
(2)sc的执行完成时表现得QoS结果满足质量约束条件Conq;
最大化sc的执行成功率。定义θi为服务提供者pi在时刻Ej之前始终可用的概率Prob(Avi≥Ej),其中Ej是当第j个任务pi提供的服务实现时第j个任务的结束时间。那么,评估sc的效用函数就是所有任务都成功执行的联合概率:
根据该移动模型及本发明提出的移动感知服务质量计算规则,可以得到本发明的目标函数,其取值越高越好:
在本发明实施例1提供的面向服务组合选择方法中,采用基于差分进化方法的多约束优化方法进行组合优化的方法包括:
1)初始化阶段,生成种群及染色体,确定终止条件;在初始化阶段,需要确定种群数量NP,算法的最大迭代次数NI。然后随机生成NP个染色体:
X=(x1,x2,…,xn)
其中n是服务组合中服务的数量,xi表示X中对于第i个服务选择的备选服务,其取值为1到该任务的备选服务服务数。
2)变异阶段:首先选出当前种群中最优的染色体然后根据如下公式生成NP个染色体
其中,r1,r2,r3是[1,NP]中不等于k得不同整数。γ是值域在(0,1]的调节参数。
在移动服务选择的问题中,由于变量的值必须是整数,所以对得到的进行如下的取整操作:
其中,INT()函数获得实数得整数部分,这样,通过变异操作能够获得NP个新的染色体。
3)交叉阶段:目标染色体与变异染色体生成新的染色体
其中,i=1,…,NP,j=1,…,n,rand(0,1)表示随机数生成器,cr∈[0,1]是交叉控制参数。.
4)选择阶段:在变异和交叉操作之后,可以获得NP个新的染色体将这NP个新染色体与NP个原始的染色体混合在一起进行比较,选择出其中适应度最高的前NP个染色体作为下一代染色体进行进化。
5)重复2)-4)步骤,直到终止条件达成;该终止条件为:初始化阶段中设定的最大循环次数,选取适应度最高的染色体对应的服务选择方案作为最终结果。
举例如图3:某移动移动服务组合流程由三个串行任务组成{t1,t2,t3}。每一个任务都有若干备选服务,不同备选服务的服务质量存在着差异,服务质量主要考虑价格和响应时间两个参数。某用户提出质量约束两条:1)总价格不超过60;2)总执行时间不超过55个时间单位。服务组合流程当中包含两条时序约束:1)t2必须在t1开始后的25个时间单位之内结束;2)t3必须在t1结束后至少5个时间单位以后才能开始。此外,还考虑到移动环境下备选服务的提供者有一定概率在服务执行当中离开使得服务不可用,需要选择出满足质量和时序约束的服务构成执行成功率最高的服务组合。本实施方法包括:
1)初始化过程,包括:
将移动环境下的服务组合选择问题映射到差分进化优化方法中,将服务组合方案表示成染色体,例如(2,3,1)表示一个染色体,表示该服务组合中第1个任务天气预报选择2号备选服务,以此类推。在初始化过程中随机生成NP个学员,同时确定最大迭代次数NI。
2)变异阶段:根据公式(2)-(3)对当前种群中的每一个染色体进行变异。
3)交叉阶段:根据公式(4)对原始染色体和变异染色体进行交叉;
4)选择阶段:选择出NP个最优的染色体作为下一代染色体继续进化。
5)循环进行步骤2)~4)直至设定的最大循环次数,选取适应度最高的染色体对应的服务选择方案作为最终结果。
所以,本发明实施例1提供的考虑时序约束的移动服务组合选择方法,通过收集统计移动服务提供者的服务信息,建立针对移动服务提供者的概率移动模型,再根据用户提供的关于服务组合的质量及时序约束采用基于差分进化的多约束优化算法进行组合优化,得到具有更高执行成功率的移动服务组合,最后根据得到的服务组合方案选择备选服务;从而克服了仅仅针对传统互联网中的服务进行组合导致无法直接应用于移动环境的问题,也克服了现有技术中的方法在规划服务组合方案时没有考虑服务组合的质量约束及时学约束等问题,进而提高移动环境下服务组合的执行成功率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明保护范围内。
Claims (4)
1.一种考虑时序约束的移动服务组合选择方法,其特征在于,包括如下步骤:
11)收集移动服务提供者的实时信息;
12)根据服务提供者提供的信息建立服务提供者的概率移动模型;所述建立服务提供者的概率移动模型,包括如下步骤:建模一个二元组,m=([ta,tb],f),其中:
[ta,tb]是服务提供者声明的离开时间窗孔,在时刻ta之前用户是始终可用的,在时刻tb之后是一定不可用;
f=Porb(Avi≥t)是用户在[ta,tb]之间保持可用的概率密度函数,Avi是表示用户在[ta,tb]之间保持可用的随机变量;
13)根据用户需求建立服务组合的质量约束和时序约束模型;
14)基于差分进化方法的多约束优化方法进行组合优化,得到服务组合的选择策略。
2.根据权利要求1所述的一种考虑时序约束的移动服务组合选择方法,其特征在于,所述步骤13)中建立服务组合的质量约束和时序约束模型包括如下步骤:
将服务组合质量约束建模为一个三元组conq=(attr,opr,threshold),其中:attr表示一个服务质量(QoS)属性;opr表示操作符;threshold表示约束阈值;所述服务组合质量约束是对整个服务组合的QoS属性的约束;
将服务时序约束被建模为一个六元组cont=(type,ti,statei,tj,statej,dur),其中:type表示约束类型,包括上限约束L和下限约束U;ti表示前置任务;statei表示ti的状态,可以为开始状态b或结束状态e;tj表示后续任务;statej表示tj的状态,可以为开始状态b或结束状态e;dur表示时间的约束值。
3.根据权利要求2所述的一种考虑时序约束的移动服务组合选择方法,其特征在于,所述步骤14)中基于差分进化方法的多约束优化方法进行组合优化,包括如下步骤:
41)初始化阶段,生成种群及染色体,确定终止条件;
42)变异阶段:对染色体进行变异操作;
43)交叉阶段:对染色体进行交叉操作;
44)选择阶段:选择染色体作为下一代进化;
45)重复42)-44)步骤,直到终止条件达成。
4.根据权利要求3所述的一种考虑时序约束的移动服务组合选择方法,其特征在于,所述终止条件为:初始化阶段中设定的最大循环次数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410653425.2A CN104378432B (zh) | 2014-11-17 | 2014-11-17 | 一种考虑时序约束的移动服务组合选择方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410653425.2A CN104378432B (zh) | 2014-11-17 | 2014-11-17 | 一种考虑时序约束的移动服务组合选择方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104378432A CN104378432A (zh) | 2015-02-25 |
CN104378432B true CN104378432B (zh) | 2018-05-29 |
Family
ID=52557078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410653425.2A Active CN104378432B (zh) | 2014-11-17 | 2014-11-17 | 一种考虑时序约束的移动服务组合选择方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104378432B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105407060B (zh) * | 2015-10-23 | 2019-04-16 | 南京理工大学 | 基于异构无线网络的多路存取多单元分布式资源分配方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004068802A1 (en) * | 2003-01-30 | 2004-08-12 | University Of Surrey | Method and system for determining optimum resource allocation in a network |
CN101909078A (zh) * | 2010-07-19 | 2010-12-08 | 东南大学 | 一种基于新服务集构造的动态服务选择方法 |
CN103279818A (zh) * | 2013-04-25 | 2013-09-04 | 中山大学 | 基于启发式遗传算法的云工作流调度方法 |
-
2014
- 2014-11-17 CN CN201410653425.2A patent/CN104378432B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004068802A1 (en) * | 2003-01-30 | 2004-08-12 | University Of Surrey | Method and system for determining optimum resource allocation in a network |
CN101909078A (zh) * | 2010-07-19 | 2010-12-08 | 东南大学 | 一种基于新服务集构造的动态服务选择方法 |
CN103279818A (zh) * | 2013-04-25 | 2013-09-04 | 中山大学 | 基于启发式遗传算法的云工作流调度方法 |
Non-Patent Citations (3)
Title |
---|
Web服务动态组合的关键技术研究;刘明升;《中国优秀硕士学位论文全文数据库(信息科技辑)》;20080715(第07期);全文 * |
动态Web服务组合关键技术研究;刘必欣;《中国博士学位论文全文数据库(信息科技辑)》;20061015(第10期);全文 * |
基于QoS服务选择机制的设计与实现;张亚;《中国优秀硕士学位论文全文数据库(信息科技辑)》;20090715(第07期);正文第1页第1.1节、第8页第2.2节、第14页第2.4节、第19页第3.1节、第35节第4.3节以及图4.2 * |
Also Published As
Publication number | Publication date |
---|---|
CN104378432A (zh) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tang et al. | Online coordinated charging decision algorithm for electric vehicles without future information | |
Atzeni et al. | Noncooperative and cooperative optimization of distributed energy generation and storage in the demand-side of the smart grid | |
CN110443375A (zh) | 一种联邦学习方法及装置 | |
CN110263908A (zh) | 联邦学习模型训练方法、设备、系统及存储介质 | |
CN110490738A (zh) | 一种混合联邦学习方法及架构 | |
CN106204106A (zh) | 一种特定用户识别方法及系统 | |
CN103092699A (zh) | 一种云计算资源预分配实现方法 | |
CN104144431B (zh) | 一种移动网络状态预测的方法、装置及移动网络 | |
Lotfi et al. | Economics of quality sponsored data in non-neutral networks | |
CN110400234A (zh) | 一种基于bp神经网络的城市供水调度方法及系统 | |
CN103796183A (zh) | 一种垃圾短信识别方法及装置 | |
CN113469581B (zh) | 碳账户数据确定方法、碳管理平台及存储介质 | |
CN108880909A (zh) | 一种基于强化学习的网络节能方法及装置 | |
CN114884832A (zh) | 端云协同系统、分布式处理集群及移动端设备 | |
CN104134011A (zh) | 一种配电网小水电接入最优接纳能力的计算方法 | |
CN104378432B (zh) | 一种考虑时序约束的移动服务组合选择方法 | |
CN110475033A (zh) | 智能拨号方法、装置、设备与计算机可读存储介质 | |
CN108171538A (zh) | 用户数据处理方法及系统 | |
CN108616401A (zh) | 一种智能化的视频内容服务器部署方法及系统 | |
CN103455525B (zh) | 基于用户的搜索推广行为确定推广帐号状态的方法与设备 | |
CN110110338A (zh) | 一种基于lstm与槽填充的对话管理模型使用方法 | |
CN103793513A (zh) | 基于邻近海量数据快速分析的电信套餐优化系统与方法 | |
Lotfi et al. | The economics of quality sponsored data in wireless networks | |
CN107148043A (zh) | 双重信息非对称环境下基于行为监督的协作通信激励方法 | |
CN103793764A (zh) | 基于gpu与邻近海量数据快速分析的套餐优化系统与方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |