CN104361338A - Peat bog information extracting method based on ENVISAT ASAR, Landsat TM and DEM data - Google Patents

Peat bog information extracting method based on ENVISAT ASAR, Landsat TM and DEM data Download PDF

Info

Publication number
CN104361338A
CN104361338A CN201410553704.1A CN201410553704A CN104361338A CN 104361338 A CN104361338 A CN 104361338A CN 201410553704 A CN201410553704 A CN 201410553704A CN 104361338 A CN104361338 A CN 104361338A
Authority
CN
China
Prior art keywords
data
landsat
peat
envisat asar
envisat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410553704.1A
Other languages
Chinese (zh)
Other versions
CN104361338B (en
Inventor
路春燕
王宗明
毛德华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Institute of Geography and Agroecology of CAS
Original Assignee
Northeast Institute of Geography and Agroecology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Institute of Geography and Agroecology of CAS filed Critical Northeast Institute of Geography and Agroecology of CAS
Priority to CN201410553704.1A priority Critical patent/CN104361338B/en
Publication of CN104361338A publication Critical patent/CN104361338A/en
Application granted granted Critical
Publication of CN104361338B publication Critical patent/CN104361338B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

一种基于ENVISAT ASAR、Landsat TM与DEM数据的泥炭沼泽信息提取方法,本发明涉及泥炭沼泽信息提取方法。本发明解决传统方法难以对泥炭沼泽与其他沼泽类型区分的问题,该方法通过1预处理Landsat TM数据;2预处理ENVISAT ASAR数据;3对ENVISAT ASAR数据重采样;4得到ENVISAT ASAR影像;5得到坡度数据;6提取后向散射系数;7确定ENVISAT ASAR影像最佳极化方式波段;8得到分割单元;9提取特征参数;10确定最佳分类波段;11建立分类决策树;12生产土地覆盖类型矢量文件;13制作泥炭沼泽地图等步骤实现的。本发明应用于泥炭沼泽信息提取领域。

A peat swamp information extraction method based on ENVISAT ASAR, Landsat TM and DEM data, the invention relates to a peat swamp information extraction method. The invention solves the problem that traditional methods are difficult to distinguish peat bogs from other types of swamps. The method uses 1 to preprocess Landsat TM data; 2 to preprocess ENVISAT ASAR data; 3 to resample ENVISAT ASAR data; 4 to obtain ENVISAT ASAR images; 5 to obtain Slope data; 6. Extract the backscatter coefficient; 7. Determine the best polarization mode band of ENVISAT ASAR image; 8. Obtain the segmentation unit; 9. Extract characteristic parameters; 10. Determine the best classification band; Vector file; 13 steps to make a peat bog map. The invention is applied to the field of peat swamp information extraction.

Description

一种基于ENVISAT ASAR、Landsat TM与DEM数据的泥炭沼泽信息提取方法A Peat Swamp Information Extraction Method Based on ENVISAT ASAR, Landsat TM and DEM Data

技术领域 technical field

本发明涉及一种信息提取方法,特别涉及一种泥炭沼泽信息提取方法。  The invention relates to an information extraction method, in particular to a peat swamp information extraction method. the

背景技术 Background technique

泥炭沼泽是湿地的主要类型之一,对维持区域生态平衡和可持续发展具有重要的作用。除此之外,由于泥炭沼泽中碳储量巨大,约占全球陆地碳库的1/3,相当于大气中碳含量的75%,因而,泥炭沼泽在全球气候变化和生态系统平衡中占着举足轻重的地位。近年来,国内外专家学者已利用不同的遥感影像数据对草本湿地、森林湿地、海滨红树林湿地等湿地类型进行了空间信息提取的研究,而针对应用遥感技术提取泥炭沼泽空间分布信息的研究却相对较少。  Peat swamp is one of the main types of wetlands, which plays an important role in maintaining regional ecological balance and sustainable development. In addition, due to the huge carbon storage in peat swamps, accounting for about 1/3 of the global terrestrial carbon pool, equivalent to 75% of the carbon content in the atmosphere, peat swamps play a pivotal role in global climate change and ecosystem balance status. In recent years, experts and scholars at home and abroad have used different remote sensing image data to study the spatial information extraction of wetland types such as herbaceous wetlands, forest wetlands, and coastal mangrove wetlands. Relatively small. the

光学遥感数据具有光谱信息丰富、性价比高、易获取和数据处理简单的优势和特点。但是由于地表覆盖植被的影响,利用传统的中低分辨率光学遥感影像可以实现对湿地与非湿地的区分,却难以完成不同沼泽类型的区分,对不同泥炭沼泽类型的区分更是不易。雷达遥感数据相对于光学遥感数据波长更长,并且其穿云透雾的特点使其在对沼泽广泛发育的地区进行监测时,可以免受时间和气象的限制。而且,雷达影像的后向散射对成像表面的介电特性(土壤湿度、植被含水量)和几何特征(表面粗糙度)较为敏感,微波对地物的穿透能力,能够反映近地面以下的地物信息。低频的雷达波段(P波段和L波段)更适于监测以林地为主的湿地,而高频的雷达波段(C波段)适用于研究草本沼泽和泥炭沼泽。  Optical remote sensing data has the advantages and characteristics of rich spectral information, high cost performance, easy acquisition and simple data processing. However, due to the influence of vegetation on the ground surface, wetlands and non-wetlands can be distinguished using traditional medium and low resolution optical remote sensing images, but it is difficult to distinguish different types of swamps, and it is even more difficult to distinguish different types of peat swamps. Radar remote sensing data has a longer wavelength than optical remote sensing data, and its characteristics of penetrating clouds and fog make it free from time and meteorological constraints when monitoring areas where swamps are widely developed. Moreover, the backscattering of radar images is more sensitive to the dielectric properties (soil moisture, vegetation water content) and geometric characteristics (surface roughness) of the imaging surface. item information. Low-frequency radar bands (P-band and L-band) are more suitable for monitoring wetlands dominated by woodlands, while high-frequency radar bands (C-band) are suitable for studying herbaceous swamps and peat swamps. the

面向对象的解译方法在解译时不仅考虑到地物的光谱信息,同时地物的几何特征和结构特征也被考虑在内,影像解译的最小单元是具有相同特征(如光谱、纹理和空间组合关系等特征)同质均一的对象。相对于传统的遥感解译方法针对影像的单个像元的特征进行解译而言,此方法突破了传统的遥感分类方法以像元为基本分类和处理单元的局限性,以含有更多语义信息的多个相邻像元组成的对象为处理单元,可以实现较高层次的遥感图像分类和目标地物提取。该方法是基于认知模型的遥感信息提取方法,更贴近人类的认知过程,已成为遥感信息提取领域主要的研究方向之一。面向对象的解译方法是针对以往的面向像元的解译方法存在种种的不足应运而生的。目前的研究中没有提到面向对象解译方法存在的不足。  The object-oriented interpretation method not only takes into account the spectral information of the ground objects, but also takes into account the geometric and structural features of the ground objects. The smallest unit of image interpretation is to have the same characteristics (such as spectrum, texture and Features such as spatial combination relationship) Homogeneous and uniform objects. Compared with the traditional remote sensing interpretation method that interprets the characteristics of a single pixel of the image, this method breaks through the limitations of the traditional remote sensing classification method that uses pixels as the basic classification and processing unit to contain more semantic information The object composed of multiple adjacent pixels of the remote sensing image is a processing unit, which can realize higher-level remote sensing image classification and target feature extraction. This method is a remote sensing information extraction method based on a cognitive model, which is closer to the human cognitive process, and has become one of the main research directions in the field of remote sensing information extraction. The object-oriented interpretation method emerges at the historic moment in response to the shortcomings of the previous pixel-oriented interpretation methods. The shortcomings of the object-oriented interpretation method are not mentioned in the current research. the

Landsat是1972年以来美国航空航天局(NASA)发射升空的一系列陆地资源卫星。Landsat5搭载的传感器TM,含有7个波段(0.45~0.53μm,0.52~0.60μm,0.63~0.69μm,0.76~0.90μm,1.55~1.75μm,10.40~12.50μm,2.08~2.35μm),轨道高度705km,空间分 辨率30m,重访周期16天。ENVISAT是欧空局于2002年3月发射升空的巨型环境监测卫星,ASAR(Advanced Synthetic Aperture Radar)是ENVISAT搭载的先进合成孔径雷达,它具有多模式、多极化、大幅宽、多入射角等特性。数字高程模型(Digital Elevation Model,简称DEM),它是用一组有序数值阵列形式表示地面高程的一种实体地面模型。  Landsat is a series of land resource satellites launched by NASA since 1972. The sensor TM carried by Landsat5 contains 7 wavebands (0.45~0.53μm, 0.52~0.60μm, 0.63~0.69μm, 0.76~0.90μm, 1.55~1.75μm, 10.40~12.50μm, 2.08~2.35μm), orbital height 705km , the spatial resolution is 30m, and the revisit period is 16 days. ENVISAT is a giant environmental monitoring satellite launched by the European Space Agency in March 2002. ASAR (Advanced Synthetic Aperture Radar) is an advanced synthetic aperture radar carried by ENVISAT. It has multi-mode, multi-polarization, large width, and multiple incident angles. and other characteristics. The digital elevation model (Digital Elevation Model, referred to as DEM), which is a solid ground model that expresses the ground elevation in the form of a set of ordered numerical arrays. the

高频的雷达波段(C波段)适用于研究草本沼泽和泥炭沼泽是目前已有的研究已经得出的结论,本研究根据这个结论在提取泥炭沼泽时选取了C波段的雷达影像,也即是研究中所用的ENVI SAT。因为研究中只涉及用C波段的雷达影像,没有涉及其他波段的雷达影像,因而不涉及解决高频的雷达波段(C波段)适用于研究草本沼泽和泥炭沼泽的问题。  The high-frequency radar band (C-band) is suitable for the study of herbaceous swamps and peat swamps. It is the conclusion that the existing research has drawn. Based on this conclusion, this study selected the C-band radar images when extracting peat swamps, that is, ENVI SAT used in the study. Because the research only involves radar images in the C-band, and does not involve radar images in other bands, it does not involve solving the problem that the high-frequency radar band (C-band) is suitable for studying herbaceous swamps and peat swamps. the

发明内容 Contents of the invention

本发明的目的是为了解决利用传统的中低分辨率光学遥感影像难以完成泥炭沼泽与其他沼泽类型的区分的问题,而提出的一种基于ENVISAT ASAR、Landsat TM与DEM数据的泥炭沼泽信息提取方法。  The purpose of the present invention is to solve the problem that it is difficult to distinguish peat swamps from other swamp types by using traditional medium and low resolution optical remote sensing images, and propose a peat swamp information extraction method based on ENVISAT ASAR, Landsat TM and DEM data . the

上述的发明目的是通过以下技术方案实现的:  Above-mentioned purpose of the invention is achieved through the following technical solutions:

步骤一:对Landsat TM数据进行预处理;  Step 1: Preprocessing the Landsat TM data;

步骤二:对ENVISAT ASAR数据进行预处理;  Step 2: Preprocessing the ENVISAT ASAR data;

步骤三:对步骤二预处理完成的ENVISAT ASAR数据进行重采样,重采样后的ENVISAT ASAR数据与步骤一处理完成的Landsat TM数据的栅格大小一致;  Step 3: Resample the ENVISAT ASAR data preprocessed in Step 2, and the resampled ENVISAT ASAR data has the same grid size as the Landsat TM data processed in Step 1;

步骤四:利用ArcGIS软件的Georeferencing模块提供的添加控制点功能在预处理后的Landsat TM数据上选择控制点,根据控制点空间配准重采样后的ENVISAT ASAR数据,得到ENVISAT ASAR影像;  Step 4: Use the function of adding control points provided by the Georeferencing module of ArcGIS software to select control points on the preprocessed Landsat TM data, and register the resampled ENVISAT ASAR data according to the control point space to obtain ENVISAT ASAR images;

步骤五:对DEM数据进行坡度提取,得到坡度数据;  Step 5: Extract the slope from the DEM data to obtain the slope data;

步骤六:结合土地覆盖类型调查样点,对步骤四完成的ENVISAT ASAR影像,提取不同土地覆盖类型在不同极化方式下雷达影像后向散射系数;  Step 6: Based on the land cover type survey sample points, extract the backscatter coefficients of radar images under different polarization modes for different land cover types from the ENVISAT ASAR image completed in step 4;

步骤七:分析泥炭沼泽与其他不同土地覆盖类型在不同的极化方式下雷达后向散射系数的差异,确定ENVISAT ASAR影像最佳极化方式波段即进行泥炭沼泽提取的雷达影像最佳极化方式波段;  Step 7: Analyze the difference in radar backscatter coefficients between peat swamps and other different land cover types under different polarization modes, and determine the optimal polarization mode band for ENVISAT ASAR images, which is the optimal polarization mode for radar images extracted from peat swamps band;

步骤八:对预处理完成的Landsat TM数据、坡度数据以及步骤七确定的ENVISATASAR影像最佳极化方式波段进行多层多尺度分割,得到一系列分割单元;  Step 8: Carry out multi-layer and multi-scale segmentation on the preprocessed Landsat TM data, slope data and the optimal polarization mode band of ENVISATASAR image determined in step 7 to obtain a series of segmentation units;

步骤九:对步骤八分割完成的一系列分割单元进行特征参数提取;其中,特征参数包括各波段的平均值、归一化植被指数、归一化水体指数、TM2+TM3-TM4-TM5和色调;  Step 9: Extract feature parameters from a series of segmentation units completed in step 8; wherein, the feature parameters include the average value of each band, normalized vegetation index, normalized water index, TM2+TM3-TM4-TM5 and hue ;

步骤十:根据步骤九提取的特征参数,利用JM距离法确定最佳分类波段;  Step 10: According to the feature parameters extracted in step 9, use the JM distance method to determine the best classification band;

步骤十一:根据步骤十确定的最佳分类波段,参照土地覆盖类型调查样点,建立分类决策树;其中,参照土地覆盖类型调查样点包括泥炭沼泽、草本沼泽、居住地、交通用地、农田、林地、水体土地覆盖类型;  Step 11: According to the optimal classification band determined in step 10, a classification decision tree is established with reference to the survey sample points of land cover types; among them, the survey sample points of reference land cover types include peat swamp, herbaceous swamp, residential area, traffic land, farmland , forest land, water body land cover type;

步骤十二:运行分类决策树,导出土地覆盖类型分类结果,并生产土地覆盖类型矢量文件;其中,土地覆盖类型矢量文件包括农田、林地、水体、居住交通用地、草本沼泽和泥炭沼泽土地覆盖类型;  Step 12: Run the classification decision tree, export the land cover type classification results, and produce the land cover type vector file; where the land cover type vector file includes farmland, forest land, water body, residential traffic land, herbaceous swamp and peat swamp land cover types ;

步骤十三:根据步骤十二完成的土地覆盖类型矢量文件制作泥炭沼泽专题地图;即完成了一种基于ENVISAT ASAR、Landsat TM与DEM数据的泥炭沼泽信息提取方法。  Step 13: Make a peat swamp thematic map based on the land cover type vector file completed in step 12; that is, a peat swamp information extraction method based on ENVISAT ASAR, Landsat TM and DEM data is completed. the

发明效果  Invention effect

将易于与泥炭信息混淆的其他沼泽类型进行区分,自动快速准确地提取中等分辨率遥感图像(Landsat TM)中的泥炭沼泽的空间分布信息,从而实现泥炭沼泽信息自动提取专题制图的方法。  Distinguish other swamp types that are easily confused with peat information, and automatically and quickly and accurately extract the spatial distribution information of peat swamps in medium-resolution remote sensing images (Landsat TM ), so as to realize the method of automatic extraction of peat swamp information for thematic mapping. the

雷达影像与光学影像相结合,同时将地形因素作为泥炭沼泽的控制因子,综合利用面向对象和决策树遥感分类方法,获取对象的特征参数,通过JM距离法选取最佳分类波段,从而建立决策树完成分类,制作泥炭沼泽专题地图。  Combining radar images with optical images, taking terrain factors as the control factors of peat swamps, comprehensively using object-oriented and decision tree remote sensing classification methods to obtain the characteristic parameters of objects, and selecting the best classification band by JM distance method to establish a decision tree Complete the classification and make a peat swamp thematic map. the

本发明基于Landsat TM数据、ENVISAT ASAR影像和DEM数据,将面向对象和决策树分类的方法应用于泥炭沼泽信息的自动提取中,将独立的像元合并成为同质的对象,对象分割过程中不仅考虑光谱特征,还考虑到纹理特征和拓扑特征,进而通过选择最优波段,建立决策树逐步得到泥炭沼泽空间分布信息。所得分类结果精度为93%,比仅已有的应用中等分辨率遥感影像提取泥炭沼泽的方法精度提高5%~8%。同时,考虑地形对泥炭沼泽分布的影响,因而分类结果具有明确的地理意义。本发明克服了以往泥炭沼泽信息提取仅应用光学影像而出现的漏分和误分现象,同时也解决了分类得到的泥炭沼泽空间信息存在“椒盐现象”、“飞地现象”,不具有明确地理意义等问题。本发明对光学影像、雷达影像与DEM相结合快速自动提取泥炭沼泽信息具有实践意义。  Based on Landsat TM data, ENVISAT ASAR images and DEM data, the present invention applies object-oriented and decision tree classification methods to the automatic extraction of peat swamp information, and merges independent pixels into homogeneous objects. In the process of object segmentation, not only Considering spectral features, texture features and topological features, and then by selecting the optimal band and establishing a decision tree, the spatial distribution information of peat swamps is gradually obtained. The accuracy of the obtained classification results is 93%, which is 5%-8% higher than that of the existing method of extracting peat bogs using medium-resolution remote sensing images. At the same time, considering the influence of topography on the distribution of peat bogs, the classification results have clear geographical significance. The invention overcomes the phenomenon of omission and misclassification that occurred when only optical images were used in the extraction of peat swamp information in the past, and also solves the "salt and pepper phenomenon" and "enclave phenomenon" in the peat swamp spatial information obtained by classification, and does not have a clear geographical location. questions of meaning. The invention has practical significance for the combination of optical image, radar image and DEM to quickly and automatically extract peat swamp information. the

附图说明 Description of drawings

图1为具体实施方式一提出的一种基于ENVISAT ASAR、Landsat TM与DEM数据的泥炭沼泽信息提取方法流程图;  Fig. 1 is a flow chart of a method for extracting peat swamp information based on ENVISAT ASAR, Landsat TM and DEM data proposed by Embodiment 1;

图2是具体实施方式一提出的土地覆盖类型矢量文件制作泥炭沼泽专题地图。  Fig. 2 is a thematic map of peat swamps made from land cover type vector files proposed in Embodiment 1. the

具体实施方式 Detailed ways

具体实施方式一:本实施方式的一种基于ENVISAT ASAR、Landsat TM与DEM数据的泥炭沼泽信息提取方法,具体是按照以下步骤制备的:  Specific embodiment one: a kind of peat swamp information extraction method based on ENVISAT ASAR, Landsat TM and DEM data of this embodiment is specifically prepared according to the following steps:

步骤一:对Landsat TM数据进行预处理;  Step 1: Preprocessing the Landsat TM data;

步骤二:对ENVISAT ASAR数据进行预处理;  Step 2: Preprocessing the ENVISAT ASAR data;

步骤三:在ArcGIS中对步骤二预处理完成的ENVISAT ASAR数据进行重采样,重采样后的ENVISAT ASAR数据与步骤一处理完成的Landsat TM数据的栅格大小一致;  Step 3: Resample the ENVISAT ASAR data preprocessed in Step 2 in ArcGIS, and the resampled ENVISAT ASAR data has the same grid size as the Landsat TM data processed in Step 1;

步骤四:以预处理后的Landsat TM数据为基准,在ArcGIS软件中对照预处理后的Landsat TM数据和步骤三中重采样后的ENVISAT ASAR数据,利用ArcGIS软件的Georeferencing模块提供的添加控制点功能在预处理后的Landsat TM数据上选择控制点,根据控制点空间配准重采样后的ENVISAT ASAR数据,得到ENVISAT ASAR影像;  Step 4: Based on the preprocessed Landsat TM data, compare the preprocessed Landsat TM data and the resampled ENVISAT ASAR data in the ArcGIS software, and use the function of adding control points provided by the Georeferencing module of the ArcGIS software Select the control points on the preprocessed Landsat TM data, and register the resampled ENVISAT ASAR data according to the control point space to obtain the ENVISAT ASAR image;

步骤五:利用ArcGIS软件中Spatial Analyst模块下Surface Analysis中的Aspect命令对DEM数据进行坡度提取,得到坡度数据;  Step 5: Use the Aspect command in Surface Analysis under the Spatial Analyst module in ArcGIS software to extract the slope from the DEM data to obtain slope data;

步骤六:结合土地覆盖类型调查样点,对步骤四完成的ENVISAT ASAR影像,在ArcGIS中提取不同土地覆盖类型在不同极化方式下雷达影像后向散射系数;  Step 6: Based on the land cover type survey sample points, extract the backscatter coefficients of the radar image under different polarization modes for different land cover types in ArcGIS for the ENVISAT ASAR image completed in step 4;

步骤七:分析泥炭沼泽与其他不同土地覆盖类型在不同的极化方式下雷达后向散射系数的差异,确定ENVISAT ASAR影像最佳极化方式波段即进行泥炭沼泽提取的雷达影像最佳极化方式波段;  Step 7: Analyze the difference in radar backscatter coefficients between peat swamps and other different land cover types under different polarization modes, and determine the optimal polarization mode band for ENVISAT ASAR images, which is the optimal polarization mode for radar images extracted from peat swamps band;

步骤八:利用eCognition软件对预处理完成的Landsat TM数据、坡度数据以及步骤七确定的ENVISAT ASAR影像最佳极化方式波段进行多层多尺度分割,得到一系列分割单元,将每个分割单元作为一个对象;  Step 8: Use eCognition software to perform multi-layer and multi-scale segmentation on the preprocessed Landsat TM data, slope data, and the optimal polarization band of the ENVISAT ASAR image determined in step 7, to obtain a series of segmentation units, and use each segmentation unit as an object;

步骤九:利用eCognition软件对步骤八分割完成的一系列分割单元进行特征参数提取;其中,特征参数包括各波段的平均值、归一化植被指数(NDVI)、归一化水体指数(NDWI)、TM2+TM3-TM4-TM5、色调(R:G:B=TM5:TM4:TM3)和色调(R:G:B=TM4:TM3:TM2);  Step 9: Use eCognition software to extract the characteristic parameters of a series of segmentation units completed in step 8; wherein, the characteristic parameters include the average value of each band, normalized difference vegetation index (NDVI), normalized difference water index (NDWI), TM2+TM3-TM4-TM5, hue(R:G:B=TM5:TM4:TM3) and hue(R:G:B=TM4:TM3:TM2);

步骤十:根据步骤九提取的特征参数,利用JM距离(Jeffreys Matusita Distance)法确定最佳分类波段;  Step 10: According to the feature parameters extracted in step 9, use the JM distance (Jeffreys Matusita Distance) method to determine the best classification band;

步骤十一:根据步骤十确定的最佳分类波段,参照土地覆盖类型调查样点,利用See5.0软件建立分类决策树;其中,参照土地覆盖类型调查样点包括泥炭沼泽、草本沼泽、居住地、交通用地、农田、林地、水体等土地覆盖类型;  Step 11: According to the best classification band determined in step 10, refer to the survey sample points of land cover type, and use See5.0 software to establish a classification decision tree; among them, the reference land cover type survey sample points include peat swamp, herbaceous swamp, residential area , transportation land, farmland, forest land, water body and other land cover types;

步骤十二:在eCognition软件运行分类决策树,导出土地覆盖类型分类结果,并生产土地覆盖类型矢量文件;其中,土地覆盖类型矢量文件包括农田、林地、水体、居住交通用地、草本沼泽和泥炭沼泽等土地覆盖类型;  Step 12: Run the classification decision tree in eCognition software, export the classification results of land cover types, and produce land cover type vector files; among them, the land cover type vector files include farmland, forest land, water body, residential traffic land, herbaceous swamp and peat swamp other land cover types;

步骤十三:在ArcGIS软件中的Layout View模式下,根据步骤十二完成的土地覆盖类型矢量文件制作泥炭沼泽专题地图(泥炭沼泽专题地图示意图如图2所示);即完成了 一种基于ENVISAT ASAR、Landsat TM与DEM数据的泥炭沼泽信息提取方法如图1。  Step 13: In the Layout View mode of the ArcGIS software, make a peat swamp thematic map according to the land cover type vector file completed in step 12 (the schematic diagram of the peat swamp thematic map is shown in Figure 2); that is, a ENVISAT-based The peat swamp information extraction method of ASAR, Landsat TM and DEM data is shown in Figure 1. the

本实施方式效果:  The effect of this implementation mode:

将易于与泥炭信息混淆的其他沼泽类型进行区分,自动快速准确地提取中等分辨率遥感图像(Landsat TM)中的泥炭沼泽的空间分布信息,从而实现泥炭沼泽信息自动提取专题制图的方法。  Distinguish other swamp types that are easily confused with peat information, and automatically and quickly and accurately extract the spatial distribution information of peat swamps in medium-resolution remote sensing images (Landsat TM ), so as to realize the method of automatic extraction of peat swamp information for thematic mapping. the

雷达影像与光学影像相结合,同时将地形因素作为泥炭沼泽的控制因子,综合利用面向对象和决策树遥感分类方法,获取对象的特征参数,通过JM距离法选取最佳分类波段,从而建立决策树完成分类,制作泥炭沼泽专题地图。  Combining radar images with optical images, taking terrain factors as the control factors of peat swamps, comprehensively using object-oriented and decision tree remote sensing classification methods to obtain the characteristic parameters of objects, and selecting the best classification band by JM distance method to establish a decision tree Complete the classification and make a peat swamp thematic map. the

本实施方式基于Landsat TM数据、ENVISAT ASAR影像和DEM数据,将面向对象和决策树分类的方法应用于泥炭沼泽信息的自动提取中,将独立的像元合并成为同质的对象,对象分割过程中不仅考虑光谱特征,还考虑到纹理特征和拓扑特征,进而通过选择最优波段,建立决策树逐步得到泥炭沼泽空间分布信息。所得分类结果精度为93%,比仅已有的应用中等分辨率遥感影像提取泥炭沼泽的方法精度提高5%~8%。同时,考虑地形对泥炭沼泽分布的影响,因而分类结果具有明确的地理意义。本实施方式克服了以往泥炭沼泽信息提取仅应用光学影像而出现的漏分和误分现象,同时也解决了分类得到的泥炭沼泽空间信息存在“椒盐现象”、“飞地现象”,不具有明确地理意义等问题。本实施方式对光学影像、雷达影像与DEM相结合快速自动提取泥炭沼泽信息具有实践意义。  This embodiment is based on Landsat TM data, ENVISAT ASAR images and DEM data, and applies object-oriented and decision tree classification methods to the automatic extraction of peat swamp information, and merges independent pixels into homogeneous objects. Not only spectral features, but also texture features and topological features are considered, and then the spatial distribution information of peat swamps is gradually obtained by selecting the optimal band and establishing a decision tree. The accuracy of the obtained classification results is 93%, which is 5%-8% higher than that of the existing method of extracting peat bogs using medium-resolution remote sensing images. At the same time, considering the influence of topography on the distribution of peat bogs, the classification results have clear geographical significance. This embodiment overcomes the phenomenon of omission and misclassification that occurred when only optical images were used in the extraction of peat swamp information in the past, and also solves the "salt and pepper phenomenon" and "enclave phenomenon" in the classified peat swamp spatial information, which does not have a clear issues of geographical significance. This embodiment has practical significance for the combination of optical images, radar images and DEM to quickly and automatically extract peat swamp information. the

具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中对Landsat TM数据进行预处理过程为:  Specific implementation mode two: the difference between this implementation mode and specific implementation mode one is: the preprocessing process is carried out to Landsat TM data in step one:

(1)在泥炭沼泽分布范围内,确定泥炭沼泽的Landsat TM数据的轨道号,根据轨道号下载覆盖泥炭沼泽分布范围的Landsat TM数据;  (1) Within the peat swamp distribution range, determine the track number of the Landsat TM data of the peat swamp, and download the Landsat TM data covering the peat swamp distribution range according to the track number;

(2)为消除地形畸变,利用Landsat TM数据对应地区的DEM数据对Landsat TM数据进行正射纠正,得到正射纠正后的Landsat TM数据;  (2) In order to eliminate terrain distortion, the Landsat TM data is orthorectified by using the DEM data in the corresponding area of the Landsat TM data to obtain the Landsat TM data after orthorectification;

(3)为消除几何畸变,利用地形数据,在ERDAS软件中选取地面控制点,对正射纠正后的Landsat TM数据进行几何精纠正得到预处理后的Landsat TM数据。其它步骤及参数与具体实施方式一相同。  (3) In order to eliminate geometric distortion, using terrain data, select ground control points in ERDAS software, and perform geometric fine correction on Landsat TM data after orthorectification to obtain preprocessed Landsat TM data. Other steps and parameters are the same as those in Embodiment 1. the

具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤二中对ENVISAT ASAR数据进行预处理过程:  Specific implementation mode three: the difference between this implementation mode and specific implementation mode one or two is: the preprocessing process is carried out to ENVISAT ASAR data in step two:

(1)在Landsat TM数据范围覆盖范围内,下载试验所用ENVISAT ASAR精细图像一级数据(ENVISAT ASAR APP Level 1B级数据)(极化方式为HH和HV);  (1) Within the coverage of the Landsat TM data range, download the ENVISAT ASAR fine image first-level data (ENVISAT ASAR APP Level 1B data) used in the test (the polarization mode is HH and HV);

(2)对ENVISAT ASAR精细图像一级数据进行辐射定标即将ENVISAT ASAR精细图 像一级数据的DN值转化为后向散射系数(单位为dB),得到辐射校正的ENVISAT ASAR数据;其辐射定标公式如下:  (2) Carrying out radiometric calibration on the ENVISAT ASAR fine image first-level data is to convert the DN value of the ENVISAT ASAR fine image first-level data into the backscatter coefficient (in dB) to obtain the radiation-corrected ENVISAT ASAR data; its radiometric calibration The standard formula is as follows:

σσ ijij 00 == 1010 ·&Center Dot; loglog 1010 [[ DNDN ijij 22 KK sinsin (( θθ ijij )) ]]

其中,为第i行第j列像元的后向散射系数;DNij为第i行第j列像元的原始强度数值;θij是第i行第j列像元的雷达波入射角度;K即为绝对定标系数;  in, is the backscattering coefficient of the pixel in row i and column j; DN ij is the original intensity value of the pixel in row i and column j; θ ij is the radar incident angle of the pixel in row i and column j; K is is the absolute calibration coefficient;

(3)为消除地形畸变,利用ENVISAT ASAR数据对应地区的DEM数据采用距离多普勒成像算法(Range-Doppler)对辐射校正ENVISAT ASAR数据进行地形纠正;  (3) In order to eliminate terrain distortion, use the DEM data of the corresponding area of ENVISAT ASAR data to use the Range-Doppler imaging algorithm (Range-Doppler) to perform terrain correction on the radiation-corrected ENVISAT ASAR data;

(4)为消除影像噪声,应用Enhanced Lee滤波器(窗口大小3╳3像元)对地形校正完成的ENVISAT ASAR数据进行空间滤波处理。其它步骤及参数与具体实施方式一或二相同。  (4) In order to eliminate image noise, the Enhanced Lee filter (window size 3╳3 pixels) was applied to perform spatial filtering on the ENVISAT ASAR data after terrain correction. Other steps and parameters are the same as those in Embodiment 1 or Embodiment 2. the

具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤四中空间配准误差控制在0.5个像元以内。其它步骤及参数与具体实施方式一至三之一相同。  Embodiment 4: This embodiment differs from Embodiments 1 to 3 in that: in Step 4, the spatial registration error is controlled within 0.5 pixels. Other steps and parameters are the same as those in Embodiments 1 to 3. the

具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤七中进行泥炭沼泽提取的雷达影像最佳极化方式波段具体为:通过统计不同土地覆盖类型在HV和HH极化方式下的后向散射系数的平均值进行对比后向散射系数间的差异明显的作为最佳极化方式波段。其它步骤及参数与具体实施方式一至四之一相同。  Specific implementation mode five: the difference between this implementation mode and one of specific implementation modes one to four is that the optimal polarization mode band of the radar image extracted from the peat swamp in step seven is specifically: through statistics of different land cover types at the HV and HH poles The average value of the backscatter coefficients in the polarization mode is compared, and the difference between the backscatter coefficients is obvious as the optimal polarization mode band. Other steps and parameters are the same as in one of the specific embodiments 1 to 4. the

具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤八中每个分割单元由空间上相邻和同质性达到80%~100%的像元组成。其它步骤及参数与具体实施方式一至五之一相同。  Embodiment 6: This embodiment differs from Embodiment 1 to Embodiment 5 in that each segmentation unit in Step 8 is composed of pixels that are adjacent in space and have a homogeneity of 80% to 100%. Other steps and parameters are the same as one of the specific embodiments 1 to 5. the

具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤九中利用eCognition软件对步骤八得到的一系列分割单元进行特征参数提取的归一化植被指数(NDVI)和归一化水体指数(NDWI)为:  Specific embodiment seven: this embodiment is different from one of specific embodiments one to six in that: in step nine, utilize eCognition software to carry out the normalized normalized vegetation index (NDVI) and the normalized difference vegetation index (NDVI) that feature parameter extraction is carried out to a series of segmentation units that step eight obtains A chemical water body index (NDWI) is:

NDVINDVI == TMtm 44 -- TMtm 33 TMtm 44 ++ TMtm 33 ,, DNWIDNWI == TMtm 22 -- TMtm 44 TMtm 22 ++ TMtm 44 ;;

其中,TM2为Landsat TM传感器的第2波段,TM3为Landsat TM传感器的第3波段,TM4为Landsat TM传感器的第4波段。其它步骤及参数与具体实施方式一至六之一相同。  Among them, TM2 is the second band of the Landsat TM sensor, TM3 is the third band of the Landsat TM sensor, and TM4 is the fourth band of the Landsat TM sensor. Other steps and parameters are the same as those in Embodiments 1 to 6. the

具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤十中JM距离法(Jeffreys Matusita Distance)计算公式如下:  Embodiment eight: this embodiment is different from one of embodiment one to seven: in step ten, the calculation formula of JM distance method (Jeffreys Matusita Distance) is as follows:

JMJM ijij == 22 (( 11 -- ee -- bb ijij )) ;;

bb ijij == 11 // 88 (( mm ii -- mm jj )) tt cc ii ++ cc jj 22 (( mm ii -- mm jj )) ++ 11 // 22 lnln || (( cc ii -- cc jj )) // 22 || || cc ii || 11 // 22 || cc jj || 11 // 22 ;;

式中i与j分别代表任意两种不同的分类类型;bij为i类分类类型与j类分类类型间的巴氏(Bhattacharyya)距离;mi表示i类分类类型的均值向量,mj表示j类分类类型的均值向量;Ci代表i类分类类型的协方差矩阵,Cj代表j类分类类型的协方差矩阵;根据JM计算结果确定选用坡度值(0°~42.43°)、归一化植被指数(NDVI)(-1~1)、TM2+TM3-TM4-TM5(-200.67~37.77)和色调(R:G:B=TM5:TM4:TM3)(0~1)为参与分类波段。其它步骤及参数与具体实施方式一至七之一相同。  In the formula, i and j respectively represent any two different classification types; b ij is the Bhattacharyya distance between the i-class classification type and the j-class classification type; m i represents the mean vector of the i-class classification type, and m j represents The mean value vector of category j; C i represents the covariance matrix of category i, and C j represents the covariance matrix of category j; the slope value (0°~42.43°) and normalization are determined according to the calculation results of JM The vegetation index (NDVI) (-1~1), TM2+TM3-TM4-TM5 (-200.67~37.77) and hue (R:G:B=TM5:TM4:TM3) (0~1) are the participating classification bands . Other steps and parameters are the same as one of the specific embodiments 1 to 7.

采用以下实施例验证本发明的有益效果:  Adopt the following examples to verify the beneficial effects of the present invention:

实施例一:  Embodiment one:

本实施例一种基于ENVISAT ASAR、Landsat TM与DEM数据的泥炭沼泽信息提取方法,具体是按照以下步骤制备的:  In this embodiment, a peat swamp information extraction method based on ENVISAT ASAR, Landsat TM and DEM data is specifically prepared according to the following steps:

步骤一:对Landsat TM数据进行预处理:  Step 1: Preprocessing Landsat TM data:

(1)在泥炭沼泽分布范围内,确定泥炭沼泽的Landsat TM数据的轨道号,根据轨道号下载覆盖泥炭沼泽分布范围的Landsat TM数据,轨道号为P119R26,时间2010年6月11日;  (1) Within the distribution range of the peat bog, determine the track number of the Landsat TM data of the peat bog, download the Landsat TM data covering the distribution range of the peat bog according to the track number, the track number is P119R26, and the time is June 11, 2010;

(2)为消除地形畸变,利用Landsat TM数据对应地区的DEM数据对Landsat TM数据进行正射纠正,得到正射纠正后的Landsat TM数据;  (2) In order to eliminate terrain distortion, the Landsat TM data is orthorectified by using the DEM data in the corresponding area of the Landsat TM data to obtain the Landsat TM data after orthorectification;

(3)为消除几何畸变,利用地形数据,在ERDAS软件中选取地面控制点,对正射纠正后的Landsat TM数据进行几何精纠正得到预处理后的Landsat TM数据;  (3) In order to eliminate geometric distortion, use terrain data, select ground control points in ERDAS software, and perform geometric fine correction on Landsat TM data after orthorectification to obtain preprocessed Landsat TM data;

步骤二:对ENVISAT ASAR数据进行预处理;  Step 2: Preprocessing the ENVISAT ASAR data;

(1)在Landsat TM数据范围覆盖范围内,下载试验所用ENVISAT ASAR精细图像一级数据(ENVISAT ASAR APP Level 1B级数据)(极化方式为HH和HV),时间为2010年7月2日;  (1) Within the coverage of the Landsat TM data range, download the ENVISAT ASAR fine image first-level data (ENVISAT ASAR APP Level 1B data) used in the test (the polarization mode is HH and HV), and the time is July 2, 2010;

(2)对ENVISAT ASAR精细图像一级数据进行辐射定标即将ENVISAT ASAR精细图像一级数据的DN值转化为后向散射系数(单位为dB),得到辐射校正的ENVISAT ASAR数据;其辐射定标公式如下:  (2) Carrying out radiometric calibration on ENVISAT ASAR fine image level-1 data is to convert the DN value of ENVISAT ASAR fine-image level-1 data into backscatter coefficient (in dB) to obtain radiometrically corrected ENVISAT ASAR data; its radiometric calibration The formula is as follows:

σσ ijij 00 == 1010 ·&Center Dot; loglog 1010 [[ DNDN ijij 22 KK sinsin (( θθ ijij )) ]]

其中,为第i行第j列像元的后向散射系数;DNij为第i行第j列像元的原始强度数值;θij是第i行第j列像元的雷达波入射角度;K即为绝对定标系数;  in, is the backscattering coefficient of the pixel in row i and column j; DN ij is the original intensity value of the pixel in row i and column j; θ ij is the radar incident angle of the pixel in row i and column j; K is is the absolute calibration coefficient;

(3)为消除地形畸变,在NEXT 4C软件中,利用ENVISAT ASAR数据对应地区的DEM数据采用距离多普勒成像算法(Range-Doppler)对辐射校正ENVISAT ASAR数据进行地形纠正;  (3) In order to eliminate terrain distortion, in the NEXT 4C software, use the DEM data of the corresponding area of ENVISAT ASAR data to use the Range-Doppler imaging algorithm (Range-Doppler) to perform terrain correction on the radiometric ENVISAT ASAR data;

(4)为消除影像噪声,应用Enhanced Lee滤波器(窗口大小3╳3像元)对地形校正完成的ENVISAT ASAR数据进行空间滤波处理;  (4) In order to eliminate image noise, apply the Enhanced Lee filter (window size 3╳3 pixels) to perform spatial filtering on the ENVISAT ASAR data after terrain correction;

步骤三:在ArcGIS中对步骤二预处理完成的ENVISAT ASAR数据进行重采样,重采样后的ENVISAT ASAR数据与步骤一处理完成的Landsat TM数据的栅格大小一致,栅格大小为30m×30m;  Step 3: Resample the ENVISAT ASAR data preprocessed in Step 2 in ArcGIS. The resampled ENVISAT ASAR data has the same grid size as the Landsat TM data processed in Step 1. The grid size is 30m×30m;

步骤四:以预处理后的Landsat TM数据为基准,在ArcGIS软件中对照预处理后的Landsat TM数据和步骤三中重采样后的ENVISAT ASAR数据,利用ArcGIS软件的Georeferencing模块提供的添加控制点功能在预处理后的Landsat TM数据上选择控制点,根据控制点空间配准重采样后的ENVISAT ASAR数据,得到ENVISAT ASAR影像;空间配准误差控制在0.5个像元以内;  Step 4: Based on the preprocessed Landsat TM data, compare the preprocessed Landsat TM data and the resampled ENVISAT ASAR data in the ArcGIS software, and use the function of adding control points provided by the Georeferencing module of the ArcGIS software Select the control points on the preprocessed Landsat TM data, and register the resampled ENVISAT ASAR data according to the control point space to obtain the ENVISAT ASAR image; the spatial registration error is controlled within 0.5 pixels;

步骤五:利用ArcGIS软件中Spatial Analyst模块下Surface Analysis中的Aspect命令对DEM数据进行坡度提取,得到坡度数据;  Step 5: Use the Aspect command in Surface Analysis under the Spatial Analyst module in ArcGIS software to extract the slope from the DEM data to obtain slope data;

步骤六:结合土地覆盖类型调查样点,对步骤四完成的ENVISAT ASAR影像,在ArcGIS中提取不同土地覆盖类型在不同极化方式下雷达影像后向散射系数;  Step 6: Combined with the land cover type survey sample points, extract the backscatter coefficients of radar images under different polarization modes for different land cover types in ArcGIS from the ENVISAT ASAR image completed in step 4;

步骤七:分析泥炭沼泽与其他不同土地覆盖类型在不同的极化方式下雷达后向散射系数的差异,确定ENVISAT ASAR影像最佳极化方式波段即进行泥炭沼泽提取的雷达影像最佳极化方式波段:  Step 7: Analyze the difference in radar backscatter coefficients between peat swamps and other different land cover types under different polarization modes, and determine the optimal polarization mode band for ENVISAT ASAR images, which is the optimal polarization mode for radar images extracted from peat swamps Band:

通过统计不同土地覆盖类型在HV和HH极化方式下的后向散射系数的平均值如表2:  The average values of the backscatter coefficients of different land cover types under the HV and HH polarization modes are shown in Table 2:

表2  Table 2

进行对比发现,在HV极化方式下泥炭沼泽与其他地物类型后向散射系数间的差异比在HH极化方式下泥炭沼泽与其他地物类型后向散射系数间的差异更为明显的作为最佳极化方式波段,因而选择ENVISAT ASAR影像HV极化方式波段。另外,在HH极化方式下草本沼泽和泥炭沼泽的后向散射系数相差0.88dB,而在HV极化方式下两者的后向散射系数相差3.44dB,由此本研究适用于研究草本沼泽;  By comparison, it is found that the difference between the backscatter coefficients of peat bogs and other types of ground features under the HV polarization mode is more obvious than the difference between the backscatter coefficients of peat bogs and other types of ground features under the HH polarization mode. The best polarization mode band, so choose ENVISAT ASAR image HV polarization mode band. In addition, the backscattering coefficients of herbaceous swamps and peat bogs differ by 0.88dB under HH polarization mode, while the difference of backscattering coefficients between them is 3.44dB under HV polarization mode, so this study is suitable for studying herbaceous swamps;

步骤八:利用eCognition软件对预处理完成的Landsat TM数据、坡度数据以及步骤七确定的ENVISAT ASAR影像最佳极化方式波段进行多层多尺度分割,得到一系列分割单元,将每个分割单元作为一个对象;每个分割单元由空间上相邻和同质性达到80%~100%的像元组成。显示在面向对象分类过程中多尺度分割的参数设置如表1所示:  Step 8: Use eCognition software to perform multi-layer and multi-scale segmentation on the preprocessed Landsat TM data, slope data, and the optimal polarization band of the ENVISAT ASAR image determined in step 7, to obtain a series of segmentation units, and use each segmentation unit as An object; each segmentation unit consists of spatially adjacent and homogeneous pixels of 80% to 100%. The parameter settings of multi-scale segmentation in the process of object-oriented classification are shown in Table 1:

分割尺度 Segmentation scale 彩色因子 color factor 形状因子 form factor 光滑度 smoothness 紧致度 firmness 8 8 0.9 0.9 0.1 0.1 0.6 0.6 0.4 0.4

步骤九:利用eCognition软件对步骤八分割完成的一系列分割单元进行特征参数提取;其中,特征参数包括各波段的平均值、归一化植被指数(NDVI)、归一化水体指数(NDWI)、TM2+TM3-TM4-TM5、色调(R:G:B=TM5:TM4:TM3)、色调(R:G:B=TM4:TM3:TM2);  Step 9: Use eCognition software to extract the characteristic parameters of a series of segmentation units completed in step 8; wherein, the characteristic parameters include the average value of each band, normalized difference vegetation index (NDVI), normalized difference water index (NDWI), TM2+TM3-TM4-TM5, Hue(R:G:B=TM5:TM4:TM3), Hue(R:G:B=TM4:TM3:TM2);

一系列分割单元进行特征参数提取的归一化植被指数(NDVI)和归一化水体指数(NDWI)为:  The normalized normalized vegetation index (NDVI) and normalized normalized water index (NDWI) for feature parameter extraction of a series of segmentation units are:

NDVINDVI == TMtm 44 -- TMtm 33 TMtm 44 ++ TMtm 33 ,, DNWIDNWI == TMtm 22 -- TMtm 44 TMtm 22 ++ TMtm 44 ;;

其中,TM2为Landsat TM传感器的第2波段,TM3为Landsat TM传感器的第3波段,TM4为Landsat TM传感器的第4波段;  Among them, TM2 is the second band of the Landsat TM sensor, TM3 is the third band of the Landsat TM sensor, and TM4 is the fourth band of the Landsat TM sensor;

步骤十:根据步骤九提取的特征参数,利用JM距离(Jeffreys Matusita Distance)法确定最佳分类波段;JM距离法(Jeffreys Matusita Distance)计算公式如下:  Step 10: According to the feature parameters extracted in step 9, use the JM distance (Jeffreys Matusita Distance) method to determine the best classification band; the JM distance method (Jeffreys Matusita Distance) calculation formula is as follows:

JMJM ijij == 22 (( 11 -- ee -- bb ijij )) ;;

bb ijij == 11 // 88 (( mm ii -- mm jj )) tt cc ii ++ cc jj 22 (( mm ii -- mm jj )) ++ 11 // 22 lnln || (( cc ii -- cc jj )) // 22 || || cc ii || 11 // 22 || cc jj || 11 // 22 ;;

式中i与j分别代表任意两种不同的分类类型;bij为i类分类类型与j类分类类型间的巴氏(Bhattacharyya)距离;mi表示i类分类类型的均值向量,mj表示j类分类类型的均值向量;Ci代表i类分类类型的协方差矩阵,Cj代表j类分类类型的协方差矩阵;JM距离的取值范围为0~2.0之间,当值大于1.9时说明地物之间的可分性较好;根据JM计 算结果确定选用坡度值(0°~42.43°)、归一化植被指数(NDVI)(-1~1)、TM2+TM3-TM4-TM5(-200.67~37.77)和色调(R:G:B=TM5:TM4:TM3)(0~1)为参与分类波段。  In the formula, i and j respectively represent any two different classification types; b ij is the Bhattacharyya distance between the i-class classification type and the j-class classification type; m i represents the mean vector of the i-class classification type, and m j represents The mean vector of the j category classification type; C i represents the covariance matrix of the i category classification type, and C j represents the covariance matrix of the j category classification type; the value range of the JM distance is between 0 and 2.0, when the value is greater than 1.9 It shows that the separability between ground features is good; according to the calculation results of JM, the slope value (0°~42.43°), normalized difference vegetation index (NDVI) (-1~1), TM2+TM3-TM4-TM5 (-200.67~37.77) and hue (R:G:B=TM5:TM4:TM3) (0~1) are bands involved in classification.

步骤十一:根据步骤十确定的最佳分类波段,参照土地覆盖类型调查样点,利用See5.0软件建立分类决策树;其中,参照土地覆盖类型调查样点包括泥炭沼泽、草本沼泽、居住地、交通用地、农田、林地、水体等土地覆盖类型;  Step 11: According to the best classification band determined in step 10, refer to the survey sample points of land cover type, and use See5.0 software to establish a classification decision tree; among them, the reference land cover type survey sample points include peat swamp, herbaceous swamp, residential area , transportation land, farmland, forest land, water body and other land cover types;

步骤十二:在eCognition软件运行分类决策树,导出土地覆盖类型分类结果,并生产土地覆盖类型矢量文件,泥炭沼泽提取精度为93%;其中,土地覆盖类型矢量文件包括农田、林地、水体、居住交通用地、草本沼泽和泥炭沼泽等土地覆盖类型;  Step 12: Run the classification decision tree in the eCognition software, export the land cover type classification results, and produce the land cover type vector file, the peat swamp extraction accuracy is 93%; among them, the land cover type vector file includes farmland, forest land, water body, residential Land cover types such as traffic land, herbaceous swamps and peat bogs;

步骤十三:在ArcGIS软件中的Layout View模式下,根据步骤十二完成的土地覆盖类型矢量文件制作泥炭沼泽专题地图(泥炭沼泽专题地图示意图如图2所示);即完成了一种基于ENVISAT ASAR、Landsat TM与DEM数据的泥炭沼泽信息提取方法。  Step 13: In the Layout View mode of the ArcGIS software, make a peat swamp thematic map based on the land cover type vector file completed in step 12 (the schematic diagram of the peat swamp thematic map is shown in Figure 2); that is, a ENVISAT-based Peat bog information extraction method from ASAR, Landsat TM and DEM data. the

本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。  The present invention can also have other various embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding changes and deformations are all Should belong to the scope of protection of the appended claims of the present invention. the

Claims (8)

1. A peat bog information extraction method based on ENVISAT ASAR, Landsat TM and DEM data is characterized in that:
the method comprises the following steps: preprocessing Landsat TM data;
step two: ENVISAT ASAR preprocessing the data;
step three: resampling the ENVISAT ASAR data preprocessed in the step two, wherein the grid size of the ENVISAT ASAR data after resampling is consistent with that of the Landsat TM data processed in the step one;
step four: selecting a control point on the preprocessed Landsat TM data by utilizing a control point adding function provided by a Georeferencening module of ArcGIS software, and registering the resampled ENVISAT ASAR data according to a control point space to obtain a ENVISAT ASAR image;
step five: gradient extraction is carried out on the DEM data to obtain gradient data;
step six: combining with the land cover type survey sampling points, extracting the backward scattering coefficients of the radar images of different land cover types in different polarization modes from the ENVISAT ASAR images completed in the step four;
step seven: analyzing the difference of radar backscattering coefficients of the peat bogs and other different land cover types under different polarization modes, and determining ENVISAT ASAR image optimal polarization mode wave bands, namely radar image optimal polarization mode wave bands for extracting the peat bogs;
step eight: performing multilayer multi-scale segmentation on the preprocessed Landsat TM data, gradient data and the ENVISATASAR image optimal polarization mode wave band determined in the seventh step to obtain a series of segmentation units;
step nine: extracting characteristic parameters of a series of segmentation units segmented in the step eight; the characteristic parameters comprise the average value of each wave band, a normalized vegetation index, a normalized water body index, TM2+ TM3-TM4-TM5 and color tones;
step ten: determining the optimal classification wave band by using a JM distance method according to the characteristic parameters extracted in the step nine;
step eleven: according to the optimal classification wave band determined in the step ten, establishing a classification decision tree by referring to the land cover type survey sampling points; wherein, the reference soil coverage type survey sample points comprise peat swamp, herbaceous swamp, residential land, transportation land, farmland, forest land and water body soil coverage types;
step twelve: operating a classification decision tree, exporting a land cover type classification result, and producing a land cover type vector file; wherein, the land cover type vector file comprises land cover types of farmlands, forest lands, water bodies, residential traffic lands, herbaceous swamps and peat swamps;
step thirteen: making a peat marsh thematic map according to the land cover type vector file completed in the step twelve; thus completing a peat bog information extraction method based on ENVISAT ASAR, Landsat TM and DEM data.
2. The method for extracting peat bog information based on ENVISAT ASAR Landsat TM and DEM data as claimed in claim 1, wherein: the preprocessing process of the Landsat TM data in the first step is as follows:
(1) determining the track number of Landsat TM data of the peat bogs in the distribution range of the peat bogs, and downloading the Landsat TM data covering the distribution range of the peat bogs according to the track number;
(2) performing orthorectification on the Landsat TM data by using DEM data of an area corresponding to the Landsat TM data to obtain the orthorectified Landsat TM data;
(3) and selecting a ground control point in the ERDAS software by utilizing the topographic data, and performing geometric fine correction on the directly corrected Landsat TM data to obtain preprocessed Landsat TM data.
3. The method for extracting peat bog information based on ENVISAT ASAR Landsat TM and DEM data as claimed in claim 1, wherein: and in the second step, ENVISAT ASAR data are preprocessed:
(1) downloading ENVISAT ASAR fine image primary data within the coverage range of the Landsat TM data range;
(2) carrying out radiometric calibration on ENVISAT ASAR fine image primary data, namely converting DN value of ENVISAT ASAR fine image primary data into backscattering coefficient to obtain ENVISAT ASAR data of radiation correction; the radiometric calibration formula is as follows:
<math> <mrow> <msubsup> <mi>&sigma;</mi> <mi>ij</mi> <mn>0</mn> </msubsup> <mo>=</mo> <mn>10</mn> <mo>&CenterDot;</mo> <msub> <mi>log</mi> <mn>10</mn> </msub> <mo>[</mo> <mfrac> <msubsup> <mi>DN</mi> <mi>ij</mi> <mn>2</mn> </msubsup> <mi>K</mi> </mfrac> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>ij</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </math>
wherein,the backscattering coefficient of the ith row and the jth column of pixels; DNijThe original intensity value of the ith row and the jth column of pixels; thetaijIs the incident angle of the radar wave of the ith row and the jth column of pixels; k is an absolute calibration coefficient;
(3) performing terrain correction on radiation correction ENVISAT ASAR data by utilizing DEM data of a region corresponding to ENVISAT ASAR data and adopting a range-Doppler imaging algorithm;
(4) and applying an Enhanced Lee filter to perform spatial filtering processing on ENVISAT ASAR data after the terrain correction is completed.
4. The method for extracting peat bog information based on ENVISAT ASAR Landsat TM and DEM data as claimed in claim 1, wherein: and the spatial registration error in the fourth step is controlled within 0.5 pixel.
5. The method for extracting peat bog information based on ENVISAT ASAR Landsat TM and DEM data as claimed in claim 1, wherein: the optimal polarization mode wave band of the radar image for extracting the peat bogs in the step seven is specifically as follows: the difference between the backscattering coefficients is obviously compared by counting the average value of the backscattering coefficients of different land cover types under the HV and HH polarization modes to be used as the optimal polarization mode wave band.
6. The method for extracting peat bog information based on ENVISAT ASAR Landsat TM and DEM data as claimed in claim 1, wherein: and step eight, each partition unit consists of spatially adjacent pixels with the homogeneity of 80-100%.
7. The method for extracting peat bog information based on ENVISAT ASAR Landsat TM and DEM data as claimed in claim 1, wherein: in the ninth step, the normalized vegetation index NDVI and the normalized water body index NDWI for extracting the characteristic parameters of the series of segmentation units obtained in the eighth step are as follows:
NDVI = TM 4 - TM 3 TM 4 + TM 3 , NDWI = TM 2 - TM 4 TM 2 + TM 4 ;
wherein, TM2 is the 2 nd band of the Landsat TM sensor, TM3 is the 3 rd band of the Landsat TM sensor, and TM4 is the 4 th band of the Landsat TM sensor.
8. The method for extracting peat bog information based on ENVISAT ASAR Landsat TM and DEM data as claimed in claim 1, wherein: in the step ten, a calculation formula of the JM distance method is as follows:
JM ij = 2 ( 1 - e - b ij ) ;
b ij = 1 / 8 ( m i - m j ) t c i + c j 2 ( m i - m j ) + 1 / 2 ln | ( c i - c j ) / 2 | | c i | 1 / 2 | c j | 1 / 2 ;
wherein i and j represent any two different classification types respectively; bijThe Bhattacharyya distance between the i-class classification type and the j-class classification type; m isiMean vector, m, representing class i class classification typejA mean vector representing class j classification types; ciCovariance matrix representing class i class type, CjA covariance matrix representing the class j classification type.
CN201410553704.1A 2014-10-17 2014-10-17 A kind of peat bog information extracting method based on ENVISAT ASAR, Landsat TM and dem data Expired - Fee Related CN104361338B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410553704.1A CN104361338B (en) 2014-10-17 2014-10-17 A kind of peat bog information extracting method based on ENVISAT ASAR, Landsat TM and dem data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410553704.1A CN104361338B (en) 2014-10-17 2014-10-17 A kind of peat bog information extracting method based on ENVISAT ASAR, Landsat TM and dem data

Publications (2)

Publication Number Publication Date
CN104361338A true CN104361338A (en) 2015-02-18
CN104361338B CN104361338B (en) 2017-11-28

Family

ID=52528596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410553704.1A Expired - Fee Related CN104361338B (en) 2014-10-17 2014-10-17 A kind of peat bog information extracting method based on ENVISAT ASAR, Landsat TM and dem data

Country Status (1)

Country Link
CN (1) CN104361338B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105069463A (en) * 2015-07-17 2015-11-18 重庆交通大学 Object-oriented multiple scale mountainous city land coverage information obtaining method
CN105139369A (en) * 2015-08-24 2015-12-09 中国热带农业科学院橡胶研究所 Method for eliminating city building pixels in forest classification result based on PALSAR radar image
CN105607136A (en) * 2015-12-22 2016-05-25 中国科学院东北地理与农业生态研究所 System and method for surveying peat reserves based on air cushion vessel
CN106548146A (en) * 2016-11-01 2017-03-29 北京航天泰坦科技股份有限公司 Ground mulching change algorithm and system based on space-time analysis
CN107169467A (en) * 2017-05-25 2017-09-15 江西理工大学 Damage with recovering analysis method in a kind of rare-earth mining area soil of multi-source sequential image
RU2647221C2 (en) * 2016-08-01 2018-03-14 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ "ВСЕРОССИЙСКИЙ ОРДЕНА "ЗНАК ПОЧЕТА" НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРОТИВОПОЖАРНОЙ ОБОРОНЫ МИНИСТЕРСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ" (ФГБУ ВНИИПО МЧС России) Method for detecting the boundary of local underground peat fire and method of delivery of the portable georadar to the peat bog surface and receiving the sounding data in real time
CN107862255A (en) * 2017-10-23 2018-03-30 交通运输部科学研究院 A kind of method based on the extraction of the wetland information of microwave remote sensing and optical remote sensing technology with ecosensitivity assessment
CN107895169A (en) * 2017-10-25 2018-04-10 南京邮电大学 A kind of method based on ENVISAT ASAR dual polarizations data extraction wetland information
CN108734150A (en) * 2018-05-31 2018-11-02 中南林业科技大学 The AVHRR sensor multidate infra-red radiation normalizing methods differentiated applied to forest fires hot spot
CN106199588B (en) * 2016-06-24 2018-11-09 西安电子科技大学 Multistation Radar Signal Fusion detection method based on Pasteur's distance quantization
CN109029735A (en) * 2018-07-06 2018-12-18 湖南文理学院 A kind of Land surface emissivity calculation method and device
CN109635731A (en) * 2018-12-12 2019-04-16 中国科学院深圳先进技术研究院 It is a kind of to identify method and device, storage medium and the processor effectively ploughed
CN112836610A (en) * 2021-01-26 2021-05-25 平衡机器科技(深圳)有限公司 Land use change and carbon reserve quantitative estimation method based on remote sensing data
CN113205475A (en) * 2020-01-16 2021-08-03 吉林大学 Forest height inversion method based on multi-source satellite remote sensing data
CN113408468A (en) * 2021-07-01 2021-09-17 中国科学院东北地理与农业生态研究所 Forest swamp extraction method based on Sentinel satellite image and random forest algorithm
CN113487483A (en) * 2021-07-05 2021-10-08 上海商汤智能科技有限公司 Training method and device for image segmentation network
CN113920438A (en) * 2021-12-14 2022-01-11 武汉大学 Troubleshooting method for hidden dangers of trees near power lines combined with ICESat-2 and Jilin-1 images
CN114648705A (en) * 2022-03-28 2022-06-21 王大成 A carbon sink monitoring system and method based on satellite remote sensing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7337065B2 (en) * 2001-01-23 2008-02-26 Spectral Sciences, Inc. Methods for atmospheric correction of solar-wavelength hyperspectral imagery over land
CN101962961A (en) * 2010-09-20 2011-02-02 中国科学院南京地理与湖泊研究所 Method for determining ecological dredging range of water body pollution bottom sediment
CN101963664A (en) * 2010-09-28 2011-02-02 中国科学院东北地理与农业生态研究所 Microwave remote sensing pixel element decomposing method based on land and water living beings classifying information
CN103000077A (en) * 2012-11-27 2013-03-27 中国科学院东北地理与农业生态研究所 Method for carrying out mangrove forest map making on intermediate resolution remote sensing image by utilizing object-oriented classification method
CN103065293A (en) * 2012-12-31 2013-04-24 中国科学院东北地理与农业生态研究所 Correlation weighted remote-sensing image fusion method and fusion effect evaluation method thereof
CN103778622A (en) * 2013-10-29 2014-05-07 中国科学院东北地理与农业生态研究所 Method for extracting wetland information based on combination of NDVI and LSWI

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7337065B2 (en) * 2001-01-23 2008-02-26 Spectral Sciences, Inc. Methods for atmospheric correction of solar-wavelength hyperspectral imagery over land
CN101962961A (en) * 2010-09-20 2011-02-02 中国科学院南京地理与湖泊研究所 Method for determining ecological dredging range of water body pollution bottom sediment
CN101963664A (en) * 2010-09-28 2011-02-02 中国科学院东北地理与农业生态研究所 Microwave remote sensing pixel element decomposing method based on land and water living beings classifying information
CN103000077A (en) * 2012-11-27 2013-03-27 中国科学院东北地理与农业生态研究所 Method for carrying out mangrove forest map making on intermediate resolution remote sensing image by utilizing object-oriented classification method
CN103065293A (en) * 2012-12-31 2013-04-24 中国科学院东北地理与农业生态研究所 Correlation weighted remote-sensing image fusion method and fusion effect evaluation method thereof
CN103778622A (en) * 2013-10-29 2014-05-07 中国科学院东北地理与农业生态研究所 Method for extracting wetland information based on combination of NDVI and LSWI

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
于欢 等: "面向对象遥感影像分类的最优分割尺度", 《中国图象图形学报》 *
刘蕾 等: "兼容光学雷达影像及地形辅助数据的扎龙湿地遥感分类", 《地理与地理信息科学》 *
徐怡波: "基于ENVISAT ASAR数据的洞庭湖湿地遥感监测研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105069463A (en) * 2015-07-17 2015-11-18 重庆交通大学 Object-oriented multiple scale mountainous city land coverage information obtaining method
CN105139369B (en) * 2015-08-24 2018-02-27 中国热带农业科学院橡胶研究所 Eliminate urban architecture pixel method in the forest classified result based on PALSAR radar images
CN105139369A (en) * 2015-08-24 2015-12-09 中国热带农业科学院橡胶研究所 Method for eliminating city building pixels in forest classification result based on PALSAR radar image
CN105607136A (en) * 2015-12-22 2016-05-25 中国科学院东北地理与农业生态研究所 System and method for surveying peat reserves based on air cushion vessel
CN106199588B (en) * 2016-06-24 2018-11-09 西安电子科技大学 Multistation Radar Signal Fusion detection method based on Pasteur's distance quantization
RU2647221C2 (en) * 2016-08-01 2018-03-14 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ "ВСЕРОССИЙСКИЙ ОРДЕНА "ЗНАК ПОЧЕТА" НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРОТИВОПОЖАРНОЙ ОБОРОНЫ МИНИСТЕРСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ" (ФГБУ ВНИИПО МЧС России) Method for detecting the boundary of local underground peat fire and method of delivery of the portable georadar to the peat bog surface and receiving the sounding data in real time
CN106548146A (en) * 2016-11-01 2017-03-29 北京航天泰坦科技股份有限公司 Ground mulching change algorithm and system based on space-time analysis
CN107169467B (en) * 2017-05-25 2020-01-31 江西理工大学 An analysis method of land damage and restoration in rare earth mining area based on multi-source time series images
CN107169467A (en) * 2017-05-25 2017-09-15 江西理工大学 Damage with recovering analysis method in a kind of rare-earth mining area soil of multi-source sequential image
CN107862255A (en) * 2017-10-23 2018-03-30 交通运输部科学研究院 A kind of method based on the extraction of the wetland information of microwave remote sensing and optical remote sensing technology with ecosensitivity assessment
CN107862255B (en) * 2017-10-23 2020-12-22 交通运输部科学研究院 A Method for Wetland Information Extraction and Ecological Sensitivity Evaluation Based on Microwave Remote Sensing and Optical Remote Sensing Technology
CN107895169A (en) * 2017-10-25 2018-04-10 南京邮电大学 A kind of method based on ENVISAT ASAR dual polarizations data extraction wetland information
CN108734150A (en) * 2018-05-31 2018-11-02 中南林业科技大学 The AVHRR sensor multidate infra-red radiation normalizing methods differentiated applied to forest fires hot spot
CN108734150B (en) * 2018-05-31 2021-07-27 中南林业科技大学 Multi-temporal infrared radiation normalization method for AVHRR sensor applied to forest fire hot spot discrimination
CN109029735A (en) * 2018-07-06 2018-12-18 湖南文理学院 A kind of Land surface emissivity calculation method and device
CN109635731A (en) * 2018-12-12 2019-04-16 中国科学院深圳先进技术研究院 It is a kind of to identify method and device, storage medium and the processor effectively ploughed
CN113205475A (en) * 2020-01-16 2021-08-03 吉林大学 Forest height inversion method based on multi-source satellite remote sensing data
CN113205475B (en) * 2020-01-16 2022-07-12 吉林大学 Forest height inversion method based on multi-source satellite remote sensing data
CN112836610A (en) * 2021-01-26 2021-05-25 平衡机器科技(深圳)有限公司 Land use change and carbon reserve quantitative estimation method based on remote sensing data
CN113408468A (en) * 2021-07-01 2021-09-17 中国科学院东北地理与农业生态研究所 Forest swamp extraction method based on Sentinel satellite image and random forest algorithm
CN113487483A (en) * 2021-07-05 2021-10-08 上海商汤智能科技有限公司 Training method and device for image segmentation network
CN113920438A (en) * 2021-12-14 2022-01-11 武汉大学 Troubleshooting method for hidden dangers of trees near power lines combined with ICESat-2 and Jilin-1 images
CN114648705A (en) * 2022-03-28 2022-06-21 王大成 A carbon sink monitoring system and method based on satellite remote sensing

Also Published As

Publication number Publication date
CN104361338B (en) 2017-11-28

Similar Documents

Publication Publication Date Title
CN104361338B (en) A kind of peat bog information extracting method based on ENVISAT ASAR, Landsat TM and dem data
Javhar et al. Comparison of multi-resolution optical Landsat-8, Sentinel-2 and radar Sentinel-1 data for automatic lineament extraction: A case study of Alichur area, SE Pamir
Phinn et al. Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques
Fisher et al. Comparing Landsat water index methods for automated water classification in eastern Australia
Hladik et al. Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data
CN109919875B (en) A feature-assisted residential area extraction and classification method based on high time-frequency remote sensing images
Purkis et al. Integrating in situ reef-top reflectance spectra with Landsat TM imagery to aid shallow-tropical benthic habitat mapping
CN110287457B (en) Maize Biomass Retrieval Calculation Method Based on Satellite Radar Remote Sensing Data
CN100547438C (en) A kind of oil-gas exploration method and system
Sobiech et al. Observing lake-and river-ice decay with SAR: advantages and limitations of the unsupervised k-means classification approach
CN104217426A (en) An object-oriented water extraction method based on ENVISAT ASAR and Landsat TM remote sensing data
La et al. Urban land cover mapping under the Local Climate Zone scheme using Sentinel-2 and PALSAR-2 data
CN110703244B (en) Method and device for identifying urban water body based on remote sensing data
Herrault et al. A comparative study of geometric transformation models for the historical" Map of France" registration
CN109308451A (en) A kind of high score data information extraction system and method
CN115661634A (en) Accurate identification method for spatial elements of urban ecological network
Aimaiti et al. Urban landscape extraction and analysis based on optical and microwave ALOS satellite data
Leroy et al. Anisotropy-corrected vegetation indexes derived from POLDER/ADEOS
Chen et al. Decision tree-based classification in coastal area integrating polarimetric SAR and optical data
Zhu et al. A change type determination method based on knowledge of spectral changes in land cover types
Chen et al. A novel water change tracking algorithm for dynamic mapping of inland water using time-series remote sensing imagery
Indrayani et al. Analysis of land use in the Banyuasin district using the image Landsat 8 by NDVI method
Wang et al. Extraction of palaeochannel information from remote sensing imagery in the east of Chaohu Lake, China
Araya et al. A comparison of pixel and object-based land cover classification: a case study of the Asmara region, Eritrea
Collier et al. Mapping biological soil crusts in a Hawaiian dryland

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171128

CF01 Termination of patent right due to non-payment of annual fee