CN104361145A - Rotor dynamics modeling method based on axle closely attached coordinate system - Google Patents

Rotor dynamics modeling method based on axle closely attached coordinate system Download PDF

Info

Publication number
CN104361145A
CN104361145A CN201410483863.9A CN201410483863A CN104361145A CN 104361145 A CN104361145 A CN 104361145A CN 201410483863 A CN201410483863 A CN 201410483863A CN 104361145 A CN104361145 A CN 104361145A
Authority
CN
China
Prior art keywords
msub
mrow
mover
theta
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410483863.9A
Other languages
Chinese (zh)
Other versions
CN104361145B (en
Inventor
吴锋
高强
李明武
钟万勰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201410483863.9A priority Critical patent/CN104361145B/en
Publication of CN104361145A publication Critical patent/CN104361145A/en
Application granted granted Critical
Publication of CN104361145B publication Critical patent/CN104361145B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于贴轴坐标系的转子动力学建模方法,属于转子动力学分析领域。本发明涉及转子动力学仿真分析技术,提出一种基于贴轴坐标系的动力学建模方法。本发明可以用于转子结构,如发动机、汽轮机、发电机等转子系统的动力学仿真建模分析,也可应用于相关的试验、设计、反演分析等相关领域,可用于计算转子的临界速度,也可用于考察转子的运动稳定性和仿真转子的运动形态。

A rotor dynamics modeling method based on an axis-attached coordinate system belongs to the field of rotor dynamics analysis. The invention relates to a rotor dynamics simulation analysis technology, and proposes a dynamic modeling method based on an axis-attached coordinate system. The present invention can be used for rotor structure, such as dynamic simulation modeling analysis of rotor systems such as engines, steam turbines, generators, etc., and can also be applied to related fields such as related experiments, design, inversion analysis, etc., and can be used to calculate the critical speed of rotors , can also be used to investigate the motion stability of the rotor and simulate the motion form of the rotor.

Description

一种基于贴轴坐标系的转子动力学建模方法A Rotordynamics Modeling Method Based on Axis-Affixed Coordinate System

技术领域 technical field

本发明涉及转子动力学分析技术,构建了一种贴轴坐标系的转子动力学建模方法。  The invention relates to a rotor dynamics analysis technology, and constructs a rotor dynamics modeling method of an axis-attached coordinate system. the

背景技术 Background technique

旋转机械是现代工业中最重要的动力机械,在电力、交通、航空、化工、能源、军工等行业中有着广泛的应用。然而,有关旋转轴系统的振动模型,现有模型还不够充分,尤其对于非对称轴承、高速旋转机组(例如在汽轮发电机组,工业汽轮机组,喷气发动机等方面)等转子仿真振动的模型,传统模型还需要改进。  Rotating machinery is the most important power machinery in modern industry, and it is widely used in electric power, transportation, aviation, chemical industry, energy, military industry and other industries. However, the existing models are not sufficient for the vibration model of the rotating shaft system, especially for the simulation vibration model of the rotor such as asymmetric bearings and high-speed rotating units (such as in turbogenerators, industrial steam turbines, jet engines, etc.), Traditional models still need improvement. the

本发明可以用于转子结构,如发动机、汽轮机、发电机等转子系统的动力学仿真建模分析,也可应用于相关的试验、设计、反演分析等相关领域,可用于计算转子的临界速度,也可用于考察转子的运动稳定性和仿真转子的运动形态。  The present invention can be used for rotor structure, such as dynamic simulation modeling analysis of rotor systems such as engines, steam turbines, generators, etc., and can also be applied to related fields such as related experiments, design, inversion analysis, etc., and can be used to calculate the critical speed of rotors , can also be used to investigate the motion stability of the rotor and simulate the motion form of the rotor. the

发明内容 Contents of the invention

一种基于贴轴坐标系的转子动力学建模方法,在一根轴承上安装不同尺寸的多个转盘,构成转子系统;选定坐标系,建立转子系统的动力微分方程,求解该动力微分方程,从而进行转子系统的动力学分析;本发明是采用贴轴坐标法建立转子系统的动力微分方程;具体方法如下:  A rotor dynamics modeling method based on the axis-attached coordinate system. Multiple turntables of different sizes are installed on a bearing to form a rotor system; the coordinate system is selected to establish the dynamic differential equation of the rotor system and solve the dynamic differential equation , so as to carry out the dynamic analysis of the rotor system; the present invention adopts the axis-attached coordinate method to establish the dynamic differential equation of the rotor system; the specific method is as follows:

(a)以静态时轴承的轴向为z轴方向,z轴的垂直面内建立相互垂直的x轴和y轴,坐标系的原点o位于转盘的圆心,z轴随着轴承旋 转,轴承的转角速度即为Ω;将转盘处理为一个等厚度h的实心刚体转盘,质量是m=ρhπR2,转盘绕轴线z转动惯量为I1=mR2/2;转盘绕x轴或y轴转动惯量I2=mR2/4;转盘的圆心位于z轴上;转子系统运动时,设转盘圆心产生线位移为qx,qy;转盘围绕x轴或y轴的转角为θxy;  (a) Take the axial direction of the bearing at static state as the z-axis direction, establish the x-axis and y-axis perpendicular to each other in the vertical plane of the z-axis, the origin o of the coordinate system is located at the center of the turntable, the z-axis rotates with the bearing, and the bearing's The rotational angular velocity is Ω; the turntable is treated as a solid rigid turntable with equal thickness h, the mass is m=phπR 2 , the moment of inertia of the turntable around the axis z is I 1 =mR 2 /2; the moment of inertia of the turntable around the x-axis or y-axis I 2 =mR 2 /4; the center of the turntable is on the z-axis; when the rotor system moves, set the line displacement generated by the center of the turntable as q x , q y ; the rotation angle of the turntable around the x-axis or y-axis is θ x , θ y ;

按Timoshenco梁理论建立轴承的刚度矩阵Kb,位移qx,qy和θxy是独立的;  The stiffness matrix K b of the bearing is established according to the Timoshenco beam theory, and the displacements q x , q y and θ x , θ y are independent;

(b)根据转盘质心的相对位移qx,qy和转轴的转动角速度Ω,建立起其绝对线速度表达式: (b) According to the relative displacement q x , q y of the center of mass of the turntable and the rotational angular velocity Ω of the rotating shaft, the expression of its absolute linear velocity is established:

(c)在贴轴坐标内计算转盘平动的线速度动能Tq;  (c) Calculate the linear velocity kinetic energy T q of the translational motion of the turntable in the axis-attached coordinates;

(d)由于转盘围绕x轴或y轴的转角θx(t),θy(t)是小变形,因此采用角位移向量θ(t)={θx θy}T描述转盘围绕x轴或y轴的转角,利用向量的特性,可以给出转盘围绕x轴或y轴转角的绝对角速度向量为  (d) Since the rotation angle θ x (t) and θ y (t) of the turntable around the x-axis or y-axis are small deformations, the angular displacement vector θ(t)={θ x θ y } T is used to describe the rotation of the turntable around the x-axis Or the rotation angle of the y-axis, using the characteristics of the vector, the absolute angular velocity vector of the turntable around the x-axis or y-axis rotation angle can be given as

θθ .. (( tt )) ++ ΩΩ ×× θθ == (( θθ .. ythe y ++ ΩΩ θθ xx )) ii ythe y ++ (( θθ .. xx -- ΩΩ θθ ythe y )) ii xx

(e)根据转盘围绕x轴或y轴转角的绝对角速度向量,计算转盘的转动动能:  (e) According to the absolute angular velocity vector of the rotation angle of the turntable around the x-axis or y-axis, calculate the rotational kinetic energy of the turntable:

TT θθ == II 22 (( θθ .. xx -- ΩΩ θθ ythe y )) 22 // 22 ++ II 22 (( θθ .. ythe y ++ ΩΩ θθ xx )) 22 // 22 == II 22 (( θθ .. xx 22 ++ θθ .. ythe y 22 )) // 22 ++ II 22 ΩΩ (( θθ .. ythe y θθ xx -- θθ .. xx θθ ythe y )) ++ II 22 ΩΩ 22 (( θθ xx 22 ++ θθ ythe y 22 )) // 22

其中I2=mR2/4,是转盘围绕x轴或y轴的转动惯量;  Among them, I 2 =mR 2 /4, which is the moment of inertia of the turntable around the x-axis or y-axis;

(f)修正步骤(e)的转动动能;由于转轴的高速旋转角速度为Ω,转轴会因转盘围绕x轴或y轴的转角θx(t),θy(t)而有方向变化,导致转盘偏斜了,因此转动惯量修正为:利用转动惯量, 把轴向转动的能量I1Ω2/2要修改为: (f) correct the rotational kinetic energy of step (e); since the high-speed rotational angular velocity of the rotating shaft is Ω, the rotating shaft will have a direction change due to the rotation angle θ x (t) and θ y (t) of the turntable around the x-axis or y-axis, resulting in The turntable is deflected, so the moment of inertia is corrected as: Using the moment of inertia, the energy I 1 Ω 2 /2 of axial rotation should be modified as:

(g)贴轴坐标内转盘的角位移θx(t),θy(t)与Timoshenco梁的转角ψxy有对应关系如下式:  (g) The angular displacement θ x (t), θ y (t) of the turntable in the axis-attached coordinates has a corresponding relationship with the rotation angle ψ x , ψ y of the Timoshenco beam as follows:

θy=ψxx=-ψy θ y = ψ x , θ x = -ψ y

把转盘(2)动能中的变量θx(t),θy(t)用Timoshenco梁的转角ψxy表示,则有:  The variables θ x (t), θ y (t) in the kinetic energy of the turntable (2) are represented by the rotation angle ψ x , ψ y of the Timoshenco beam, then:

TT == qq .. TT 22 mm ii qq .. ++ qq .. TT ΩΩ gg ii qq ++ qq TT 22 ΩΩ 22 kk TiTi qq

其中  in

q={qx qy ψx ψy}T q={q x q y ψ x ψ y } T

(h)根据步骤(g)中的动能表达式,可以得到转子动力学在贴轴坐标系下的振动模型为:  (h) According to the kinetic energy expression in step (g), the vibration model of the rotor dynamics in the axis-attached coordinate system can be obtained as:

Mm qq .. .. ++ ΩGΩG qq .. ++ KK sthe s qq == 00

根据该振动模型,从而可以进行转子系统的动力学分析。  Based on the vibration model, dynamic analysis of the rotor system can be performed. the

所述一种基于贴轴坐标系的转子动力学建模方法,其特征在于步骤(c)中,线性位移动能表达式为:  The rotor dynamics modeling method based on the axis-attached coordinate system is characterized in that in step (c), the linear displacement kinetic energy expression is:

TT qq == mm (( qq .. xx -- ΩΩ qq ythe y )) 22 // 22 ++ mm (( qq .. ythe y ++ ΩqΩq xx )) 22 // 22 == mm (( qq .. xx 22 ++ qq .. ythe y 22 )) // 22 ++ mΩmΩ (( qq .. ythe y qq xx -- qq .. xx qq ythe y )) ++ mm ΩΩ 22 (( qq xx 22 ++ qq ythe y 22 )) // 22

所述一种基于贴轴坐标系的转子动力学建模方法,其特征在于步骤(f)中动能表达式为:  The rotor dynamics modeling method based on the axis-attached coordinate system is characterized in that the kinetic energy expression in the step (f) is:

TT θθ -- == II 22 (( θθ .. xx -- ΩΩ θθ ythe y )) 22 // 22 ++ II 22 (( θθ .. ythe y ++ ΩΩ θθ xx )) 22 // 22 == II 22 (( θθ .. xx 22 ++ θθ .. ythe y 22 )) // 22 ++ II 22 ΩΩ (( θθ .. ythe y θθ xx -- θθ .. xx θθ ythe y )) ++ II 22 ΩΩ 22 (( θθ xx 22 ++ θθ ythe y 22 )) // 22 -- II 11 ΩΩ 22 (( θθ xx 22 ++ θθ ythe y 22 )) // 22

所述一种基于贴轴坐标系的转子动力学建模方法,其特征在于步骤(g)中各矩阵表达式为:  Described a kind of rotor dynamics modeling method based on the axis-attached coordinate system is characterized in that each matrix expression in step (g) is:

mm ii == mm 00 00 mm II 22 00 00 II 22 ,, gg ii == 00 -- mm mm 00 00 -- II 22 II 22 00 ,, kk TiTi == mm 00 00 mm -- II 22 00 00 -- II 22

所述一种基于贴轴坐标系的转子动力学建模方法,其特征在于步骤(i)中,各矩阵表达式为:  The rotor dynamics modeling method based on the axis-attached coordinate system is characterized in that in step (i), each matrix expression is:

Ks=Kb2KT K s =K b2 K T

M=diag{m1,m2,…,mN},KT=diag{kT1,kT2,…,kTNM=diag{m 1 ,m 2 ,...,m N }, K T =diag{k T1 ,k T2 ,...,k TN }

GG == diagdiag {{ GG 11 ,, GG 22 ,, .. .. .. ,, GG NN }} ,, GG ii == gg ii -- gg ii TT

根据该振动模型,从而可以进行转子系统的动力学分析。  Based on the vibration model, dynamic analysis of the rotor system can be performed. the

本发明的有益积极效果:  Beneficial positive effect of the present invention:

本发明基于贴轴坐标建立的转子动力学方程,较传统模型相比,在步骤(g)中同时考虑了平动和转角的陀螺力,且因为是在贴轴坐标下建立的模型,因此易于与轴承的弹性变形相联系。本发明可以用于转子结构,如发动机、汽轮机、发电机等转子系统的动力学仿真建模分析,也可应用于相关的试验、设计、反演分析等相关领域,可用于计算转子的临界速度,也可用于考察转子的运动稳定性和仿真转子的运动形态。  Compared with the traditional model, the rotor dynamics equation established based on the axis-attached coordinates of the present invention considers the gyroscopic force of translation and rotation angle simultaneously in step (g), and because it is a model established under the axis-attached coordinates, it is easy to Linked to the elastic deformation of the bearing. The present invention can be used for rotor structure, such as dynamic simulation modeling analysis of rotor systems such as engines, steam turbines, generators, etc., and can also be applied to related fields such as related experiments, design, inversion analysis, etc., and can be used to calculate the critical speed of rotors , can also be used to investigate the motion stability of the rotor and simulate the motion form of the rotor. the

附图说明 Description of drawings

图1是一个转盘静态转子系统。  Figure 1 is a turntable static rotor system. the

图2是变形后一个转盘转子系统,其中θxy分别为转盘围绕x轴和y轴的转动角度,qx,qy是转盘圆心的位移。  Figure 2 shows a turntable rotor system after deformation, where θ x , θ y are the rotation angles of the turntable around the x-axis and y-axis respectively, and q x , q y are the displacements of the center of the turntable.

图中:1.轴承,2.转盘。  In the figure: 1. bearing, 2. turntable. the

具体实施方式 Detailed ways

下面结合附图阐述本发明的实施方式:  Set forth the embodiment of the present invention below in conjunction with accompanying drawing:

在轴承(1)上安装不同尺寸的多个转盘(2),构成转子系统,  Multiple turntables (2) of different sizes are installed on the bearing (1) to form a rotor system,

(a)对多个转盘(2),分别计算其质量mi和转动惯量 (a) For multiple turntables (2), calculate their mass m i and moment of inertia respectively

(b)按Timoshenco梁理论建立轴承的刚度矩阵Kb,Kb可以利用有限元软件:大连理工大学自主研发的SIPESC,SIPESC软件是大连理工大学工程力学系开发的工程计算分析软件平台,其功能包括集成开发环境、面向系统集成的活动流程图定制、工程数据库管理系统、开放式结构有限元分析系统、集成优化计算系统等,其中有限元分析系统中集成了方程求解模块、有限元后处理模块等,其有限元模块中包含了Timoshenco梁的刚度矩阵。  (b) Establish the stiffness matrix K b of the bearing according to Timoshenco beam theory, K b can use finite element software: SIPESC independently developed by Dalian University of Technology, SIPESC software is an engineering calculation and analysis software platform developed by the Department of Engineering Mechanics of Dalian University of Technology, its function Including integrated development environment, activity flow chart customization for system integration, engineering database management system, open structure finite element analysis system, integrated optimization calculation system, etc., among which the finite element analysis system integrates equation solving module and finite element post-processing module etc., the stiffness matrix of the Timoshenco beam is included in the finite element module.

(c)计算第i个转盘(2)的线速度动能所需矩阵:  (c) Calculate the matrix required for the linear velocity kinetic energy of the i-th turntable (2):

mm ii == mm ii 00 00 mm ii II 22 ii 00 00 II 22 ii ,, gg ii == 00 -- mm ii mm ii 00 00 -- II 22 ii II 22 ii 00 ,, kk TiTi == mm ii 00 00 mm ii -- II 22 ii 00 00 -- II 22 ii

(d)建立转子动力学在贴轴坐标系下的振动模型为:  (d) Establish the vibration model of the rotor dynamics in the axis-attached coordinate system as:

Mm qq .. .. ++ ΩGΩG qq .. ++ KK sthe s qq == 00

其中,  in,

Ks=Kb2KT K s =K b2 K T

M=diag{m1,m2,…,mN},KT=diag{kT1,kT2,…,kTNM=diag{m 1 ,m 2 ,...,m N }, K T =diag{k T1 ,k T2 ,...,k TN }

GG == diagdiag {{ GG 11 ,, GG 22 ,, .. .. .. ,, GG NN }} ,, GG ii == gg ii -- gg ii TT ..

Claims (5)

1. A rotor dynamics modeling method based on a shaft-attached coordinate system is characterized in that a plurality of rotary tables (2) with different sizes are mounted on a bearing (1) to form a rotor system; selecting a coordinate system, establishing a dynamic differential equation of the rotor system, and solving the dynamic differential equation so as to perform dynamic analysis on the rotor system; the method is characterized in that a dynamic differential equation of a rotor system is established by adopting a shaft-pasting coordinate method; the specific method comprises the following steps:
(a) the axial direction of the bearing (1) in a static state is taken as the direction of a z axis, an x axis and a y axis which are perpendicular to each other are established in the vertical plane of the z axis, and the origin o of a coordinate system is positionedThe center of the circle of the turntable (2) and the z axis rotate along with the bearing (1), and the angular velocity of the bearing (1) is omega; the turntable (2) is processed into a solid rigid turntable with the same thickness h, and the mass is m ═ rho pi R2The inertia moment of the turntable (2) about the axis z is I1=mR22; the rotary inertia I of the rotary disc (2) around the x axis or the y axis2=mR2(ii)/4; the circle center of the turntable (2) is positioned on the z axis; when the rotor system moves, the linear displacement generated by the circle center of the rotary table (2) is set as qx,qy(ii) a The rotation angle of the rotating disc (2) around the x axis or the y axis is thetaxy
Establishing a rigidity matrix K of the bearing (1) according to the Timoshenco beam theorybOf displacement qx,qyAnd thetaxyIs independent;
(b) according to the relative displacement q of the center of mass of the rotating disc (2)x,qyAnd the rotation angular speed omega of the rotating shaft (1), and an absolute linear speed expression of the rotation angular speed omega is established:
(c) calculating the linear velocity kinetic energy T of the translation of the turntable (2) in the sticking axis coordinateq
(d) Due to the rotation angle theta of the rotating disc (2) around the x-axis or the y-axisx(t),θy(t) is a small deformation, so an angular displacement vector θ (t) { θ ═ is usedx θy}TDescribing the rotation angle of the rotary table (2) around the x-axis or the y-axis, the absolute angular velocity vector of the rotation angle of the rotary table (2) around the x-axis or the y-axis can be given as
<math> <mrow> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&Omega;</mi> <mo>&times;</mo> <mi>&theta;</mi> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mi>y</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mi>x</mi> </msub> </mrow> </math>
(e) Calculating the rotational kinetic energy of the rotating disc (2) according to the absolute angular velocity vector of the rotating disc (2) around the x-axis or the y-axis:
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>T</mi> <mi>&theta;</mi> </msub> <mo>=</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>=</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mi>&Omega;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>&theta;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&theta;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mfenced> </math>
wherein I2=mR2-4, the moment of inertia of the turntable (2) about the x-axis or the y-axis;
(f) modifying the rotational kinetic energy of step (e); because the high-speed rotation angular velocity of the rotating shaft (1) is omega, the rotating shaft (1) can rotate at an angle theta around the x axis or the y axis due to the rotating disc (2)x(t),θy(t) there is a change in direction, which causes the turntable (2) to deflect, so that the moment of inertia is corrected to:using the moment of inertia to turn the axial energy I1Ω2The/2 modification is: <math> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&theta;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>&theta;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>;</mo> </mrow> </math>
(g) angular displacement theta of inner rotating disc (2) in axial coordinatex(t),θy(t) angle of rotation phi with Timoshenco BeamxyThere is a corresponding relationship as follows:
θy=ψxx=-ψy
the variable theta in the kinetic energy of the rotary disc (2)x(t),θy(t) corner psi with Timoshenco beamsxyThis means that there are:
<math> <mrow> <mi>T</mi> <mo>=</mo> <mfrac> <msup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>T</mi> </msup> <mn>2</mn> </mfrac> <msub> <mi>m</mi> <mi>i</mi> </msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>+</mo> <msup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>T</mi> </msup> <mi>&Omega;</mi> <msub> <mi>g</mi> <mi>i</mi> </msub> <mi>q</mi> <mo>+</mo> <mfrac> <msup> <mi>q</mi> <mi>T</mi> </msup> <mn>2</mn> </mfrac> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <msub> <mi>k</mi> <mi>Ti</mi> </msub> <mi>q</mi> </mrow> </math>
wherein
q={qx qy ψx ψy}T
(h) According to the kinetic energy expression in the step (g), a vibration model of rotor dynamics in a paraxial coordinate system can be obtained as follows:
<math> <mrow> <mi>M</mi> <mover> <mi>q</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mo>+</mo> <mi>&Omega;G</mi> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>+</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mi>q</mi> <mo>=</mo> <mn>0</mn> </mrow> </math>
from this vibration model, a kinetic analysis of the rotor system can thus be performed.
2. The method according to claim 1, wherein in step (c), the linear displacement kinetic energy expression is:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>T</mi> <mi>q</mi> </msub> <mo>=</mo> <mi>m</mi> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <mi>&Omega;</mi> <msub> <mi>q</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&Omega;q</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>=</mo> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> <mrow> <mo>(</mo> <msubsup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>+</mo> <mi>m&Omega;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <msub> <mi>q</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <msub> <mi>q</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>m</mi> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>q</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
3. the method according to claim 1, wherein the kinetic energy expression in step (f) is as follows:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>T</mi> <mrow> <mi>&theta;</mi> <mo>-</mo> </mrow> </msub> <mo>=</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>=</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mi>&Omega;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>&theta;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&theta;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>-</mo> <msub> <mi>I</mi> <mn>1</mn> </msub> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>&theta;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&theta;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
4. the method according to claim 1, wherein the matrix expressions in step (g) are as follows:
m i = m 0 0 m I 2 0 0 I 2 , g i = 0 - m m 0 0 - I 2 I 2 0 , k Ti = m 0 0 m - I 2 0 0 - I 2 .
5. the method according to claim 1, wherein in step (i), each matrix expression is as follows:
Ks=Kb2KT
M=diag{m1,m2,…,mN},KT=diag{kT1,kT2,…,kTN}
G = diag { G 1 , G 2 , . . . , G N } , G i = g i - g i T .
CN201410483863.9A 2014-09-19 2014-09-19 Rotor dynamics modeling method based on axle closely attached coordinate system Active CN104361145B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410483863.9A CN104361145B (en) 2014-09-19 2014-09-19 Rotor dynamics modeling method based on axle closely attached coordinate system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410483863.9A CN104361145B (en) 2014-09-19 2014-09-19 Rotor dynamics modeling method based on axle closely attached coordinate system

Publications (2)

Publication Number Publication Date
CN104361145A true CN104361145A (en) 2015-02-18
CN104361145B CN104361145B (en) 2017-05-03

Family

ID=52528405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410483863.9A Active CN104361145B (en) 2014-09-19 2014-09-19 Rotor dynamics modeling method based on axle closely attached coordinate system

Country Status (1)

Country Link
CN (1) CN104361145B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105468804A (en) * 2015-06-16 2016-04-06 观为监测技术无锡有限公司 Resonance index
CN105760637A (en) * 2016-04-21 2016-07-13 哈尔滨工业大学 Method for calculating theoretical value of deflection of small turbine rotor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323825A (en) * 2011-07-18 2012-01-18 北京航空航天大学 A Torque Compensation Control Method of DGMSCMG System During Spacecraft Maneuvering
CN103821567A (en) * 2014-01-23 2014-05-28 西北工业大学 Structural dynamic design method for high-pressure rotor of aircraft engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323825A (en) * 2011-07-18 2012-01-18 北京航空航天大学 A Torque Compensation Control Method of DGMSCMG System During Spacecraft Maneuvering
CN103821567A (en) * 2014-01-23 2014-05-28 西北工业大学 Structural dynamic design method for high-pressure rotor of aircraft engine

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YU-QING JIN: "The Power Angle and Phase Measurement Units Based Wide Area Measurement System and Its Application", 《2007 IREP SYMPOSIUM- BULK POWER SYSTEM DYNAMICS AND CONTROL - VII, REVITALIZING OPERATIONAL RELIABILITY 》 *
吴 锋: "基于辛理论的Timoshenko 梁波散射分析", 《应用数学和力学》 *
蒋庆磊: "齿轮传动多转子耦合系统振动特性研究", 《振动工程学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105468804A (en) * 2015-06-16 2016-04-06 观为监测技术无锡有限公司 Resonance index
CN105468804B (en) * 2015-06-16 2019-04-26 观为监测技术无锡股份有限公司 A method of it calculating rotary machine rotor and resonant vibration probability occurs
CN105760637A (en) * 2016-04-21 2016-07-13 哈尔滨工业大学 Method for calculating theoretical value of deflection of small turbine rotor

Also Published As

Publication number Publication date
CN104361145B (en) 2017-05-03

Similar Documents

Publication Publication Date Title
Jin et al. Nonlinear dynamic analysis of a complex dual rotor-bearing system based on a novel model reduction method
Dakel et al. Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings
Ishida et al. Linear and nonlinear rotordynamics: a modern treatment with applications
Cao et al. A new dynamic model of ball-bearing rotor systems based on rigid body element
CN104166758B (en) Determination method for inherent frequency of rotor-blade coupled system
CN104239654A (en) Bearing simplification method in finite element simulation analysis
Chen et al. Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions
Meng et al. Frequency and stability analysis method of asymmetric anisotropic rotor-bearing system based on three-dimensional solid finite element method
Pham et al. Efficient techniques for the computation of the nonlinear dynamics of a foil-air bearing rotor system
Zhou et al. Numerical analysis of a nonlinear double disc rotor-seal system
CN102915388A (en) Object-oriented nonlinear and non-causal modeling and simulation method for rotor dynamics system
CN104361145B (en) Rotor dynamics modeling method based on axle closely attached coordinate system
Filippi et al. Dynamic analyses of axisymmetric rotors through three-dimensional approaches and high-fidelity beam theories
Wang et al. Simulation analysis of casing vibration response and its verification under blade–casing rubbing fault
Lu et al. Research on unbalanced vibration suppression method for coupled cantilever dual-rotor system
CN102609561B (en) A Simulation Method for the Influence of Rotating Parts on Flexure Dynamics
Hu et al. An enhanced axisymmetric solid element for rotor dynamic model improvement
Wei et al. Modeling and dynamic characteristics of planetary gear transmission in non-inertial system of aerospace environment
Yang et al. Vibration predictions and verifications of disk drive spindle system with ball bearings
Wu et al. Dynamic responses of the aero-engine rotor system to bird strike on fan blades at different rotational speeds
Sheng et al. Dynamic Model and Vibration Characteristics of Planar 3‐RRR Parallel Manipulator with Flexible Intermediate Links considering Exact Boundary Conditions
CN112364452A (en) Multi-field coupling numerical analysis method for movement locus of aerostatic spindle rotor
Zhang et al. Dynamic characteristics of rotor-squeeze film damper-support system excited by base harmonic excitations using MHB-AFT method
Sinha Transient vibratory response of turbofan engine rotor impacted by bird strike
Pan et al. Research on Pneumatic–liquid On-Line Automatic Balance Technology for High-End Turbine Units

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant