CN104361145A - Rotor dynamics modeling method based on axle closely attached coordinate system - Google Patents

Rotor dynamics modeling method based on axle closely attached coordinate system Download PDF

Info

Publication number
CN104361145A
CN104361145A CN201410483863.9A CN201410483863A CN104361145A CN 104361145 A CN104361145 A CN 104361145A CN 201410483863 A CN201410483863 A CN 201410483863A CN 104361145 A CN104361145 A CN 104361145A
Authority
CN
China
Prior art keywords
msub
mrow
mover
theta
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410483863.9A
Other languages
Chinese (zh)
Other versions
CN104361145B (en
Inventor
吴锋
高强
李明武
钟万勰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201410483863.9A priority Critical patent/CN104361145B/en
Publication of CN104361145A publication Critical patent/CN104361145A/en
Application granted granted Critical
Publication of CN104361145B publication Critical patent/CN104361145B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

The invention discloses a rotor dynamics modeling method based on an axle closely attached coordinate system, belongs to the field of rotor dynamics analysis, relates to the technology of rotor dynamics simulation analysis, and discloses the rotor dynamics modeling method based on the axle closely attached coordinate system. The rotor dynamics modeling method can be used for dynamics simulation modeling analysis of rotor structures such as an engine, a steam turbine, an electric generator and other rotor systems, calculating the critical speed of a rotor, investigating the kinetic stability of the rotor and simulating the motion morphology of the rotor, and can also be applicable to related tests, designs, inverse analysis and other related fields.

Description

rotor dynamics modeling method based on axial coordinate system
Technical Field
The invention relates to a rotor dynamics analysis technology, and discloses a rotor dynamics modeling method of a shaft-attached coordinate system.
Background
The rotary machine is the most important power machine in modern industry, and has wide application in the industries of electric power, traffic, aviation, chemical industry, energy, military industry and the like. However, the existing model is not sufficient for the vibration model of the rotating shaft system, and especially for the model of the simulation vibration of the rotor of the asymmetric bearing, the high-speed rotating unit (for example, in the aspects of a turbo generator unit, an industrial steam turbine unit, a jet engine and the like), and the like, the traditional model needs to be improved.
The invention can be used for the dynamic simulation modeling analysis of rotor structures, such as rotor systems of engines, steam turbines, generators and the like, can also be applied to relevant fields of relevant tests, designs, inversion analysis and the like, can be used for calculating the critical speed of the rotor, and can also be used for inspecting the motion stability of the rotor and simulating the motion form of the rotor.
Disclosure of Invention
A rotor dynamics modeling method based on a shaft-attached coordinate system is characterized in that a plurality of turntables with different sizes are mounted on a bearing to form a rotor system; selecting a coordinate system, establishing a dynamic differential equation of the rotor system, and solving the dynamic differential equation so as to perform dynamic analysis on the rotor system; the invention adopts a shaft-fitting coordinate method to establish a dynamic differential equation of a rotor system; the specific method comprises the following steps:
(a) the axial direction of the bearing in a static state is taken as the direction of a z axis, an x axis and a y axis which are perpendicular to each other are established in the vertical plane of the z axis, the origin o of a coordinate system is positioned at the center of a circle of a turntable, the z axis rotates along with the bearing, and the rotating angular speed of the bearing is omega; processing the turntable into a solid rigid turntable with the same thickness h, wherein the mass is m ═ rho h pi R2The inertia of the turntable about the axis z is I1=mR22; moment of inertia I of revolution about x-axis or y-axis2=mR2(ii)/4; the circle center of the rotary table is positioned on the z axis; when the rotor system moves, the center of the rotary table generates linear displacement of qx,qy(ii) a The angle of rotation of the turntable about the x-or y-axis being thetaxy
Establishing rigidity matrix K of bearing according to Timoshenco beam theorybOf displacement qx,qyAnd thetaxyIs independent;
(b) relative displacement q according to the center of mass of the turntablex,qyAnd the rotation angular velocity omega of the rotating shaft to establish the absolute value thereofLinear velocity expression:
(c) calculating linear velocity kinetic energy T of turntable translation in shaft pasting coordinatesq
(d) Due to the angle of rotation theta of the turntable about the x-axis or y-axisx(t),θy(t) is a small deformation, so an angular displacement vector θ (t) { θ ═ is usedx θy}TDescribing the rotation angle of the turntable around the x-axis or the y-axis, by using the characteristics of the vector, the absolute angular velocity vector of the rotation angle of the turntable around the x-axis or the y-axis can be given as
<math><mrow> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&Omega;</mi> <mo>&times;</mo> <mi>&theta;</mi> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mi>y</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mi>x</mi> </msub> </mrow></math>
(e) Calculating the rotation kinetic energy of the rotating disc according to the absolute angular velocity vector of the rotating disc around the x axis or the y axis:
<math><mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>T</mi> <mi>&theta;</mi> </msub> <mo>=</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>=</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mi>&Omega;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>&theta;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&theta;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mfenced></math>
wherein I2=mR2/4, the moment of inertia of the turntable about the x-axis or y-axis;
(f) modifying the rotational kinetic energy of step (e); because the high-speed rotation angular velocity of the rotating shaft is omega, the rotating shaft can rotate around the rotation angle theta of the x-axis or the y-axis due to the rotating discx(t),θy(t) there is a change in direction that causes the turntable to deflect, so the moment of inertia is corrected to:using the moment of inertia to turn the axial energy I1Ω2The/2 modification is:
(g) angular displacement theta of rotating disc in axial coordinatex(t),θy(t) angle of rotation phi with Timoshenco BeamxyThere is a corresponding relationship as follows:
θy=ψxx=-ψy
the variable theta in the kinetic energy of the rotary disc (2)x(t),θy(t) corner psi with Timoshenco beamsxyThis means that there are:
<math><mrow> <mi>T</mi> <mo>=</mo> <mfrac> <msup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>T</mi> </msup> <mn>2</mn> </mfrac> <msub> <mi>m</mi> <mi>i</mi> </msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>+</mo> <msup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>T</mi> </msup> <mi>&Omega;</mi> <msub> <mi>g</mi> <mi>i</mi> </msub> <mi>q</mi> <mo>+</mo> <mfrac> <msup> <mi>q</mi> <mi>T</mi> </msup> <mn>2</mn> </mfrac> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <msub> <mi>k</mi> <mi>Ti</mi> </msub> <mi>q</mi> </mrow></math>
wherein
q={qx qy ψx ψy}T
(h) According to the kinetic energy expression in the step (g), a vibration model of rotor dynamics in a paraxial coordinate system can be obtained as follows:
<math><mrow> <mi>M</mi> <mover> <mi>q</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mo>+</mo> <mi>&Omega;G</mi> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>+</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mi>q</mi> <mo>=</mo> <mn>0</mn> </mrow></math>
from this vibration model, a kinetic analysis of the rotor system can thus be performed.
The rotor dynamics modeling method based on the axial coordinate system is characterized in that in the step (c), the linear displacement kinetic energy expression is as follows:
<math><mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>T</mi> <mi>q</mi> </msub> <mo>=</mo> <mi>m</mi> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <mi>&Omega;</mi> <msub> <mi>q</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&Omega;q</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>=</mo> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> <mrow> <mo>(</mo> <msubsup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>+</mo> <mi>m&Omega;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <msub> <mi>q</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <msub> <mi>q</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>m</mi> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>q</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mfenced></math>
the rotor dynamics modeling method based on the axial coordinate system is characterized in that the kinetic energy expression in the step (f) is as follows:
<math><mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>T</mi> <mrow> <mi>&theta;</mi> <mo>-</mo> </mrow> </msub> <mo>=</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>=</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mi>&Omega;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>&theta;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&theta;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>-</mo> <msub> <mi>I</mi> <mn>1</mn> </msub> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>&theta;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&theta;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mfenced></math>
the rotor dynamics modeling method based on the axial coordinate system is characterized in that in the step (g), each matrix expression is as follows:
m i = m 0 0 m I 2 0 0 I 2 , g i = 0 - m m 0 0 - I 2 I 2 0 , k Ti = m 0 0 m - I 2 0 0 - I 2
the rotor dynamics modeling method based on the axial coordinate system is characterized in that in the step (i), each matrix expression is as follows:
Ks=Kb2KT
M=diag{m1,m2,…,mN},KT=diag{kT1,kT2,…,kTN}
G = diag { G 1 , G 2 , . . . , G N } , G i = g i - g i T
from this vibration model, a kinetic analysis of the rotor system can thus be performed.
The invention has the following beneficial and positive effects:
compared with the traditional model, the rotor dynamics equation established based on the axial coordinate in the invention considers the gyroscopic forces of translation and rotation angle in step (g) at the same time, and is easy to be associated with the elastic deformation of the bearing because of the model established under the axial coordinate. The invention can be used for the dynamic simulation modeling analysis of rotor structures, such as rotor systems of engines, steam turbines, generators and the like, can also be applied to relevant fields of relevant tests, designs, inversion analysis and the like, can be used for calculating the critical speed of the rotor, and can also be used for inspecting the motion stability of the rotor and simulating the motion form of the rotor.
Drawings
FIG. 1 is a rotary disk static rotor system.
FIG. 2 is a modified rotor system of a rotary disk, where θxyThe rotation angles of the turntable about the x-axis and the y-axis, qx,qyIs the displacement of the center of the circle of the turntable.
In the figure: 1. bearing, 2. turntable.
Detailed Description
Embodiments of the invention are described below with reference to the accompanying drawings:
a plurality of turntables (2) with different sizes are arranged on the bearing (1) to form a rotor system,
(a) for a plurality of turntables (2), the mass m is calculatediAnd moment of inertia
(b) Establishing rigidity matrix K of bearing according to Timoshenco beam theoryb,KbFinite element software may be utilized: the SIPSCs are independently developed by university of general technology, SIPSCs software is an engineering calculation analysis software platform developed by the university of general technology engineering department, and the functions of the SIPSCs comprise an integrated development environment, system integration-oriented activity flow chart customization, an engineering database management system, an open structure finite element analysis system, an integrated optimization calculation system and the like, wherein an equation solving module, a finite element post-processing module and the like are integrated in the finite element analysis system, and the finite element module comprises a rigidity matrix of a Timoshenco beam.
(c) Calculating a matrix required by linear velocity kinetic energy of the ith rotating disc (2):
m i = m i 0 0 m i I 2 i 0 0 I 2 i , g i = 0 - m i m i 0 0 - I 2 i I 2 i 0 , k Ti = m i 0 0 m i - I 2 i 0 0 - I 2 i
(d) the vibration model of rotor dynamics under a close-to-axis coordinate system is established as follows:
<math><mrow> <mi>M</mi> <mover> <mi>q</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mo>+</mo> <mi>&Omega;G</mi> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>+</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mi>q</mi> <mo>=</mo> <mn>0</mn> </mrow></math>
wherein,
Ks=Kb2KT
M=diag{m1,m2,…,mN},KT=diag{kT1,kT2,…,kTN}
G = diag { G 1 , G 2 , . . . , G N } , G i = g i - g i T .

Claims (5)

1. A rotor dynamics modeling method based on a shaft-attached coordinate system is characterized in that a plurality of rotary tables (2) with different sizes are mounted on a bearing (1) to form a rotor system; selecting a coordinate system, establishing a dynamic differential equation of the rotor system, and solving the dynamic differential equation so as to perform dynamic analysis on the rotor system; the method is characterized in that a dynamic differential equation of a rotor system is established by adopting a shaft-pasting coordinate method; the specific method comprises the following steps:
(a) the axial direction of the bearing (1) in a static state is taken as the direction of a z axis, an x axis and a y axis which are perpendicular to each other are established in the vertical plane of the z axis, and the origin o of a coordinate system is positionedThe center of the circle of the turntable (2) and the z axis rotate along with the bearing (1), and the angular velocity of the bearing (1) is omega; the turntable (2) is processed into a solid rigid turntable with the same thickness h, and the mass is m ═ rho pi R2The inertia moment of the turntable (2) about the axis z is I1=mR22; the rotary inertia I of the rotary disc (2) around the x axis or the y axis2=mR2(ii)/4; the circle center of the turntable (2) is positioned on the z axis; when the rotor system moves, the linear displacement generated by the circle center of the rotary table (2) is set as qx,qy(ii) a The rotation angle of the rotating disc (2) around the x axis or the y axis is thetaxy
Establishing a rigidity matrix K of the bearing (1) according to the Timoshenco beam theorybOf displacement qx,qyAnd thetaxyIs independent;
(b) according to the relative displacement q of the center of mass of the rotating disc (2)x,qyAnd the rotation angular speed omega of the rotating shaft (1), and an absolute linear speed expression of the rotation angular speed omega is established:
(c) calculating the linear velocity kinetic energy T of the translation of the turntable (2) in the sticking axis coordinateq
(d) Due to the rotation angle theta of the rotating disc (2) around the x-axis or the y-axisx(t),θy(t) is a small deformation, so an angular displacement vector θ (t) { θ ═ is usedx θy}TDescribing the rotation angle of the rotary table (2) around the x-axis or the y-axis, the absolute angular velocity vector of the rotation angle of the rotary table (2) around the x-axis or the y-axis can be given as
<math> <mrow> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&Omega;</mi> <mo>&times;</mo> <mi>&theta;</mi> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mi>y</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mi>x</mi> </msub> </mrow> </math>
(e) Calculating the rotational kinetic energy of the rotating disc (2) according to the absolute angular velocity vector of the rotating disc (2) around the x-axis or the y-axis:
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>T</mi> <mi>&theta;</mi> </msub> <mo>=</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>=</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mi>&Omega;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>&theta;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&theta;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mfenced> </math>
wherein I2=mR2-4, the moment of inertia of the turntable (2) about the x-axis or the y-axis;
(f) modifying the rotational kinetic energy of step (e); because the high-speed rotation angular velocity of the rotating shaft (1) is omega, the rotating shaft (1) can rotate at an angle theta around the x axis or the y axis due to the rotating disc (2)x(t),θy(t) there is a change in direction, which causes the turntable (2) to deflect, so that the moment of inertia is corrected to:using the moment of inertia to turn the axial energy I1Ω2The/2 modification is: <math> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&theta;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>&theta;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>;</mo> </mrow> </math>
(g) angular displacement theta of inner rotating disc (2) in axial coordinatex(t),θy(t) angle of rotation phi with Timoshenco BeamxyThere is a corresponding relationship as follows:
θy=ψxx=-ψy
the variable theta in the kinetic energy of the rotary disc (2)x(t),θy(t) corner psi with Timoshenco beamsxyThis means that there are:
<math> <mrow> <mi>T</mi> <mo>=</mo> <mfrac> <msup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>T</mi> </msup> <mn>2</mn> </mfrac> <msub> <mi>m</mi> <mi>i</mi> </msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>+</mo> <msup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>T</mi> </msup> <mi>&Omega;</mi> <msub> <mi>g</mi> <mi>i</mi> </msub> <mi>q</mi> <mo>+</mo> <mfrac> <msup> <mi>q</mi> <mi>T</mi> </msup> <mn>2</mn> </mfrac> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <msub> <mi>k</mi> <mi>Ti</mi> </msub> <mi>q</mi> </mrow> </math>
wherein
q={qx qy ψx ψy}T
(h) According to the kinetic energy expression in the step (g), a vibration model of rotor dynamics in a paraxial coordinate system can be obtained as follows:
<math> <mrow> <mi>M</mi> <mover> <mi>q</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mo>+</mo> <mi>&Omega;G</mi> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>+</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mi>q</mi> <mo>=</mo> <mn>0</mn> </mrow> </math>
from this vibration model, a kinetic analysis of the rotor system can thus be performed.
2. The method according to claim 1, wherein in step (c), the linear displacement kinetic energy expression is:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>T</mi> <mi>q</mi> </msub> <mo>=</mo> <mi>m</mi> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <mi>&Omega;</mi> <msub> <mi>q</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&Omega;q</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>=</mo> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> <mrow> <mo>(</mo> <msubsup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>+</mo> <mi>m&Omega;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <msub> <mi>q</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <msub> <mi>q</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>m</mi> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>q</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
3. the method according to claim 1, wherein the kinetic energy expression in step (f) is as follows:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>T</mi> <mrow> <mi>&theta;</mi> <mo>-</mo> </mrow> </msub> <mo>=</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <mo>-</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>+</mo> <mi>&Omega;</mi> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>/</mo> <mn>2</mn> <mo>=</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <mi>&Omega;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <msub> <mi>&theta;</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&theta;</mi> <mo>.</mo> </mover> <mi>x</mi> </msub> <msub> <mi>&theta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>I</mi> <mn>2</mn> </msub> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>&theta;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&theta;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>-</mo> <msub> <mi>I</mi> <mn>1</mn> </msub> <msup> <mi>&Omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>&theta;</mi> <mi>x</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&theta;</mi> <mi>y</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
4. the method according to claim 1, wherein the matrix expressions in step (g) are as follows:
m i = m 0 0 m I 2 0 0 I 2 , g i = 0 - m m 0 0 - I 2 I 2 0 , k Ti = m 0 0 m - I 2 0 0 - I 2 .
5. the method according to claim 1, wherein in step (i), each matrix expression is as follows:
Ks=Kb2KT
M=diag{m1,m2,…,mN},KT=diag{kT1,kT2,…,kTN}
G = diag { G 1 , G 2 , . . . , G N } , G i = g i - g i T .
CN201410483863.9A 2014-09-19 2014-09-19 Rotor dynamics modeling method based on axle closely attached coordinate system Active CN104361145B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410483863.9A CN104361145B (en) 2014-09-19 2014-09-19 Rotor dynamics modeling method based on axle closely attached coordinate system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410483863.9A CN104361145B (en) 2014-09-19 2014-09-19 Rotor dynamics modeling method based on axle closely attached coordinate system

Publications (2)

Publication Number Publication Date
CN104361145A true CN104361145A (en) 2015-02-18
CN104361145B CN104361145B (en) 2017-05-03

Family

ID=52528405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410483863.9A Active CN104361145B (en) 2014-09-19 2014-09-19 Rotor dynamics modeling method based on axle closely attached coordinate system

Country Status (1)

Country Link
CN (1) CN104361145B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105468804A (en) * 2015-06-16 2016-04-06 观为监测技术无锡有限公司 Resonance index
CN105760637A (en) * 2016-04-21 2016-07-13 哈尔滨工业大学 Method for calculating theoretical value of deflection of small turbine rotor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323825A (en) * 2011-07-18 2012-01-18 北京航空航天大学 Torque compensation control method of DGMSCMG (double-gimbal magnetically suspended control moment gyroscope) system for spacecraft maneuver
CN103821567A (en) * 2014-01-23 2014-05-28 西北工业大学 Structural dynamic design method for high-pressure rotor of aircraft engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323825A (en) * 2011-07-18 2012-01-18 北京航空航天大学 Torque compensation control method of DGMSCMG (double-gimbal magnetically suspended control moment gyroscope) system for spacecraft maneuver
CN103821567A (en) * 2014-01-23 2014-05-28 西北工业大学 Structural dynamic design method for high-pressure rotor of aircraft engine

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YU-QING JIN: "The Power Angle and Phase Measurement Units Based Wide Area Measurement System and Its Application", 《2007 IREP SYMPOSIUM- BULK POWER SYSTEM DYNAMICS AND CONTROL - VII, REVITALIZING OPERATIONAL RELIABILITY 》 *
吴 锋: "基于辛理论的Timoshenko 梁波散射分析", 《应用数学和力学》 *
蒋庆磊: "齿轮传动多转子耦合系统振动特性研究", 《振动工程学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105468804A (en) * 2015-06-16 2016-04-06 观为监测技术无锡有限公司 Resonance index
CN105468804B (en) * 2015-06-16 2019-04-26 观为监测技术无锡股份有限公司 A method of it calculating rotary machine rotor and resonant vibration probability occurs
CN105760637A (en) * 2016-04-21 2016-07-13 哈尔滨工业大学 Method for calculating theoretical value of deflection of small turbine rotor

Also Published As

Publication number Publication date
CN104361145B (en) 2017-05-03

Similar Documents

Publication Publication Date Title
Jin et al. Nonlinear dynamic analysis of a complex dual rotor-bearing system based on a novel model reduction method
Chen Simulation of casing vibration resulting from blade–casing rubbing and its verifications
Cao et al. A new dynamic model of ball-bearing rotor systems based on rigid body element
Wang et al. A 3D finite element-based model order reduction method for parametric resonance and whirling analysis of anisotropic rotor-bearing systems
Chen et al. Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions
JP5622177B2 (en) How to obtain influence coefficient
Meng et al. Frequency and stability analysis method of asymmetric anisotropic rotor-bearing system based on three-dimensional solid finite element method
Kammerer et al. Blade forcing function and aerodynamic work measurements in a high speed centrifugal compressor with inlet distortion
Li et al. Rotating blade-casing rubbing simulation considering casing flexibility
Rybczyński The possibility of evaluating turbo-set bearing misalignment defects on the basis of bearing trajectory features
CN102915388A (en) Object-oriented nonlinear and non-causal modeling and simulation method for rotor dynamics system
Wang et al. Characteristics analysis of aero-engine whole vibration response with rolling bearing radial clearance
Zhou et al. Numerical analysis of a nonlinear double disc rotor-seal system
Kuan et al. Nonlinear dynamic behavior of a dual-rotor bearing system with coupling misalignment and rubbing faults
CN104361145B (en) Rotor dynamics modeling method based on axle closely attached coordinate system
Filippi et al. Dynamic analyses of axisymmetric rotors through three-dimensional approaches and high-fidelity beam theories
Lu et al. Nonlinear dynamic behavior analysis of dual-rotor-bearing systems with looseness and rub–impact faults
Hou et al. Dynamics analysis of bending–torsional coupling characteristic frequencies in dual-rotor systems
Wu et al. Dynamic responses of the aero-engine rotor system to bird strike on fan blades at different rotational speeds
Wang et al. Simulation analysis of casing vibration response and its verification under blade–casing rubbing fault
CN112364452A (en) Multi-field coupling numerical analysis method for movement locus of aerostatic spindle rotor
Wang et al. Reduced-order modeling for rotating rotor-bearing systems with cracked impellers using three-dimensional finite element models
Lu et al. Research on unbalanced vibration suppression method for coupled cantilever dual-rotor system
Ishida et al. Linear And Nonlinear Rotordynamics: a modern treatment with applications
Sinha Transient vibratory response of turbofan engine rotor impacted by bird strike

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant