CN104357493A - Method for preparing xylitol from viscose fiber squeezed alkali liquor - Google Patents

Method for preparing xylitol from viscose fiber squeezed alkali liquor Download PDF

Info

Publication number
CN104357493A
CN104357493A CN201410622094.6A CN201410622094A CN104357493A CN 104357493 A CN104357493 A CN 104357493A CN 201410622094 A CN201410622094 A CN 201410622094A CN 104357493 A CN104357493 A CN 104357493A
Authority
CN
China
Prior art keywords
xylitol
viscose fiber
membrane
nanofiltration membrane
concentrated solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201410622094.6A
Other languages
Chinese (zh)
Inventor
邓传东
冯涛
孙毅
唐孝兵
莫世清
周林
罗红梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yibin Grace Group Co Ltd
Original Assignee
YIBIN YATAI BIOTECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YIBIN YATAI BIOTECHNOLOGY Co Ltd filed Critical YIBIN YATAI BIOTECHNOLOGY Co Ltd
Priority to CN201410622094.6A priority Critical patent/CN104357493A/en
Publication of CN104357493A publication Critical patent/CN104357493A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention provides a method for preparing xylitol from viscose fiber squeezed alkali liquor. The method comprises the following specific process steps: (A) carrying out membrane concentration: firstly pre-filtering squeezed alkali liquor for viscose fiber production, so as to remove large-granule impurities, thinning up the permeate with water, then, enabling the thinned permeate to enter a first-stage nano-filtration membrane for treatment, thinning up the obtained first-stage concentrate with water, then, enabling the thinned first-stage concentrate to enter a second-stage nano-filtration membrane for treatment, thinning up the obtained second-stage concentrate with water, and then, enabling the thinned second-stage concentrate to enter a ceramic membrane for treatment, so as to obtain a concentrate, namely the concentrate of the squeezed alkali liquor; (B) extracting hemicellulose: adding acid to neutralize the concentrate of the squeezed alkali liquor, so as to obtain hemicellulose liquid; (C) carrying out enzymolysis: adding a compound enzyme into the hemicellulose liquid, and carrying out enzymolysis reaction, so as to obtain an enzymolysis solution; (D) fermenting: fermenting the enzymolysis solution for 0.5-2 hours at the temperature of 50-60 DEG C in the presence of candida; (E) purifying: carrying out ultrafiltration on fermentation liquor, so as to remove impurities, desalting the permeate with the nano-filtration membrane, so as to obtain a concentrate, namely a purified solution of xylitol, and carrying out ion exchange, activated carbon treatment, concentrated crystallization and separation, thereby obtaining xylitol.

Description

A kind of viscose fiber press lye prepares the method for Xylitol
Technical field
The present invention relates to Xylitol preparation field, be specifically related to a kind of with the technique of viscose fiber press lye for raw material production food-grade xylooligosaccharide.
Background technology
The sugariness of Xylitol is equivalent to sucrose, and heat is equivalent to glucose, and Xylitol can adjust glycometabolic exception, is nutrition agent and the therapeutical agent of diabetics.Xylitol has stronger anti-ketoboidies effect, can in order to rescue ketoboidies patient.Xylitol can slow down and produce the speed of lipid acid in blood plasma, but blood sugar can not be made to increase, and is also the hepatic of hepatitis patient.Xylitol Heat stability is good, heats and does not produce chemical reaction together with amino acid, can prepare various preparation, as nutrient drug with amino acid.Xylitol also has special preventing decayed tooth function as food.But Xylitol is one of polyvalent alcohol of price, production cost is too high is the major obstacle promoting its application.Annual agroforestry are produced and all can be produced a large amount of waste material containing hemicellulose (about 20% ~ 40%).The xylose utilizing hydrolysis of hemicellulose to obtain produces Xylitol, not only has good economic benefit, also has important environment protection significance.
With chemical pulp plant celluloses such as () wood pulp, cotton pulp, straw pulp, reed pulps in the production process of viscose fiber of raw material, adopting alkali lye to process (dipping, squeezing) to Mierocrystalline cellulose is the first step manufacturing viscose fiber.Hemicellulose concentration is high, extremely adverse influence is produced to cellulose viscose manufacturing technique and final product quality, therefore must in impregnation technology with alkali lye by hemicellulose stripping, the Mierocrystalline cellulose of high strength could be obtained, so a large amount of high concentration alkali pressed liquors being rich in hemicellulose can be produced in above process.
Main component in alkali pressed liquor is sodium hydroxide and hemicellulose.Hemicellulose is therefrom separated by treatment process many employings nanofiltration of existing press lye, obtains comparatively pure alkali lye.Through purification alkali lye can direct reuse in technique, but part alkali only can be realized reuse by nanofiltration membrane, still containing a large amount of alkali in the concentrated solution that the hemicellulose in its trapped fluid obtains after concentrated.During at present this part feed liquid is used for as salkali waste and technique, hemicellulose enters wastewater treatment, or adopts calcination to reclaim sodium hydroxide, and hemicellulose is burned.From above existing technique, hemicellulose is not fully used.
201210104647.X, the patent of invention that name is called " a kind of utilize in production process of viscose fiber the method for squeezing waste lye and preparing wood sugar ".By membrane filtration prepare hemicellulose solution, the extraction of hemicellulose, hemicellulose hydrolysis, in depickling, pre-concentration, decolouring, ion-exchange and Conventional concentration, crystallization, be separated, drying process obtains wood sugar finished product.This patent adopts industrial alcohol to extract hemicellulose, and cost is high.
Summary of the invention
For above-mentioned technical problem, the invention provides a kind of method that viscose fiber press lye prepares Xylitol.The Xylitol salinity obtained is low, and purity is high, and process operation efficiency is high, is adapted to scale operation.
For achieving the above object, the present invention adopts following technical scheme:
Viscose fiber press lye prepares a method for Xylitol, it is characterized in that: concrete technology step is as follows:
A, membrane concentration
The press lye that viscose fiber is produced is first through pre-filtering removing large granular impurity, permeate is after thin up, enter one-level nanofiltration membrane treatment, secondary nanofiltration membrane treatment is entered after gained primary concentration liquid thin up, enter ceramic membrane process after gained secondary concentration liquid thin up, gained concentrated solution is the concentrated solution of press lye;
B, extraction half fibre
By the concentrated solution acid neutralization of press lye, obtain half fine liquid.
C, enzymolysis
In half fine liquid, add prozyme, enzyme digestion reaction occurs and obtains enzymolysis solution;
D, fermentation
Enzymolysis solution at the effect bottom fermentation of candidiasis, 50-60 DEG C of bottom fermentation 0.5-2h;
E, purification
Fermented liquid is through ultrafiltration removal of impurities, and permeate, through nanofiltration membrane desalination, obtains the refined solution that concentrated solution is Xylitol, through ion-exchange, activated carbon treatment, condensing crystal, separation, obtains Xylitol.
Step A of the present invention, the molecular weight cut-off of one-level nanofiltration membrane is 200-300, and the molecular weight cut-off of secondary nanofiltration membrane is 300-400, and ceramic membrane interception molecular weight is 800-1500.
The molecular weight cut-off of 200-300, makes alkali separate from permeate; Slightly improve molecular weight cut-off to 300-400, progressively lower alkali dense, and allow certain half fine through, reduce because half finely blocks the nanofiltration membrane damage caused; The molecular weight cut-off of ceramic membrane is 800-1500, can retain half fibre, improve the purity of product.
Step A of the present invention, before one-level nanofiltration membrane and secondary nanofiltration membrane, the amount of thin up is 1 times of stock liquid volume, and the volume of gained concentrated solution is identical with stock liquid volume.While ensureing filtration efficiency, little to the damage of nanofiltration membrane.
Preferably, described permeate contains alkali 200-300g/l, containing half fine 40-80 g/l; Primary concentration liquid contains alkali 100-150g/l, containing half fine 40-80 g/l; Secondary concentration liquid contains alkali 50-75g/l, containing half fine 40-80g/l.Under lowering the dense prerequisite of alkali, ensure the filtration efficiency of film.
Step A of the present invention, feed liquid first enters ceramic membrane device through thin up, and add water to feed liquid gradation in working cycle, total amount of water is 5 times of material liquid volume, and gained concentrated solution volume is identical with stock liquid volume.While ensureing filtration efficiency, little to the damage of ceramic membrane.
Preferably, containing alkali 2-4g/l in the concentrated solution of described ceramic membrane filter, containing half fine 40-80 g/l.Be down to minimum by dense for alkali, the salinity in half fine liquid is just low, and can not affect the activity of enzyme, the purity of the finished product Xylitol is high; The concentration of half fibre is high, ensure that the yield of the finished product Xylitol.
Pre-filtering of the present invention refers to, press lye is successively through rotary drum filtration, Plate Filtration, micro-filtrate membrane filtration removing large granular impurity.Pre-filtering makes press lye not containing the solid impurity of more than 5 microns, and protection film is not below damaged by solid impurity.
Step A of the present invention, the temperature of nanofiltration membrane is 40-60 DEG C, and the temperature of ceramic membrane filter is 60-80 DEG C, and filtration temperature is high, and liquid viscosity is lower, is conducive to filtration efficiency and improves.
Step A of the present invention, the mistake mould difference of nanofiltration membrane is 3-4bar, and the mistake mould difference of ceramic membrane is 5-6bar.For the feature that viscose glue press lye viscosity is higher, adopt higher pressure reduction to filter, can ensure that half fine concentration in alkali lye reaches processing requirement.
Step A of the present invention, the flow of feed liquid in nanofiltration membrane is 25-40m 3/ h, the flow in ceramic membrane is 200-250m 3/ h.The surface velocity that bonding props up film is higher, film is not easy contaminated.
Step A of the present invention, it is 26.8m that the list of nanofiltration membrane props up filtration area 2, it is 0.6m that the list of ceramic membrane props up filtration area 2, single film has larger filtration area under the prerequisite taking less space.
Step B of the present invention, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value be 4-5.The advantage adding hydrochloric acid is that the molecules of salt amount formed is lower, and be conducive to the desalination in later stage, pH value is 4-5, adapts to the pH value requirement of enzymolysis.
Step C of the present invention, prozyme is zytase, cellulase and polygalacturonase, can improve sugared associative key susceptibility to enzymic hydrolysis after adding appropriate cellulase and pectin in zytase.
Preferably, the ratio of described zytase, cellulase and polygalacturonase is 3:2:1, and adopt the prozyme of this ratio to carry out degrading and can make the maximum production of xylo-oligosaccharide, the percent hydrolysis of hemicellulose is up to more than 95%.
Preferably, the enzymolysis time of described enzyme digestion reaction is 0.5-2h, and temperature is 50-60 DEG C, and the pH value of enzyme digestion reaction is 4-5, and under this condition, the activity of enzyme is the highest.
Preferably, the enzyme concentration of described enzyme digestion reaction is 0.5-1.5%, and now the catalytic effect of enzyme is best.
D step of the present invention, the amount adding candidiasis is 0.5-1%, improves the enzymolysis efficiency of enzyme.
Add wood sugar in the enzymolysis solution of D step of the present invention, add-on is 1-1.5%, can improve the transformation efficiency of wood sugar, make maximize conversion.
E step of the present invention, the aperture of described ultra-filtration membrane is 0.001-0.005 micron, the Xylitol liquid in separate fermentation liquid and enzyme.
Preferably, described enzymolysis solution is 60-80m by the flow of ultra-filtration membrane 3/ h, temperature is 30-40 DEG C, and crossing mould difference is 2-3bar.
D step of the present invention, the molecular weight cut-off of described nanofiltration membrane is 100-200.Owing to adopting hydrochloric acid neutralization, the salt of generation is sodium-chlor, and the molecular weight of sodium-chlor is smaller, and far below 100, xylitol molecules amount is greater than 100.Effectively can realize being separated of salt and Xylitol.
Preferably, described nanofiltration membrane desalination, crossing mould difference is 3-4bar, and temperature is 30-40 DEG C, and single filtration area is 26.8 m 2, adapt to the change of low catching molecular, guarantee salt is separated with Xylitol.
Preferably, the material liquid volume before described nanofiltration membrane concentrates is 10-15 times of concentrated solution volume, is conducive to reducing the salt content in Xylitol.
Beneficial effect of the present invention is:
1, the present invention adopts nanofiltration membrane and ceramic membrane combination filtering and concentrating half fibre, because the filtration efficiency of nanofiltration membrane is higher than ceramic membrane, first adopts multistage nanofiltration membrane that alkali concn is progressively dropped to certain degree; Slightly improve molecular weight cut-off concentrated half fine simultaneously, allow certain half fine through, reduce the damage to film, then adopt ceramic membrane filter; The feed liquid that ceramic membrane is applicable to filter the dense height of later stage low alkali half fine is run, and is the powerful guarantee that low alkali is dense.Nanofiltration membrane and ceramic membrane cooperatively interact, and have complementary advantages, and make containing alkali 2-4g/l in final concentrated solution, containing half fine 40-80 g/l, achieve low alkali dense, height half is fine; And process operation efficiency is high, little to the damage of film, cost is low.
2, the amount of nanofiltration membrane thin up of the present invention is 1 times of stock liquid volume, filters the concentrated solution volume obtained identical with stock liquid volume at every turn; Ceramic membrane filter, feed liquid first enters ceramic membrane device through thin up, and add water to feed liquid gradation in working cycle, total amount of water is 5 times of material liquid volume, and gained concentrated solution volume is identical with stock liquid volume.This technique can realize nanofiltration membrane water 10m excessively per hour 3left and right, ceramic membrane is per hour crosses water 45m 3left and right, ensure that filtration efficiency; Meanwhile, little to the damage of film, the 2-3 that can reach its quality guarantee period work-ing life doubly, reduces cost to a great extent, is adapted to industrialization scale operation.
3, the present invention adds hydrochloric acid neutralization to the concentrated solution obtained, then adopts molecular weight cut-off to be the nanofiltration membrane desalination of 100-200.In hydrochloric acid and the salt generated be sodium-chlor, the molecular weight of sodium-chlor, far below 100, and xylitol molecules amount is much larger than 100, effectively can realize being separated of salt and Xylitol.Be conducive to the desalination in later stage, further increase the purity of Xylitol.
4, fermented liquid is first used Xylitol liquid in ultra-filtration and separation fermented liquid and enzyme by the present invention, ensure product purity, permeate enters nanofiltration membrane desalination again, thus have effectively achieved being separated of salt and Xylitol, the specific conductivity finally obtaining Xylitol is 8000-10000 μ s/cm, and ignition residue is 3-6%.Ignition residue is the direct indicator weighing inorganic salt, and the massfraction described in Xylitol shared by inorganic salt is only 3-6%; Specific conductivity is the electrolytical degree existed in reaction liquid, and the main electrolyte of Xylitol is exactly inorganic salts, so this index also can reflect the number of salinity in product.It is low that low conductivity and ignition residue describe the Xylitol salinity adopting the inventive method to obtain, high purity more than 85%.
Embodiment
Below in conjunction with embodiment, essentiality content of the present invention is described in further detail.
Embodiment 1
Viscose fiber press lye prepares a method for Xylitol, and concrete technology step is as follows:
A, membrane concentration
The press lye that viscose fiber is produced is first through pre-filtering removing large granular impurity, permeate is after thin up, enter one-level nanofiltration membrane treatment, secondary nanofiltration membrane treatment is entered after gained primary concentration liquid thin up, enter ceramic membrane process after gained secondary concentration liquid thin up, gained concentrated solution is the concentrated solution of press lye;
B, extraction half fibre
By the concentrated solution acid neutralization of press lye, obtain half fine liquid.
C, enzymolysis
In half fine liquid, add prozyme, enzyme digestion reaction occurs and obtains enzymolysis solution;
D, fermentation
Enzymolysis solution at the effect bottom fermentation of candidiasis, 50 DEG C of bottom fermentation 2h;
E, purification
Fermented liquid is through ultrafiltration removal of impurities, and permeate is through nanofiltration membrane desalination, and gained concentrated solution is the refined solution of Xylitol, through ion-exchange, activated carbon treatment, condensing crystal, separation, obtains Xylitol.
Embodiment 2
Viscose fiber press lye prepares a method for Xylitol, and concrete technology step is as follows:
A, membrane concentration
The press lye that viscose fiber is produced is first through pre-filtering removing large granular impurity, permeate is after thin up, enter one-level nanofiltration membrane treatment, secondary nanofiltration membrane treatment is entered after gained primary concentration liquid thin up, enter ceramic membrane process after gained secondary concentration liquid thin up, gained concentrated solution is the concentrated solution of press lye;
B, extraction half fibre
By the concentrated solution acid neutralization of press lye, obtain half fine liquid.
C, enzymolysis
In half fine liquid, add prozyme, enzyme digestion reaction occurs and obtains enzymolysis solution;
D, fermentation
Enzymolysis solution at the effect bottom fermentation of candidiasis, 60 DEG C of bottom fermentation 0.5h;
E, purification
Fermented liquid is through ultrafiltration removal of impurities, and permeate is through nanofiltration membrane desalination, and gained concentrated solution is the refined solution of Xylitol, through ion-exchange, activated carbon treatment, condensing crystal, separation, obtains Xylitol.
Embodiment 3
Viscose fiber press lye prepares a method for Xylitol, and concrete technology step is as follows:
A, membrane concentration
The press lye that viscose fiber is produced is first through pre-filtering removing large granular impurity, permeate is after thin up, enter one-level nanofiltration membrane treatment, secondary nanofiltration membrane treatment is entered after gained primary concentration liquid thin up, enter ceramic membrane process after gained secondary concentration liquid thin up, gained concentrated solution is the concentrated solution of press lye;
B, extraction half fibre
By the concentrated solution acid neutralization of press lye, obtain half fine liquid.
C, enzymolysis
In half fine liquid, add prozyme, enzyme digestion reaction occurs and obtains enzymolysis solution;
D, fermentation
Enzymolysis solution at the effect bottom fermentation of candidiasis, 55 DEG C of bottom fermentation 1h;
E, purification
Fermented liquid is through ultrafiltration removal of impurities, and permeate is through nanofiltration membrane desalination, and gained concentrated solution is the refined solution of Xylitol, through ion-exchange, activated carbon treatment, condensing crystal, separation, obtains Xylitol.
Embodiment 4
The present embodiment is substantially the same manner as Example 1, on this basis:
Described step A, the molecular weight cut-off of one-level nanofiltration membrane is 200, and the molecular weight cut-off of secondary nanofiltration membrane is 300, and ceramic membrane interception molecular weight is 800.
Embodiment 5
The present embodiment is substantially the same manner as Example 2, on this basis:
Described step A, the molecular weight cut-off of one-level nanofiltration membrane is 300, and the molecular weight cut-off of secondary nanofiltration membrane is 400, and ceramic membrane interception molecular weight is 1500.
Embodiment 6
The present embodiment is substantially the same manner as Example 3, on this basis:
Described step A, the molecular weight cut-off of one-level nanofiltration membrane is 250, and the molecular weight cut-off of secondary nanofiltration membrane is 350, and ceramic membrane interception molecular weight is 1000.
Embodiment 7
The present embodiment is substantially the same manner as Example 4, on this basis:
Described step A, before one-level nanofiltration membrane and secondary nanofiltration membrane, the amount of thin up is respectively 1 times of stock liquid volume, and the volume of gained concentrated solution is identical with stock liquid volume respectively.
Described step A, permeate contains alkali 200g/l, containing half fine 40g/l; Primary concentration liquid contains alkali 100g/l, containing half fine 40g/l; Secondary concentration liquid contains alkali 50g/l, containing half fine 40g/l.
Embodiment 8
The present embodiment is substantially the same manner as Example 5, on this basis:
Described step A, before one-level nanofiltration membrane and secondary nanofiltration membrane, the amount of thin up is respectively 1 times of stock liquid volume, and the volume of gained concentrated solution is identical with stock liquid volume respectively.
Described step A, permeate contains alkali 300g/l, containing half fine 80 g/l; Primary concentration liquid contains alkali 150g/l, containing half fine 80 g/l; Secondary concentration liquid contains alkali 75g/l, containing half fine 80g/l.
Embodiment 9
The present embodiment is substantially the same manner as Example 6, on this basis:
Described step A, before one-level nanofiltration membrane and secondary nanofiltration membrane, the amount of thin up is respectively 1 times of stock liquid volume, and the volume of gained concentrated solution is identical with stock liquid volume respectively.
Described step A, permeate contains alkali 280g/l, containing half fine 70g/l; Primary concentration liquid contains alkali 140g/l, containing half fine 70g/l; Secondary concentration liquid contains alkali 70g/l, containing half fine 70g/l.
Embodiment 10
The present embodiment is substantially the same manner as Example 7, on this basis:
The ceramic membrane filter of described step A, feed liquid first enters ceramic membrane device through thin up, and add water to feed liquid gradation in working cycle, total amount of water is 5 times of material liquid volume, and gained concentrated solution volume is identical with stock liquid volume.
Described step A, containing alkali 2g/l in the concentrated solution of ceramic membrane filter, containing half fine 40g/l.
Described pre-filtering refers to, pressed liquor is successively through rotary drum filtration, Plate Filtration and micro-filtrate membrane filtration removing large granular impurity.
Embodiment 11
The present embodiment is substantially the same manner as Example 8, on this basis:
The ceramic membrane filter of described step A, feed liquid first enters ceramic membrane device through thin up, and add water to feed liquid gradation in working cycle, total amount of water is 5 times of material liquid volume, and gained concentrated solution volume is identical with stock liquid volume.
Described step A, containing alkali 4g/l in the concentrated solution of ceramic membrane filter, containing half fine 80 g/l.
Described pre-filtering refers to, pressed liquor is successively through rotary drum filtration, Plate Filtration and micro-filtrate membrane filtration removing large granular impurity.
Described step A, the temperature of nanofiltration membrane is 40-60 DEG C, and the temperature of ceramic membrane filter is 60-80 DEG C.
Embodiment 12
The present embodiment is substantially the same manner as Example 9, on this basis:
The ceramic membrane filter of described step A, feed liquid first enters ceramic membrane device through thin up, and add water to feed liquid gradation in working cycle, total amount of water is 5 times of material liquid volume, and gained concentrated solution volume is identical with stock liquid volume.
Described step A, containing alkali 3g/l in the concentrated solution of ceramic membrane filter, containing half fine 60g/l.
Described pre-filtering refers to, pressed liquor is successively through rotary drum filtration, Plate Filtration and micro-filtrate membrane filtration removing large granular impurity.
Described step A, the temperature of nanofiltration membrane is 40 DEG C, and the temperature of ceramic membrane filter is 60 DEG C.
Embodiment 13
The present embodiment is substantially the same manner as Example 9, on this basis:
The ceramic membrane filter of described step A, feed liquid first enters ceramic membrane device through thin up, and add water to feed liquid gradation in working cycle, total amount of water is 5 times of material liquid volume, and gained concentrated solution volume is identical with stock liquid volume.
Described step A, containing alkali 2.5g/l in the concentrated solution of ceramic membrane filter, containing half fine 55g/l.
Described pre-filtering refers to, pressed liquor is successively through rotary drum filtration, Plate Filtration and micro-filtrate membrane filtration removing large granular impurity.
Described step A, the temperature of nanofiltration membrane is 60 DEG C, and the temperature of ceramic membrane filter is 80 DEG C.
Described step A, the mistake mould difference of nanofiltration membrane is 4bar, and the mistake mould difference of ceramic membrane is 6bar.
Embodiment 14
The present embodiment is substantially the same manner as Example 8, on this basis:
The ceramic membrane filter of described step A, feed liquid first enters ceramic membrane device through thin up, and add water to feed liquid gradation in working cycle, total amount of water is 5 times of material liquid volume, and gained concentrated solution volume is identical with stock liquid volume.
Described step A, containing alkali 3.5g/l in the concentrated solution of ceramic membrane filter, containing half fine 45 g/l.
Described pre-filtering refers to, pressed liquor is successively through rotary drum filtration, Plate Filtration and micro-filtrate membrane filtration removing large granular impurity.
Described step A, the temperature of nanofiltration membrane is 50 DEG C, and the temperature of ceramic membrane filter is 70 DEG C.
Described step A, the mistake mould difference of nanofiltration membrane is 3bar, and the mistake mould difference of ceramic membrane is 5bar.
Described step A, the flow of feed liquid in nanofiltration membrane is 25m 3/ h, the flow in ceramic membrane is 200m 3/ h.
Embodiment 15
The present embodiment is substantially the same manner as Example 8, on this basis:
The ceramic membrane filter of described step A, feed liquid first enters ceramic membrane device through thin up, and add water to feed liquid gradation in working cycle, total amount of water is 5 times of material liquid volume, and gained concentrated solution volume is identical with stock liquid volume.
Described step A, containing alkali 3.7g/l in the concentrated solution of ceramic membrane filter, containing half fine 65g/l.
Described pre-filtering refers to, pressed liquor is successively through rotary drum filtration, Plate Filtration and micro-filtrate membrane filtration removing large granular impurity.
Described step A, the temperature of nanofiltration membrane is 45 DEG C, and the temperature of ceramic membrane filter is 65 DEG C.
Described step A, the mistake mould difference of nanofiltration membrane is 3.2bar, and the mistake mould difference of ceramic membrane is 5.2bar.
Described step A, the flow of feed liquid in nanofiltration membrane is 40m 3/ h, the flow in ceramic membrane is 250m 3/ h.
Described step A, it is 26.8m that the list of nanofiltration membrane props up filtration area 2, it is 0.6m that the list of ceramic membrane props up filtration area 2.
Embodiment 16
The present embodiment is substantially the same manner as Example 9, on this basis:
The ceramic membrane filter of described step A, feed liquid first enters ceramic membrane device through thin up, and add water to feed liquid gradation in working cycle, total amount of water is 5 times of material liquid volume, and gained concentrated solution volume is identical with stock liquid volume.
Described step A, containing alkali 3.2g/l in the concentrated solution of ceramic membrane filter, containing half fine 75g/l.
Described pre-filtering refers to, pressed liquor is successively through rotary drum filtration, Plate Filtration and micro-filtrate membrane filtration removing large granular impurity.
Described step A, the temperature of nanofiltration membrane is 55 DEG C, and the temperature of ceramic membrane filter is 75 DEG C.
Described step A, the mistake mould difference of nanofiltration membrane is 3.5bar, and the mistake mould difference of ceramic membrane is 5.2bar.
Described step A, the flow of feed liquid in nanofiltration membrane is 30m 3/ h, the flow in ceramic membrane is 220m 3/ h.
Described step A, it is 26.8m that the list of nanofiltration membrane props up filtration area 2, it is 0.6m that the list of ceramic membrane props up filtration area 2.
Embodiment 17
The present embodiment is substantially the same manner as Example 7, on this basis:
Described step B, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value be 4.
Embodiment 18
The present embodiment is substantially the same manner as Example 8, on this basis:
Described step B, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value be 5.
Described step C, prozyme is zytase, cellulase and polygalacturonase, and ratio is 3:2:1.
Embodiment 19
The present embodiment is substantially the same manner as Example 9, on this basis:
Described step B, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value be 4.5.
Described step C, prozyme is zytase, cellulase and polygalacturonase, and ratio is 3:2:1.
The enzymolysis time of described enzyme digestion reaction is 0.5h, and temperature is 60 DEG C, and the pH value of enzyme digestion reaction is 4.5.
Embodiment 20
The present embodiment is substantially the same manner as Example 15, on this basis:
Described step B, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value be 4.6.
Described step C, prozyme is zytase, cellulase and polygalacturonase, and ratio is 3:2:1.
The enzymolysis time of described enzyme digestion reaction is 2h, and temperature is 50 DEG C, and the pH value of enzyme digestion reaction is 4.6.
The enzyme concentration of described enzyme digestion reaction is 0.5%.
Embodiment 21
The present embodiment is substantially the same manner as Example 16, on this basis:
Described step B, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value 4.
Described step C, prozyme is zytase, cellulase and polygalacturonase, and ratio is 3:2:1.
The enzymolysis time of described enzyme digestion reaction is 1h, and temperature is 52 DEG C, and the pH value of enzyme digestion reaction is 4.
The enzyme concentration of described enzyme digestion reaction is 1.5%.
Described D step, the amount adding candidiasis is 1%.
Embodiment 22
The present embodiment is substantially the same manner as Example 16, on this basis:
Described step B, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value be 5.
Described step C, prozyme is zytase, cellulase and polygalacturonase, and ratio is 3:2:1.
The enzymolysis time of described enzyme digestion reaction is 1.5h, and temperature is 55 DEG C, and the pH value of enzyme digestion reaction is 5.
The enzyme concentration of described enzyme digestion reaction is 1%.
Described D step, the amount adding candidiasis is 0.8%.
Add wood sugar in the enzymolysis solution of described D step, add-on is 1.2%.
Embodiment 23
The present embodiment is substantially the same manner as Example 16, on this basis:
Described step B, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value be 4.2.
Described step C, prozyme is zytase, cellulase and polygalacturonase, and ratio is 3:2:1.
The enzymolysis time of described enzyme digestion reaction is 0.6h, and temperature is 52 DEG C, and the pH value of enzyme digestion reaction is 4.2.
The enzyme concentration of described enzyme digestion reaction is 0.6%.
Described D step, the amount adding candidiasis is 0.5%.
Add wood sugar in the enzymolysis solution of described D step, add-on is 1%.
Described E step, the aperture of described ultra-filtration membrane is 0.001 micron.
Described D step, the molecular weight cut-off of nanofiltration membrane is 100.
The mistake mould difference of described nanofiltration membrane is 3bar, and temperature is 30 DEG C, and single filtration area is 26.8 m 2.
Embodiment 24
The present embodiment is substantially the same manner as Example 16, on this basis:
Described step B, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value be 4.5.
Described step C, prozyme is zytase, cellulase and polygalacturonase, and ratio is 3:2:1.
The enzymolysis time of described enzyme digestion reaction is 1.5h, and temperature is 58 DEG C, and the pH value of enzyme digestion reaction is 4.5.
The enzyme concentration of described enzyme digestion reaction is 0.8%.
Described D step, the amount adding candidiasis is 0.6%.
Add wood sugar in the enzymolysis solution of described D step, add-on is 1.5%.
Described E step, the aperture of described ultra-filtration membrane is 0.005 micron.
Enzymolysis solution is 60m by the flow of ultra-filtration membrane 3/ h, temperature is 30 DEG C, and crossing mould difference is 2bar.
Described D step, the molecular weight cut-off of nanofiltration membrane is 120.
The mistake mould difference of described nanofiltration membrane is 4bar, and temperature is 40 DEG C, and single filtration area is 26.8 m 2.
Described D step, the material liquid volume before nanofiltration membrane concentrates is 10 times of concentrated solution volume.
Embodiment 25
The present embodiment is substantially the same manner as Example 16, on this basis:
Described step B, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value be 4.
Described step C, prozyme is zytase, cellulase and polygalacturonase, and ratio is 3:2:1.
The enzymolysis time of described enzyme digestion reaction is 0.7h, and temperature is 52 DEG C, and the pH value of enzyme digestion reaction is 4.
The enzyme concentration of described enzyme digestion reaction is 0.8%.
Described D step, the amount adding candidiasis is 0.7%.
Add wood sugar in the enzymolysis solution of described D step, add-on is 1.3%.
Described E step, the aperture of described ultra-filtration membrane is 0.002 micron.
Enzymolysis solution is 80m by the flow of ultra-filtration membrane 3/ h, temperature is 40 DEG C, and crossing mould difference is 3bar.
Described D step, the molecular weight cut-off of nanofiltration membrane is 150.
The mistake mould difference of described nanofiltration membrane is 3.5bar, and temperature is 32 DEG C, and single filtration area is 26.8 m 2.
Described D step, the material liquid volume before nanofiltration membrane concentrates is 15 times of concentrated solution volume.
The activated carbon decolorizing of described D step refers to: adjusted to ph is 4, adds gac, at 50 DEG C, adsorb 1h.
The specific conductivity obtaining Xylitol is 8500 μ s/cm, and ignition residue is 4%.
Embodiment 26
The present embodiment is substantially the same manner as Example 16, on this basis:
Described step B, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value be 5.
Described step C, prozyme is zytase, cellulase and polygalacturonase, and ratio is 3:2:1.
The enzymolysis time of described enzyme digestion reaction is 2h, and temperature is 56 DEG C, and the pH value of enzyme digestion reaction is 5.
The enzyme concentration of described enzyme digestion reaction is 1.2%.
Described D step, the amount adding candidiasis is 0.8%.
Add wood sugar in the enzymolysis solution of described D step, add-on is 1.4%.
Described E step, the aperture of described ultra-filtration membrane is 0.003 micron.
Enzymolysis solution is 70m by the flow of ultra-filtration membrane 3/ h, temperature is 34 DEG C, and crossing mould difference is 2.5bar.
Described D step, the molecular weight cut-off of nanofiltration membrane is 180.
The mistake mould difference of described nanofiltration membrane is 3.6bar, and temperature is 35 DEG C, and single filtration area is 26.8 m 2.
Described D step, the material liquid volume before nanofiltration membrane concentrates is 12 times of concentrated solution volume.
The activated carbon decolorizing of described D step refers to: adjusted to ph is 5, adds gac, at 60 DEG C, adsorb 0.5h.
The specific conductivity obtaining Xylitol is 9000 μ s/cm, and ignition residue is 5%.
Embodiment 27
The present embodiment is substantially the same manner as Example 8, on this basis:
Described step B, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value be 4.3.
Described step C, prozyme is zytase, cellulase and polygalacturonase, and ratio is 3:2:1.
The enzymolysis time of described enzyme digestion reaction is 0.9h, and temperature is 53 DEG C, and the pH value of enzyme digestion reaction is 4.3.
The enzyme concentration of described enzyme digestion reaction is 1.1%.
Described D step, the amount adding candidiasis is 0.9%.
Add wood sugar in the enzymolysis solution of described D step, add-on is 1.1%.
Described E step, the aperture of described ultra-filtration membrane is 0.002 micron.
Enzymolysis solution is 65m by the flow of ultra-filtration membrane 3/ h, temperature is 32 DEG C, and crossing mould difference is 2.3bar.
Described D step, the molecular weight cut-off of nanofiltration membrane is 105.
The mistake mould difference of described nanofiltration membrane is 3.6bar, and temperature is 36 DEG C, and single filtration area is 26.8 m 2.
Described D step, the material liquid volume before nanofiltration membrane concentrates is 13 times of concentrated solution volume.
The activated carbon decolorizing of described D step refers to: adjusted to ph is 4.5, adds gac, at 52 DEG C, adsorb 0.6h.
The ion-exchange of described D step refers to: concentrated solution first by positive post, then falls charged impurity by cloudy post exchange adsorption.
The specific conductivity obtaining Xylitol is 10000 μ s/cm, and ignition residue is 6%.
Embodiment 28
The present embodiment is substantially the same manner as Example 9, on this basis:
Described step B, concentrated solution acid neutralization, refers to and adds hydrochloric acid neutralization, make pH value be 4.5.
Described step C, prozyme is zytase, cellulase and polygalacturonase, and ratio is 3:2:1.
The enzymolysis time of described enzyme digestion reaction is 1.5h, and temperature is 56 DEG C, and the pH value of enzyme digestion reaction is 4.5.
The enzyme concentration of described enzyme digestion reaction is 0.8%.
Described D step, the amount adding candidiasis is 0.5-1%.
Add wood sugar in the enzymolysis solution of described D step, add-on is 1.5%.
Described E step, the aperture of described ultra-filtration membrane is 0.005 micron.
Enzymolysis solution is 75m by the flow of ultra-filtration membrane 3/ h, temperature is 36 DEG C, and crossing mould difference is 2.6bar.
Described D step, the molecular weight cut-off of nanofiltration membrane is 120.
The mistake mould difference of described nanofiltration membrane is 3bar, and temperature is 32 DEG C, and single filtration area is 26.8 m 2.
Described D step, the material liquid volume before nanofiltration membrane concentrates is 12 times of concentrated solution volume.
The activated carbon decolorizing of described D step refers to: adjusted to ph is 4.5, adds gac, at 53 DEG C, adsorb 0.6h.
The ion-exchange of described D step refers to: concentrated solution first by positive post, then falls charged impurity by cloudy post exchange adsorption.
The specific conductivity obtaining Xylitol is 8000 μ s/cm, and ignition residue is 3%.

Claims (21)

1. viscose fiber press lye prepares a method for Xylitol, it is characterized in that: concrete technology step is as follows:
A, membrane concentration
The press lye that viscose fiber is produced is first through pre-filtering removing large granular impurity, permeate is after thin up, enter one-level nanofiltration membrane treatment, secondary nanofiltration membrane treatment is entered after gained primary concentration liquid thin up, enter ceramic membrane process after gained secondary concentration liquid thin up, gained concentrated solution is the concentrated solution of press lye;
B, extraction half fibre
By the concentrated solution acid neutralization of press lye, obtain half fine liquid;
C, enzymolysis
In half fine liquid, add prozyme, enzyme digestion reaction occurs and obtains enzymolysis solution;
D, fermentation
Enzymolysis solution at the effect bottom fermentation of candidiasis, 50-60 DEG C of bottom fermentation 0.5-2h;
E, purification
Fermented liquid is through ultrafiltration removal of impurities, and permeate is through nanofiltration membrane desalination, and gained concentrated solution is the refined solution of Xylitol, through ion-exchange, activated carbon treatment, condensing crystal, separation, obtains Xylitol.
2. a kind of viscose fiber press lye according to claim 1 prepares the method for Xylitol, it is characterized in that: described step A, the molecular weight cut-off of one-level nanofiltration membrane is 200-300, and the molecular weight cut-off of secondary nanofiltration membrane is 300-400, and ceramic membrane interception molecular weight is 800-1500.
3. a kind of viscose fiber press lye according to claim 1 prepares the method for Xylitol, it is characterized in that: described step A, before one-level nanofiltration membrane and secondary nanofiltration membrane, the amount of thin up is 1 times of stock liquid volume, and the volume of gained concentrated solution is identical with stock liquid volume.
4. a kind of viscose fiber press lye according to claim 3 prepares the method for Xylitol, it is characterized in that: described permeate contains alkali 200-300g/l, containing half fine 40-80 g/l; Primary concentration liquid contains alkali 100-150g/l, containing half fine 40-80 g/l; Secondary concentration liquid contains alkali 50-75g/l, containing half fine 40-80g/l.
5. a kind of viscose fiber press lye according to claim 1 prepares the method for Xylitol, it is characterized in that: described step A, feed liquid first enters ceramic membrane device through thin up, add water to feed liquid gradation in working cycle, total amount of water is 5 times of material liquid volume, and gained concentrated solution volume is identical with stock liquid volume.
6. a kind of viscose fiber press lye according to claim 5 prepares the method for Xylitol, it is characterized in that: containing alkali 2-4g/l in the concentrated solution of described ceramic membrane filter, containing half fine 40-80 g/l.
7. a kind of viscose fiber press lye according to claim 1 prepares the method for Xylitol, it is characterized in that: described step A, and the temperature of nanofiltration membrane is 40-60 DEG C, and the temperature of ceramic membrane filter is 60-80 DEG C.
8. a kind of viscose fiber press lye according to claim 1 prepares the method for Xylitol, it is characterized in that: described step A, and the mistake mould difference of nanofiltration membrane is 3-4bar, and the mistake mould difference of ceramic membrane is 5-6bar.
9. a kind of viscose fiber press lye according to claim 1 prepares the method for Xylitol, it is characterized in that: described step A, and the flow of feed liquid in nanofiltration membrane is 25-40m 3/ h, the flow in ceramic membrane is 200-250m 3/ h.
10. a kind of viscose fiber press lye according to claim 1 prepares the method for Xylitol, it is characterized in that: described step A, and it is 26.8m that the list of nanofiltration membrane props up filtration area 2, it is 0.6m that the list of ceramic membrane props up filtration area 2.
11. a kind of viscose fiber press lyes according to claim 1 prepare the method for Xylitol, it is characterized in that: described step B, concentrated solution acid neutralization, refer to and add hydrochloric acid neutralization, make pH value be 4-5.
12. a kind of viscose fiber press lyes according to claim 1 prepare the method for Xylitol, and it is characterized in that: described step C, prozyme is zytase, cellulase and polygalacturonase, and ratio is 3:2:1.
13. a kind of viscose fiber press lyes according to claim 12 prepare the method for Xylitol, it is characterized in that: the enzymolysis time of described enzyme digestion reaction is 0.5-2h, and temperature is 50-60 DEG C, and the pH value of enzyme digestion reaction is 4-5.
14. a kind of viscose fiber press lyes according to claim 12 prepare the method for Xylitol, it is characterized in that: the enzyme concentration of described enzyme digestion reaction is 0.5-1.5%.
15. a kind of viscose fiber press lyes according to claim 1 prepare the method for Xylitol, it is characterized in that: described D step, and the amount adding candidiasis is 0.5-1%.
16. a kind of viscose fiber press lyes according to claim 1 prepare the method for Xylitol, and it is characterized in that: add wood sugar in the enzymolysis solution of described D step, add-on is 1-1.5%.
17. a kind of viscose fiber press lyes according to claim 1 prepare the method for Xylitol, it is characterized in that: described E step, and the aperture of described ultra-filtration membrane is 0.001-0.005 micron.
18. a kind of viscose fiber press lyes according to claim 17 prepare the method for Xylitol, it is characterized in that: enzymolysis solution is 60-80m by the flow of ultra-filtration membrane 3/ h, temperature is 30-40 DEG C, and crossing mould difference is 2-3bar.
19. a kind of viscose fiber press lyes according to claim 1 prepare the method for Xylitol, it is characterized in that: described D step, and the molecular weight cut-off of nanofiltration membrane is 100-200.
20. a kind of viscose fiber press lyes according to claim 19 prepare the method for Xylitol, it is characterized in that: the mistake mould difference of described nanofiltration membrane is 3-4bar, and temperature is 30-40 DEG C, and single filtration area is 26.8 m 2.
21. a kind of viscose fiber press lyes according to claim 1 prepare the method for Xylitol, it is characterized in that: described D step, and the material liquid volume before nanofiltration membrane concentrates is 10-15 times of concentrated solution volume.
CN201410622094.6A 2014-11-07 2014-11-07 Method for preparing xylitol from viscose fiber squeezed alkali liquor Withdrawn CN104357493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410622094.6A CN104357493A (en) 2014-11-07 2014-11-07 Method for preparing xylitol from viscose fiber squeezed alkali liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410622094.6A CN104357493A (en) 2014-11-07 2014-11-07 Method for preparing xylitol from viscose fiber squeezed alkali liquor

Publications (1)

Publication Number Publication Date
CN104357493A true CN104357493A (en) 2015-02-18

Family

ID=52524801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410622094.6A Withdrawn CN104357493A (en) 2014-11-07 2014-11-07 Method for preparing xylitol from viscose fiber squeezed alkali liquor

Country Status (1)

Country Link
CN (1) CN104357493A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420313A (en) * 2015-12-15 2016-03-23 宜宾雅泰生物科技有限公司 Method for preparing feed-grade xylo-oligosaccharide through viscose squeezed alkali liquid
CN105420292A (en) * 2015-12-15 2016-03-23 宜宾雅泰生物科技有限公司 Method for preparing xylitol through viscose squeezed alkali liquid
CN105420312A (en) * 2015-12-15 2016-03-23 宜宾雅泰生物科技有限公司 Method for preparing food-grade xylo-oligosaccharide through viscose squeezed alkali liquid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776244A (en) * 2012-06-21 2012-11-14 北京化工大学 Process for producing polyatomic sugar alcohol and lignin by comprehensively using agricultural and forestry wasters of corncobs
CN103572635A (en) * 2013-05-28 2014-02-12 上海凯鑫分离技术有限公司 Processing and recovering process of chemical fiber pulp cellulose alkali pressed liquor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776244A (en) * 2012-06-21 2012-11-14 北京化工大学 Process for producing polyatomic sugar alcohol and lignin by comprehensively using agricultural and forestry wasters of corncobs
CN103572635A (en) * 2013-05-28 2014-02-12 上海凯鑫分离技术有限公司 Processing and recovering process of chemical fiber pulp cellulose alkali pressed liquor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张化文: "粘胶纤维废碱液纳滤回收装置技术运行分析", 《绿色科技》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420313A (en) * 2015-12-15 2016-03-23 宜宾雅泰生物科技有限公司 Method for preparing feed-grade xylo-oligosaccharide through viscose squeezed alkali liquid
CN105420292A (en) * 2015-12-15 2016-03-23 宜宾雅泰生物科技有限公司 Method for preparing xylitol through viscose squeezed alkali liquid
CN105420312A (en) * 2015-12-15 2016-03-23 宜宾雅泰生物科技有限公司 Method for preparing food-grade xylo-oligosaccharide through viscose squeezed alkali liquid

Similar Documents

Publication Publication Date Title
CN102643935B (en) Method for preparing xylose by using squeezed waste alkali liquor in viscose fiber production process
CN104099431B (en) Method for extracting xylose from viscoce chemical fiber squeezed alkali liquor
CN104311391B (en) Membrane concentration process for producing xylitol by using viscose fiber squeezed liquid as raw material
CN102452898B (en) Method for producing crystalline xylitol by using membrane technology and indirect electroreduction method
CN106397630B (en) A method of Sodium Hyaluronate is extracted using membrane separation technique
CN101306993B (en) Refine process of L-lactic acid of polymerization grade
CN104311702A (en) Method for extracting hemicellulose from viscose squeezing alkali liquor
CN104357493A (en) Method for preparing xylitol from viscose fiber squeezed alkali liquor
CN105969916A (en) Method for preparing xylose by taking squeezed alkali liquid obtained in production of viscose as raw material
CN104357513A (en) Electrodialysis process for preparing food-grade xylo-oligosaccharide from viscose fiber squeezed alkali liquor
CN104404104A (en) Method for preparing food-grade xylo-oligosaccharide from viscose fiber squeezed alkali solution
CN106555014A (en) A kind of technique that xylose is prepared as raw material with viscose rayon press lye
CN106191325A (en) The technique that a kind of press lye produced with viscose rayon prepares xylose for raw material
CN103804523A (en) Method for preparing high-purity enoxaparin
CN104496756B (en) The electrodialysis process of xylitol is prepared with viscose rayon press lye for raw material
CN104357591A (en) Process for producing feed-grade xylo-oligosaccharide from viscose fiber squeezed alkali liquor
CN104357494A (en) Process for producing xylitol from viscose fiber squeezed alkali liquor
CN104357492A (en) Membrane concentration process for preparing xylitol from viscose production pressed liquor
CN103539688B (en) A kind of method of separation and Extraction Serine from Corynebacterium glutamicum fermented liquid
CN104357515A (en) Method for preparing feed-grade xylo-oligosaccharide from viscose fiber squeezed alkali liquor
CN104402676A (en) Membrane filtration technology for preparing xylitol from viscose fiber squeezed alkali solution
CN101514155A (en) Method for separating and extracting pyruvic acid from fermentation broth by an ion exchange method
CN106977442A (en) A kind of extraction process of hydroxyproline
CN102276751A (en) Method for extracting glycosaminoglycan from bullacta exarata
CN104311706A (en) Electrodialysis technology for exacting semi fibers by using viscose fiber pressed alkali liquor as raw materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: YIBIN GRACE GROUP COMPANY

Free format text: FORMER OWNER: YIBIN YATAI BIO-TECHNOLOGY CO., LTD.

Effective date: 20150811

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20150811

Address after: 644002 Yibin Province Economic and Technological Development Zone on the South Bank of the road space

Applicant after: Yibin Grace Group Company

Address before: 644002 Yibin City, Sichuan province Chui Ping Industrial Park District Canton Town salt Pingba

Applicant before: YIBIN YATAI BIOTECHNOLOGY CO., LTD.

WW01 Invention patent application withdrawn after publication

Application publication date: 20150218

WW01 Invention patent application withdrawn after publication