CN104347851A - Novel ternary composite battery positive pole material and preparation method thereof - Google Patents

Novel ternary composite battery positive pole material and preparation method thereof Download PDF

Info

Publication number
CN104347851A
CN104347851A CN201410464047.3A CN201410464047A CN104347851A CN 104347851 A CN104347851 A CN 104347851A CN 201410464047 A CN201410464047 A CN 201410464047A CN 104347851 A CN104347851 A CN 104347851A
Authority
CN
China
Prior art keywords
solution
preparation
analyzes pure
heating
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410464047.3A
Other languages
Chinese (zh)
Inventor
屈婧婧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410464047.3A priority Critical patent/CN104347851A/en
Publication of CN104347851A publication Critical patent/CN104347851A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention discloses a novel ternary composite battery positive pole material and a preparation method thereof. The preparation method comprises the steps of mixing a LiAC saturated solution, a Mn(AC)2 saturated solution and a Sc(AC)2 saturated solution according to the proportion of Li to Mn to Sc being 1 to 0.5 to 0.5, uniformly rocking ceaselessly; firstly adding a certain quantity of citric acid (C6H8O7) saturated water solutions to a mixed solution, then regulating the pH value of the solution to be 6.0-7.0 by using ammonia, then heating an obtained solution in a water bath under the condition of magnetic stirring, and stopping heating when pink gel appears in the solution, directly arranging the obtained gel into a box type furnace, and drying and dehydrating at 100-150 DEG C for 3-6 hours; finally carrying out high-temperature calcination on the obtained dry gel for 10-15 hours, and grinding after the calcination to obtain a finial product.

Description

A kind of novel tertiary composite battery positive electrode and preparation method thereof
Technical field
The present invention relates to a kind of cell positive material and preparation method thereof, particularly a kind of tri compound cell positive material and preparation method thereof.
Background technology
Along with the development of science and technology and the raising of the people's material and cultural life level, the demand of people to battery is increasing, also more and more higher to the requirement of the performance of battery.Particularly along with the development of space technology and the demand of military equipment; the appearance of industrial in a large number, civilian, the portable medical electronic product that the fast development of information and microelectronics industry brings; the Study and Development of electric automobile; and the enhancing of environmental protection consciousness, people are little to volume, lightweight; high-energy; safe and reliable, pollution-free, the demand of the battery used that can repeatedly charge is more urgent.
Lithium battery is a class is negative material, the battery using non-aqueous electrolytic solution by lithium metal or lithium alloy.The lithium battery occurred the earliest comes from great inventor Edison, uses following reaction: Li+MnO 2=LiMnO 2this reaction is redox reaction, electric discharge.Lithium ion battery gains great popularity because of advantages such as its voltage are high, energy density is high, have extended cycle life, environmental pollution is little, but along with the fast development of electronic information technology, it is also proposed higher requirement to the performance of lithium ion battery.Positive electrode is as the material of most critical in current lithium ion battery, and its development also merits attention most.
Anode material for lithium-ion batteries common at present mainly contains cobalt acid lithium, the LiMn2O4 of spinel structure and the LiFePO4 of olivine structural of layer structure.Wherein, cobalt acid lithium (LiCoO 2) preparation technology is simple, charging/discharging voltage is higher, and cycle performance is excellent and obtain extensive use.But because cobalt resource is rare, cost is higher, environmental pollution is comparatively large and anti-over-charging ability is poor, its development space is restricted.LiMn2O4 is except the LiMn of spinel structure 2o 4outward, the LiMnO of layer structure is also had 2.Its laminate LiMnO 2specific capacity is comparatively large, but it belongs to thermodynamics metastable state, structural instability, there is Jahn-Teller effect and cycle performance is poor.Spinel structure LiMn 2o 4technique is simple, and cheap, charging/discharging voltage is high, environmentally friendly, and security performance is excellent, but specific capacity is lower, and under high temperature, capacity attenuation is more serious.LiFePO4 belongs to newer positive electrode, and its fail safe is high, cost is lower, but has that discharge voltage low (3.4V), tap density are low, the not yet deficiency such as batch production.The shortcoming of above-mentioned several positive electrode all constrains the further application of self.Therefore, develop composite positive pole and become one of research direction of anode material for lithium-ion batteries.Wherein, stratiform Li-Mn-Sc-O series material (abbreviation ternary material) has had both respective advantage preferably, compensate for respective deficiency, has the features such as height ratio capacity, cost is lower, stable cycle performance, security performance are better.
Summary of the invention
The object of this invention is to provide a kind of novel tertiary composite battery positive electrode and preparation method thereof.
For realizing this purpose, the present invention is achieved through the following technical solutions:
Sol-gal process is adopted to prepare a kind of novel tertiary composite battery positive electrode.
A preparation method for novel tertiary composite battery positive electrode, comprises the steps:
(1) respectively by lithium salts (LiAC 2H 2o, analyzes pure) and manganese salt (Mn (AC) 24H 2o, analyzes pure), scandium salts (Sc (AC) 24H 2o, analyzes pure) be made into saturated solution;
(2), in the saturated solution that the ratio blend step of Li:Mn:Sc=1:0.5:0.5 is (1) joined, do not stop to shake up;
(3) toward adding a certain amount of citric acid (C in (2) 6h 8o 7h 2o, analyzes pure) saturated aqueous solution, does not stop to shake up;
(4) add and (3) middle solution ph will be adjusted to 6.0-7.0 with ammoniacal liquor;
(5), by (4) middle gained solution is in the Water Under bath heating of magnetic agitation, heating-up temperature is 50-60 DEG C, and mixing speed is 100-120r/min;
(6), when (5) pink gel appears in middle solution, stop heating;
(7) gained gel is directly put into box type furnace at 100-150 DEG C of drying and dehydrating 3-6 hour;
(8) xerogel is being put into high-temperature calcination 10-15h, then grinding and namely obtain final products.
The present invention has following advantages and characteristic:
(1) feed components can reach the Homogeneous phase mixing of atomic level, and product uniformity is good;
(2) metering is than can accurately control, and product purity is high;
(3) product particle size is little, narrow diameter distribution, accurately controls by changing technological parameter;
(4) heat treatment temperature and heat treatment time can significantly reduce.
Embodiment one:
Get a certain amount of lithium salts (LiAC 2H respectively 2o, analyzes pure) and manganese salt (Mn (AC) 24H 2o, analyzes pure), scandium salts (Sc (AC) 24H 2o, analyzes pure), be made into saturated solution respectively with deionized water, then mix the saturated solution of joining in the ratio of Li:Mn:Sc=1:0.5:0.5, do not stop to shake up, wait after mixing, more slowly add a certain amount of citric acid (C 6h 8o 7h 2o, analyzes pure) saturated solution, add simultaneously otherwise stop shaking up, then with ammoniacal liquor, solution ph being adjusted to 6.0, after mixing up, by the Water Under bath heating of gained solution in magnetic agitation, heating-up temperature is 50 DEG C, and mixing speed is 100r/min; When pink gel appears in solution, stop heating; Gained gel is directly put into box type furnace 100 DEG C of drying and dehydratings 3 hours; Xerogel is being put into high-temperature calcination 10h, is then grinding and namely obtain final products.
Embodiment two:
Get a certain amount of lithium salts (LiAC 2H respectively 2o, analyzes pure) and manganese salt (Mn (AC) 24H 2o, analyzes pure), scandium salts (Sc (AC) 24H 2o, analyzes pure), be made into saturated solution respectively with deionized water, then mix the saturated solution of joining in the ratio of Li:Mn:Sc=1:0.5:0.5, do not stop to shake up, wait after mixing, more slowly add a certain amount of citric acid (C 6h 8o 7h 2o, analyzes pure) saturated solution, add simultaneously otherwise stop shaking up, then with ammoniacal liquor, solution ph being adjusted to 6.5, after mixing up, by the Water Under bath heating of gained solution in magnetic agitation, heating-up temperature is 55 DEG C, and mixing speed is 110r/min; When pink gel appears in solution, stop heating; Gained gel is directly put into box type furnace 130 DEG C of drying and dehydratings 4.5 hours; Xerogel is being put into high-temperature calcination 13h, is then grinding and namely obtain final products.
Embodiment three:
Get a certain amount of lithium salts (LiAC 2H respectively 2o, analyzes pure) and manganese salt (Mn (AC) 24H 2o, analyzes pure), scandium salts (Sc (AC) 24H 2o, analyzes pure), be made into saturated solution respectively with deionized water, then mix the saturated solution of joining in the ratio of Li:Mn:Sc=1:0.5:0.5, do not stop to shake up, wait after mixing, more slowly add a certain amount of citric acid (C 6h 8o 7h 2o, analyzes pure) saturated solution, add simultaneously otherwise stop shaking up, then with ammoniacal liquor, solution ph being adjusted to 7.0, after mixing up, by the Water Under bath heating of gained solution in magnetic agitation, heating-up temperature is 60 DEG C, and mixing speed is 120r/min; When pink gel appears in solution, stop heating; Gained gel is directly put into box type furnace 150 DEG C of drying and dehydratings 6 hours; Xerogel is being put into high-temperature calcination 15h, is then grinding and namely obtain final products.

Claims (5)

1. a novel tertiary composite battery positive electrode adopts sol-gal process preparation method.
2. it is characterized in that, this preparation method carries out according to the following steps:
(1) respectively by lithium salts (LiAC 2H 2o, analyzes pure) and manganese salt (Mn (AC) 24H 2o, analyzes pure), scandium salts (Sc (AC) 24H 2o, analyzes pure) be made into saturated solution;
(2), in the saturated solution that the ratio blend step of Li:Mn:Sc=1:0.5:0.5 is (1) joined, do not stop to shake up;
(3) toward adding a certain amount of citric acid (C in (2) 6h 8o 7h 2o, analyzes pure) saturated aqueous solution, does not stop to shake up;
(4) add and (3) middle solution ph will be adjusted to 6.0-7.0 with ammoniacal liquor;
(5) by the Water Under bath heating of gained solution in (4) in magnetic agitation;
(6), when (5) pink gel appears in middle solution, stop heating;
(7) gained gel is directly put into box type furnace drying and dehydrating 3-6 hour;
(8) xerogel is being put into high-temperature calcination 10-15h, then grinding and namely obtain final products.
3. according to claim 1 step (5) in, it is characterized in that, heating-up temperature is 50-60 DEG C, and mixing speed is 100-120r/min.
4. according to claim 1 step (7) in, it is characterized in that, box type furnace keep temperature control within the scope of 100-150 DEG C.
5. according to claim 1 step (8) in, it is characterized in that, high-temperature calcination temperature controls within the scope of 500-600 DEG C.
CN201410464047.3A 2014-09-14 2014-09-14 Novel ternary composite battery positive pole material and preparation method thereof Pending CN104347851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410464047.3A CN104347851A (en) 2014-09-14 2014-09-14 Novel ternary composite battery positive pole material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410464047.3A CN104347851A (en) 2014-09-14 2014-09-14 Novel ternary composite battery positive pole material and preparation method thereof

Publications (1)

Publication Number Publication Date
CN104347851A true CN104347851A (en) 2015-02-11

Family

ID=52503001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410464047.3A Pending CN104347851A (en) 2014-09-14 2014-09-14 Novel ternary composite battery positive pole material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN104347851A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164186A (en) * 2005-04-22 2008-04-16 株式会社Lg化学 New system of lithium ion battery containing material with high irreversible capacity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164186A (en) * 2005-04-22 2008-04-16 株式会社Lg化学 New system of lithium ion battery containing material with high irreversible capacity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
谢燕婷: "锂离子电池正极材料—稀土离子掺杂的尖晶石型LiMn2O4的合成及电化学性能的表征", 《兰州大学博士学位论文》, no. 09, 15 September 2006 (2006-09-15), pages 042 - 17 *
赵桂网等: "稀土镧掺杂层状锰酸锂正极材料的制备与性能", 《稀有金属材料与工程》, vol. 37, no. 4, 30 April 2008 (2008-04-30), pages 709 - 712 *

Similar Documents

Publication Publication Date Title
CN104157831B (en) Lithium-rich manganese-based composite positive pole of the spinel nickel LiMn2O4 of a kind of core shell structure, stratiform and preparation method thereof
CN105428637B (en) Lithium ion battery and preparation method of anode material thereof
CN102569781B (en) High-voltage lithium ion battery cathode material and preparation method thereof
CN105185954B (en) A kind of LiAlO2Coat LiNi1-xCoxO2Anode material for lithium-ion batteries and preparation method thereof
CN104218234B (en) A kind of lithium ion battery composite cathode material of high circulation performance and preparation method thereof
CN107403913A (en) A kind of nickel cobalt lithium aluminate cathode material of surface modification and preparation method thereof
CN103606667A (en) Preparation method for manganese solid solution anode material of lithium ion battery material
CN102315450A (en) Hydrothermal synthesis preparation method of ion doping high-performance lithium iron phosphate
CN104241636A (en) Lithium ion battery manganese anode material with surface wrapped with LiAlO2 and preparation method thereof
CN106058238A (en) Modified spherical nickel cobalt lithium manganate NCM622 anode material and preparation method thereof
CN104218233A (en) Composite lithium ion battery positive electrode material with high rate performance and preparation method of material
CN102931394B (en) Lithium nickel manganese oxide material and preparation method thereof, lithium ion battery containing this material
CN103390748A (en) Preparation method for cladding lithium cobaltoxide cathode material with alumina
CN102903918B (en) Preparation method for manganese phosphate lithium nanosheet
CN106935830A (en) A kind of lithium ion battery composite cathode material and its preparation method and application
CN104821390B (en) A kind of anode material for lithium-ion batteries manganese borate lithium/graphene and preparation method thereof
CN103441239A (en) Synthetic method for nanoscale ternary cathode material
CN103400978A (en) Method for modifying lithium nickel manganese oxide material, lithium nickel manganese oxide material and lithium ion battery
CN106025199A (en) Preparation method of nanometer lithium lanthanum titanate coated 0.5Li2MnO3 0.5LiNi0.5Mn0.5O2 material
CN107256962B (en) A kind of the tertiary cathode material nickel cobalt aluminium and preparation method and application of aluminium foil growth in situ
CN107394171B (en) Preparation method of lithium nickel manganese oxide
CN104201334A (en) Lithium-rich manganese-based anode material for lithium ion battery and preparation method
CN104332615A (en) Li-Mn-Mg ternary composite battery positive material and its preparation method
CN102050496A (en) Preparation method of high-temperature cycle-type lithium manganate
CN105789580A (en) Preparation method for copper-doped lithium zinc titanate nano particles and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150211