CN104341003A - 一种TiO2纳米纱布的制备方法 - Google Patents

一种TiO2纳米纱布的制备方法 Download PDF

Info

Publication number
CN104341003A
CN104341003A CN201410470117.6A CN201410470117A CN104341003A CN 104341003 A CN104341003 A CN 104341003A CN 201410470117 A CN201410470117 A CN 201410470117A CN 104341003 A CN104341003 A CN 104341003A
Authority
CN
China
Prior art keywords
gauze
preparation
nano
nanometer
nanometer gauze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410470117.6A
Other languages
English (en)
Other versions
CN104341003B (zh
Inventor
曹雪波
朱连文
谷俐
张帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN201410470117.6A priority Critical patent/CN104341003B/zh
Publication of CN104341003A publication Critical patent/CN104341003A/zh
Application granted granted Critical
Publication of CN104341003B publication Critical patent/CN104341003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于无机纳米材料制备领域,旨在提供一种TiO2纳米纱布的制备方法。本发明包括如下步骤:钛酸钠(Na2Ti3O7)纳米纱布的制备、钛酸(H2Ti3O7)纳米纱布的制备、TiO2纳米纱布的制备。本发明的有益效果是:本发明中所制得的TiO2纳米纱布具有开放的形态,外来分子或离子可以接触整个TiO2纳米纱布。与普通的纳米TiO2粉末相比,具有一定的宏观效应,且其性能更为优越,制作方法简单,成本低;此类TiO2纳米纱布使得TiO2纳米纤维展现出了独特的整流效应和长程导电性。可以在高温过滤、电子器件、光催化等方面具有广泛的应用。

Description

一种TiO2纳米纱布的制备方法
技术领域
本发明属于无机纳米材料制备领域,具体涉及一种TiO2纳米纱布的制备方法。 
背景技术
近三十年来纳米技术的高速发展,纳米材料的研究已在世界范围内掀起了一阵阵新的浪潮。较一维的纳米结构而言,有序的二维和三维纳米材料具有更优异的整体协同性质。 
碱金属钛酸盐如钛酸钠(Na2Ti3O7)的晶型结构由Ti-O6八面体通过共边和共顶点组成,再形成层状结构,层与层之间的空隙被Na+占据,而Na+可以很容易地被质子或各种金属离子(Li+,Cd2+,Ru3+等)所替代。因此Na2Ti3O7在功能性有机物的吸附和重金属或放射性离子的去除等领域有着非常广泛的应用。但是钛酸盐在光催化活性、结构缺陷、光生电子的湮灭等方面不如TiO2理想。 
TiO2是一种宽带半导体,室温下禁带宽度大于3.2eV。基于能带理论,TiO2在波长小于387.5nm的紫外光照射下,价带上的电子获得光子的能量而跃迁到导带,形成光生电子(e-),而同时在价带中形成了光生空穴(h+)。光生电子(e-)具有高的还原性,可以去除水体中的金属离子;而分布在表面的光生空穴(h+)能将OH-和H2O氧化成OH自由基。OH自由基具有强氧化性,能氧化大部分的有机污染物和无机污染物,最终分解为CO2、H2O和无机物,并将各种有害气体如SO2、H2S、NO和NO2等转化成无毒无害物质。TiO2表现出了优异的光催化氧化性质,但是纳米TiO2颗粒因为过于细小,在水溶液中容易团聚、不易沉降、难以回收;并且光致电子和光致空穴容易发生复合导致光量子效率很低;还有报道证实,纳米粒子对人体存在生物毒性,从而限制了其实际应用。随着对纳米材料研究的不断深入,研究人员发现现有的一维纳米材料并不能完全满足实际应用的需要。 
发明内容
本发明要解决的技术问题是,克服现有技术中的不足,提供一种TiO2纳米纱布的制备方法。 
为解决技术问题,本发明的解决方案是: 
提供一种TiO2纳米纱布的制备方法,包括如下步骤: 
步骤(1):钛酸钠(Na2Ti3O7)纳米纱布的制备 
称取0.02~0.05g钛酸四正丁酯滴加入30~40mL的8~12M的NaOH溶液中,超声处理15~30min,直至形成稳定均一的混合物,然后转移到高压反应釜内,而该反应釜内侧附一层洁净的耐碱耐高温基底,封闭拧紧高压反应釜,置于预热的180~200℃烘箱内反应,水热反应36~60h后自然冷却至室温,将高压反应釜内基底整体取出,浸泡到去离子水中,在基底上分离出一层纱布,用去离子水洗涤至中性即得到钛酸钠纳米纱布,生成的纳米纱布长度为7.5~10cm,宽度为4.5~6cm,厚度约为0.05~0.1mm; 
步骤(2):钛酸(H2Ti3O7)纳米纱布的制备 
将步骤(1)制得的钛酸钠纳米纱布在0.1M的HCl溶液或HNO3溶液中浸泡,使钛酸钠中的Na+被H+取代,浸泡时间不低于12h,用去离子水洗涤至中性即得到钛酸纳米纱布; 
步骤(3):TiO2纳米纱布的制备 
将步骤(2)制得的钛酸纳米纱布经过500~700℃温度下退火处理2~3h,即得到TiO2纳米纱布。 
本发明中,所述步骤(1)中的基底是具有平行纹路的聚四氟乙烯板或聚全氟乙丙烯板,并且使用时,需要保持其洁净度。 
本发明中,所述步骤(1)中的水热反应即为水热合成,在水热合成过程中,钛酸四正丁酯在碱性条件下水解生成超长钛酸钠纳米纤维,同时以基底的平行纹路为框架来引导超长钛酸钠纳米纤维的自组装,最终形成具有宏观形态的钛酸钠纳米纱布。 
与现有技术相比,本发明的有益效果是: 
本发明中所制得的TiO2纳米纱布具有开放的形态,外来分子或离子可以接触整个TiO2纳米纱布。与普通的纳米TiO2粉末相比,具有一定的宏观效应,且其性能更为优越,制作方法简单,成本低; 
此类TiO2纳米纱布使得TiO2纳米纤维展现出了独特的整流效应和长程导电性。可以在高温过滤、电子器件、光催化等方面具有广泛的应用。 
附图说明
图1是TiO2纳米纱布的X射线粉末衍射(XRD)图谱; 
图2是典型TiO2纳米纱布的扫描电镜(SEM)照片,其中:a是TiO2纳米纱布的整体扫描电镜照片;b是TiO2纳米纱布的局部放大扫描电镜照片。 
具体实施方式
以下的实施例可以使本专业技术领域的技术人员更全面的了解本发明,但不以任 何方式限制本发明: 
实施例1 
一种TiO2纳米纱布,其主要成分是TiO2纳米纤维,具体制备工艺过程步骤如下: 
步骤(1):钛酸钠(Na2Ti3O7)纳米纱布的制备 
称取0.05g钛酸四正丁酯滴加入40mL NaOH(12M)溶液中,超声处理25min,直至形成稳定均一的混合物,然后转移到高压反应釜内,而该反应釜内侧附一层洁净的聚全氟乙丙烯板基底,封闭拧紧高压反应釜,置于预热的190℃烘箱内反应48h;反应完毕后自然冷却至室温,将高压反应釜内基底整体取出,浸泡到去离子水中,在基底上分离出一层纱布,用去离子水洗涤至中性即得到钛酸钠纳米纱布,生成的钛酸钠纳米纱布长度为10cm,宽度为6cm,厚度约为0.1mm。 
步骤(2):钛酸(H2Ti3O7)纳米纱布的制备 
将上述钛酸钠纳米纱布在0.1M的HCl溶液中浸泡,使钛酸盐中的Na+被H+取代,浸泡时间不低于12h,用去离子水洗涤至中性即得到钛酸纳米纱布。 
步骤(3):TiO2纳米纱布的制备 
将所得到的钛酸纳米纱布经过500℃温度下退火处理2h,即得到TiO2纳米纱布。 
实施例2 
制备步骤同实施例1,不同之处是:将所得到的钛酸纳米纱布经过500℃温度下退火处理3h,得到TiO2纳米纱布。 
实施例3 
制备步骤同实施例1,不同之处是:将所得到的钛酸纳米纱布经过600℃温度下退火处理2h,得到TiO2纳米纱布。 
实施例4 
制备步骤同实施例1,不同之处是:将所得到的钛酸纳米纱布经过600℃温度下退火处理3h,得到TiO2纳米纱布。 
实施例5 
制备步骤同实施例1,不同之处是:将所得到的钛酸纳米纱布经过700℃温度下退火处理3h,得到TiO2纳米纱布。 
实施例6 
制备步骤同实施例1,不同之处是:称取0.02g钛酸四正丁酯滴加入30mL NaOH(8M)溶液中,超声处理15min,直至形成稳定均一的混合物,然后转移到高压反应釜内,而该反应釜内侧附一层洁净的聚全氟乙丙烯板基底,封闭拧紧高压反应釜,置于预热的180℃烘箱内反应36h;反应完毕后自然冷却至室温,将高压反应釜内基底整体取出,浸泡到去离子水中,在基底上分离出一层纱布,用去离子水洗涤至中性即得到 钛酸钠纳米纱布,生成的钛酸钠纳米纱布长度为7.5cm,宽度为4.5cm,厚度约为0.05mm。 
实施例7 
制备步骤同实施例1,不同之处是:称取0.035g钛酸四正丁酯滴加入35mL NaOH(10M)溶液中,超声处理25min,直至形成稳定均一的混合物,然后转移到高压反应釜内,而该反应釜内侧附一层洁净的聚四氟乙烯板基底,封闭拧紧高压反应釜,置于预热的190℃烘箱内反应48h。反应完毕后自然冷却至室温,将高压反应釜内基底整体取出,浸泡到去离子水中,在基底上分离出一层纱布,用去离子水洗涤至中性即得到钛酸钠纳米纱布,生成的钛酸钠纳米纱布长度为8cm,宽度为5.25cm,厚度约为0.07mm。 
实施例8 
制备步骤同实施例1,不同之处是:称取0.05g钛酸四正丁酯滴加入40mL NaOH(12M)溶液中,超声处理30min,直至形成稳定均一的混合物,然后转移到高压反应釜内,而该反应釜内侧附一层洁净的聚四氟乙烯板基底,封闭拧紧高压反应釜,置于预热的200℃烘箱内反应60h;反应完毕后自然冷却至室温,将高压反应釜内基底整体取出,浸泡到去离子水中,在基底上分离出一层纱布,用去离子水洗涤至中性即得到钛酸钠纳米纱布,生成的钛酸钠纳米纱布长度为10cm,宽度为6cm,厚度约为0.1mm。 
实施例9 
制备步骤同实施例6,不同之处是:将所得到的钛酸纳米纱布经过500℃温度下退火处理3h,得到TiO2纳米纱布。 
实施例10 
制备步骤同实施例6,不同之处是:将所得到的钛酸纳米纱布经过600℃温度下退火处理2h,得到TiO2纳米纱布。 
实施例11 
制备步骤同实施例6,不同之处是:将所得到的钛酸纳米纱布经过600℃温度下退火处理3h,得到TiO2纳米纱布。 
实施例12 
制备步骤同实施例6,不同之处是:将所得到的钛酸纳米纱布经过700℃温度下退火处理3h,得到TiO2纳米纱布。 
实施例13 
制备步骤同实施例7,不同之处是:将所得到的钛酸纳米纱布经过500℃温度下退火处理3h,得到TiO2纳米纱布。 
实施例14 
制备步骤同实施例7,不同之处是:将所得到的钛酸纳米纱布经过600℃温度下退火处理2h,得到TiO2纳米纱布。 
实施例15 
制备步骤同实施例7,不同之处是:将所得到的钛酸纳米纱布经过600℃温度下退火处理3h,得到TiO2纳米纱布。 
实施例16 
制备步骤同实施例7,不同之处是:将所得到的钛酸纳米纱布经过700℃温度下退火处理3h,得到TiO2纳米纱布。 
实施例17 
制备步骤同实施例8,不同之处是:将所得到的钛酸纳米纱布经过500℃温度下退火处理3h,得到TiO2纳米纱布。 
实施例18 
制备步骤同实施例8,不同之处是:将所得到的钛酸纳米纱布经过600℃温度下退火处理2h,得到TiO2纳米纱布。 
实施例19 
制备步骤同实施例8,不同之处是:将所得到的钛酸纳米纱布经过600℃温度下退火处理2.5h,得到TiO2纳米纱布。 
实施例20 
制备步骤同实施例8,不同之处是:将所得到的钛酸纳米纱布经过700℃温度下退火处理3h,得到TiO2纳米纱布。 
因此,本发明的实际范围不仅包括所公开的实施例,还包括在权利要求书之下实施或者执行本发明的所有等效方案。 

Claims (2)

1.一种TiO2纳米纱布的制备方法,其特征在于,所述制备方法包括如下步骤:
步骤(1):钛酸钠纳米纱布的制备
称取0.02~0.05g钛酸四正丁酯滴加入30~40mL的8~12M的NaOH溶液中,超声处理15~30min,直至形成稳定均一的混合物,然后转移到高压反应釜中,且该高压反应釜内侧附有一层耐碱耐高温的基底,封闭拧紧高压反应釜,置于预热的180~200℃烘箱内反应,水热反应36~60h后自然冷却至室温,将高压反应釜内基底整体取出,浸泡到去离子水中,在基底上分离出一层纱布,用去离子水洗涤至中性即得到钛酸钠纳米纱布,生成的钛酸钠纳米纱布长度为7.5~10cm,宽度为4.5~6cm,厚度约为0.05~0.1mm;
步骤(2):钛酸纳米纱布的制备
将步骤(1)制得的钛酸钠纳米纱布在0.1M的HCl溶液或HNO3溶液中浸泡,使钛酸钠中的Na+被H+取代,浸泡时间不低于12h,用去离子水洗涤至中性即得到钛酸纳米纱布;
步骤(3):TiO2纳米纱布的制备
将步骤(2)制得的钛酸纳米纱布经过500~700℃温度下退火处理2~3h,即得到TiO2纳米纱布。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中的基底为具有平行纹路的聚四氟乙烯板或聚全氟乙丙烯板。
CN201410470117.6A 2014-09-16 2014-09-16 一种TiO2纳米纱布的制备方法 Active CN104341003B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410470117.6A CN104341003B (zh) 2014-09-16 2014-09-16 一种TiO2纳米纱布的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410470117.6A CN104341003B (zh) 2014-09-16 2014-09-16 一种TiO2纳米纱布的制备方法

Publications (2)

Publication Number Publication Date
CN104341003A true CN104341003A (zh) 2015-02-11
CN104341003B CN104341003B (zh) 2017-02-15

Family

ID=52497542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410470117.6A Active CN104341003B (zh) 2014-09-16 2014-09-16 一种TiO2纳米纱布的制备方法

Country Status (1)

Country Link
CN (1) CN104341003B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603196A (zh) * 2009-07-24 2009-12-16 厦门大学 一种提高医用金属钛生物性能的表面处理方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603196A (zh) * 2009-07-24 2009-12-16 厦门大学 一种提高医用金属钛生物性能的表面处理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DEEPAK K. PATTANAYAK等: "Nanostructured positively charged bioactive TiO2 layer formed on Ti metal by NaOH, acid and heat treatments", 《J MATER SCI: MATER MED》, 14 June 2011 (2011-06-14), pages 1803 - 1812, XP 019932194, DOI: doi:10.1007/s10856-011-4372-x *
DONG-SEOK SEO等: "Hydrothermal synthesis of Na2Ti6O13 and TiO2 whiskers", 《JOURNAL OF CRYSTAL GROWTH》, 21 December 2004 (2004-12-21), pages 2371 - 2376 *
董祥: "纯钛水热法制备低维纳米结构TiO2及其光电化学性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》, 15 January 2012 (2012-01-15), pages 020 - 31 *

Also Published As

Publication number Publication date
CN104341003B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
Duan et al. TiO2 faceted nanocrystals on the nanofibers: Homojunction TiO2 based Z-scheme photocatalyst for air purification
Liu et al. Ag2O nanoparticles decorated TiO2 nanofibers as a pn heterojunction for enhanced photocatalytic decomposition of RhB under visible light irradiation
Cao et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity
He et al. Fabrication of porous Cu-doped BiVO4 nanotubes as efficient oxygen-evolving photocatalysts
Ge et al. A review of one-dimensional TiO 2 nanostructured materials for environmental and energy applications
Zhang et al. TiO2/graphitic carbon nitride nanosheets for the photocatalytic degradation of Rhodamine B under simulated sunlight
Liu et al. Ag loaded flower-like BaTiO 3 nanotube arrays: Fabrication and enhanced photocatalytic property
Yu et al. Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films
Sharma et al. Synthesis of TiO2 nanoparticles by sol-gel method and their characterization
Cai et al. Large-scale tunable 3D self-supporting WO3 micro-nano architectures as direct photoanodes for efficient photoelectrochemical water splitting
Li et al. Ultrasonic-assisted pyrolyzation fabrication of reduced SnO 2–x/gC 3 N 4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation
Mu et al. In 2 O 3 nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity
Li et al. A facile solution route to deposit TiO 2 nanowire arrays on arbitrary substrates
Wu et al. Enhanced photocatalytic activity of palladium decorated TiO2 nanofibers containing anatase-rutile mixed phase
CN105347393B (zh) 一种暴露{010}晶面的锐钛矿二氧化钛纳米带及其制备方法
Gao et al. Nitrogen doped TiO2/Graphene nanofibers as DSSCs photoanode
Wang et al. Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization
WO2011005440A2 (en) Aggregate particles of titanium dioxide for solar cells
Gong et al. Electrochemical synthesis of perovskite LaFeO 3 nanoparticle-modified TiO 2 nanotube arrays for enhanced visible-light photocatalytic activity
Li et al. Facile synthesis of a heterogeneous Li 2 TiO 3/TiO 2 nanocomposite with enhanced photoelectrochemical water splitting
Zhou et al. In situ fabrication of Bi 2 Ti 2 O 7/TiO 2 heterostructure submicron fibers for enhanced photocatalytic activity
Zhang et al. Preparation, characterization, and photocatalytic properties of self-standing pure and Cu-doped TiO2 nanobelt membranes
Ullattil et al. Defect-rich brown TiO2–x porous flower aggregates: selective photocatalytic reversibility for organic dye degradation
Chimupala et al. Hydrothermal synthesis and phase formation mechanism of TiO2 (B) nanorods via alkali metal titanate phase transformation
Zhou et al. CdS nanoparticles sensitized high energy facets exposed SnO2 elongated octahedral nanoparticles film for photocatalytic application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant