CN104333903A - Indoor multi-object positioning system and method based on RSSI (receiver signal strength indicator) and inertia measurement - Google Patents
Indoor multi-object positioning system and method based on RSSI (receiver signal strength indicator) and inertia measurement Download PDFInfo
- Publication number
- CN104333903A CN104333903A CN201410474704.2A CN201410474704A CN104333903A CN 104333903 A CN104333903 A CN 104333903A CN 201410474704 A CN201410474704 A CN 201410474704A CN 104333903 A CN104333903 A CN 104333903A
- Authority
- CN
- China
- Prior art keywords
- positioning
- rssi
- anchor node
- anchor
- locator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000012937 correction Methods 0.000 claims abstract description 12
- 230000004927 fusion Effects 0.000 claims abstract description 10
- 238000000691 measurement method Methods 0.000 claims abstract description 7
- 238000004891 communication Methods 0.000 claims description 42
- 238000013500 data storage Methods 0.000 claims description 23
- 238000004422 calculation algorithm Methods 0.000 claims description 22
- 238000004364 calculation method Methods 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 238000009795 derivation Methods 0.000 claims description 2
- 230000003993 interaction Effects 0.000 claims description 2
- 230000002452 interceptive effect Effects 0.000 claims description 2
- 230000000750 progressive effect Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/006—Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种解决室内环境的定位技术,确切地说,涉及一种基于RSSI和惯性测量的室内多目标的定位系统和方法,属于室内定位的技术领域。 The present invention relates to a positioning technology for solving indoor environment, to be precise, relates to an indoor multi-target positioning system and method based on RSSI and inertial measurement, and belongs to the technical field of indoor positioning. the
背景技术 Background technique
无线室内定位技术因其在室内导航、轨迹追踪、移动办公、紧急事件位置通报等方面都具有广阔应用的前景,成为Google、Foursquare等互联网业务提供商和中国移动、中国电信等移动运营商的战略发展重点,并成为如今移动互联网业务中必不可少的一部分。GPS因其成本高昂、搜星速度慢,以及受障碍物阻挡无法定位等问题,不适合直接用于室内定位,必需寻找其他替代方法。室内定位的研究起源于1990s年代,目前的室内定位的研究包括GSM定位,红外线定位(Active Badge),超声波定位(Cricket System和Active Bat),超宽带(UWB)定位,无线射频识别(RFID)定位(LANDMARK)等等。本发明使用的定位技术包括:接收信号强度指示RSSI(Receive Signal Strength Indicator)传播模型定位技术和惯性测量定位技术。下面,首先简介这两种技术背景情况: Wireless indoor positioning technology has broad application prospects in indoor navigation, trajectory tracking, mobile office, emergency location reporting, etc., and has become the strategy of Internet service providers such as Google and Foursquare and mobile operators such as China Mobile and China Telecom. Focus on development and become an essential part of today's mobile Internet business. Due to its high cost, slow satellite search speed, and the inability to locate due to obstacles, GPS is not suitable for direct use in indoor positioning, and other alternative methods must be found. The research on indoor positioning originated in the 1990s. The current indoor positioning research includes GSM positioning, infrared positioning (Active Badge), ultrasonic positioning (Cricket System and Active Bat), ultra-wideband (UWB) positioning, radio frequency identification (RFID) positioning (LANDMARK) and so on. The positioning technology used in the present invention includes: RSSI (Receive Signal Strength Indicator) propagation model positioning technology and inertial measurement positioning technology. Below, first introduce the two technical backgrounds:
(一)RSSI传播模型定位是一种经典的定位算法,因其计算简单,故在目前无线定位系统中仍然有着广泛应用。该方法是通过传播模型间接得到信号发送点和接收点之间的距离,再利用几何关系确定目标的位置。 (1) RSSI propagation model positioning is a classic positioning algorithm, because of its simple calculation, it is still widely used in current wireless positioning systems. This method obtains the distance between the signal sending point and the receiving point indirectly through the propagation model, and then uses the geometric relationship to determine the position of the target. the
无线信号的接收信号强度RSSI和信号的传输距离的关系可以简略表示为:RSSI=-(A+10nlgd)+pt;其中,A是信号传播1m时的RSSI值,n是路径衰减因子,d是发送端和接收端之间距离,pt是服从均值为0的高斯分布的影响因子。根据上述公式,忽略pt项,由接收端的RSSI值可以计算得到接收端与发送端的距离d。 The relationship between the received signal strength RSSI of the wireless signal and the transmission distance of the signal can be simply expressed as: RSSI=-(A+10nlgd)+pt; wherein, A is the RSSI value when the signal propagates 1m, n is the path attenuation factor, and d is The distance between the sending end and the receiving end, pt is an influencing factor that obeys a Gaussian distribution with a mean value of 0. According to the above formula, ignoring the pt item, the distance d between the receiving end and the sending end can be calculated from the RSSI value of the receiving end. the
下面说明RSSI传播模型法的在三维空间的定位过程。 The positioning process in the three-dimensional space of the RSSI propagation model method is described below. the
在三维空间中,未知节点可以根据其与4个不共面邻居参考节点之间的距 离信息确定自身的坐标。假设未知节点E(x,y,z)根据与4个不共面的邻居参考节点A(x1,y1,z1)、B(x2,y2,z2)、C(x3,y3,z3)和D(x4,y4,z4)之间的距离分别为d1,d2,d3,d4。即:
由以上分析可知,当RSSI测量准确度越高时,节点之间的距离计算就会越精确,传播模型法的定位精度也越高。 From the above analysis, it can be seen that when the RSSI measurement accuracy is higher, the distance calculation between nodes will be more accurate, and the positioning accuracy of the propagation model method will be higher. the
然而,RSSI测量与室内环境关系比较密切。相对于室外而言,室内空间较小、布局复杂,墙壁、门窗、电器、人员的走动等多种偶然因素都会对信号传播产生影响,并引起诸如反射、折射、衍射和散射现象,进而导致无线信号的多径传播效应,因此,RSSI实时测量值的抖动很大,使得RSSI传播模型的实时定位法的误差较大。 However, RSSI measurements are more closely related to the indoor environment. Compared with the outdoors, the indoor space is small and the layout is complex. Various accidental factors such as walls, doors and windows, electrical appliances, and people's walking will affect signal propagation and cause phenomena such as reflection, refraction, diffraction, and scattering, which in turn lead to wireless transmission. The multipath propagation effect of the signal, therefore, the jitter of the real-time measurement value of RSSI is very large, which makes the error of the real-time positioning method of the RSSI propagation model large. the
但是,如果RSSI有效样本足够大,通过参数优化和滤波处理,都可以减小RSSI的测量误差。因此采样时间越长,获取的RSSI有效样本数量越多,RSSI传播模型法定位就越稳定,准确度也会越高。 However, if the effective sample of RSSI is large enough, the measurement error of RSSI can be reduced through parameter optimization and filtering. Therefore, the longer the sampling time is, the more effective RSSI samples are obtained, the more stable the RSSI propagation model positioning method is, and the higher the accuracy will be. the
(二)惯性测量定位技术是一种不依赖于外部信息的自主式定位技术,通过测量载体在惯性参考系的加速度和方向,将它对时间进行积分,就能够得到定位目标在参考坐标系中的速度、偏航角和位置等信息。随着惯性测量设备的普及,惯性测量定位技术也越来越多地被用于室内定位。 (2) Inertial measurement and positioning technology is an autonomous positioning technology that does not depend on external information. By measuring the acceleration and direction of the carrier in the inertial reference system and integrating it with time, the positioning target in the reference coordinate system can be obtained. information such as speed, yaw angle and position. With the popularization of inertial measurement equipment, inertial measurement positioning technology is also increasingly used for indoor positioning. the
行人航迹推算算法是一种常用的惯性测量定位算法,该算法基本原理是利用原始位置、位移和方向来推算行人位置。具体方法为:采用步数和步长的乘积作为行走的距离,再结合行走方向推算行走的位移,然后根据行人的初始位 置,就能够计算出行人移动后的位置。 Pedestrian dead reckoning algorithm is a commonly used inertial measurement positioning algorithm. The basic principle of this algorithm is to use the original position, displacement and direction to estimate the position of pedestrians. The specific method is: use the product of the number of steps and the step length as the walking distance, and then combine the walking direction to calculate the walking displacement, and then calculate the pedestrian's position after the pedestrian's movement based on the initial position of the pedestrian. the
航迹推算算法的过程可表示为:式中,(xn,yn,zn)是初始位置,(xn+1,yn+1,zn+1)是下一时刻的位置,k、l分别是移动的步数、步长,是三维空间的移动方向向量。 The process of dead reckoning algorithm can be expressed as: In the formula, (x n , y n , z n ) is the initial position, (x n+1 , y n+1 , z n+1 ) is the position at the next moment, k, l are the number of moving steps, step size, is the moving direction vector in three-dimensional space.
惯性传感器的航迹推算算法具有完全自主定位、只依赖传感器而不受外界信号和环境影响等优点,短时间里可非常灵活、随时随地为用户提供位置信息。 The dead reckoning algorithm of the inertial sensor has the advantages of completely autonomous positioning, only relying on the sensor without being affected by external signals and the environment, and can be very flexible in a short period of time, providing position information to users anytime and anywhere. the
在航迹推算算法中,步数、方向和步长是影响定位精度的三个主要因素,其中,步数是通过加速度传感器采集的数据分析得出的,方向可以通过电子罗盘得到,步长因其无法直接测量得出,一般使用经验估计值。由于用户的步长具有非常大的随机性和变化性,而且通过传感器数据得出的步数和方向信息也存在误差,因此,随着时间的增加,行人航迹推算算法的定位误差也会不断增大。 In the dead reckoning algorithm, the number of steps, direction and step length are the three main factors affecting the positioning accuracy. Among them, the number of steps is obtained by analyzing the data collected by the acceleration sensor, the direction can be obtained by the electronic compass, and the step length depends on the It cannot be measured directly, and empirical estimates are generally used. Since the user's step size is very random and variable, and there are errors in the number of steps and direction information obtained from sensor data, the positioning error of the pedestrian dead reckoning algorithm will continue to increase as time increases. increase. the
发明内容 Contents of the invention
有鉴于此,本发明的目的是提供一种用于解决解决室内环境中多目标定位的、基于RSSI和惯性测量的室内多目标的定位系统和方法,本发明综合了RSSI长期定位稳定好的特点以及惯性导航定位技术短期定位精度高、连续性好的优势,具有更好的定位精度。 In view of this, the object of the present invention is to provide an indoor multi-target positioning system and method based on RSSI and inertial measurement for solving multi-target positioning in an indoor environment. The present invention combines the characteristics of RSSI long-term positioning stability And inertial navigation positioning technology has the advantages of high short-term positioning accuracy and good continuity, and has better positioning accuracy. the
为了达到上述目的,本发明提供了一种基于接收信号强度指示RSSI(Receive Signal Strength Indicator)和惯性测量的室内多目标的定位系统,其特征在于:所述系统是融合RSSI和惯性测量两种测量方法的定位数据,并对定位锚节点和定位器的位置进行动态校正,使得系统定位误差减小和增加系统定位的稳定性;该系统设有三个组成部件:定位服务器、定位锚节点和定位器,其中: In order to achieve the above object, the present invention provides an indoor multi-target positioning system based on RSSI (Receive Signal Strength Indicator) and inertial measurement, characterized in that: the system is a combination of RSSI and inertial measurement The positioning data of the method, and dynamically correct the position of the positioning anchor node and the locator, so that the system positioning error is reduced and the stability of the system positioning is increased; the system has three components: a positioning server, a positioning anchor node and a locator ,in:
定位服务器,负责根据定位锚节点和定位器发来的定位测量信息,计算定位锚节点和定位器的位置,并把定位结果通过定位锚节点发送给定位器;设有四个组成模块:通信接口、系统定位模块、数据存储模块和数据显示模块; The positioning server is responsible for calculating the position of the positioning anchor node and the locator according to the positioning measurement information sent by the positioning anchor node and the locator, and sending the positioning result to the locator through the positioning anchor node; it has four components: communication interface , system positioning module, data storage module and data display module;
定位锚节点,作为定位服务器与定位器的双向通信路径的中继节点,既负责将定位服务器的操作指令发送给定位器;同时还用于为定位器定位时提供位置参考数据,执行测量操作,并向定位服务器转发定位结果数据;定位锚节点 根据其放置的先后顺序区分为多种等级的锚节点:位置已知的定位锚节点是初始锚节点,一级锚节点、二级锚节点和后续相应等级的锚节点;该定位系统是根据上一级锚节点的位置计算确定下一级锚节点的位置:先根据初始锚节点的位置计算得到一级锚节点的位置,再根据一级锚节点的位置计算得到二级锚节点的位置,依次类推,组成多级锚节点;每个定位锚节点分别设有三个组成模块:通信接口、数据存储模块和RSSI测量模块; The positioning anchor node, as the relay node of the two-way communication path between the positioning server and the locator, is not only responsible for sending the operation instructions of the positioning server to the locator; at the same time, it is also used to provide position reference data for the locator to perform measurement operations, And forward the positioning result data to the positioning server; the positioning anchor nodes are divided into multiple levels of anchor nodes according to the order in which they are placed: the positioning anchor nodes with known positions are the initial anchor nodes, the first-level anchor nodes, the second-level anchor nodes and the subsequent Anchor nodes of the corresponding level; the positioning system calculates and determines the position of the next-level anchor node according to the position of the upper-level anchor node: first calculates the position of the first-level anchor node according to the position of the initial anchor node, and then calculates the position of the first-level anchor node according to the position of the first-level anchor node Calculate the position of the second-level anchor node, and so on, to form a multi-level anchor node; each positioning anchor node has three components: communication interface, data storage module and RSSI measurement module;
定位器,负责采集RSSI数据和惯性测量数据,并发送给定位服务器,以及接收和显示定位服务器的定位结果;设有四个组成模块:通信接口、数据存储模块、传感器模块和显示模块。 The locator is responsible for collecting RSSI data and inertial measurement data, sending them to the positioning server, and receiving and displaying the positioning results of the positioning server; it has four components: communication interface, data storage module, sensor module and display module. the
为了达到上述目的,本发明还提供了一种采用本发明室内多目标的定位系统的多目标定位方法,其特征在于:将接收信号强度指示RSSI与惯性测量的两种测量方法的定位数据进行融合,再对定位锚节点和定位器的位置执行动态修正,以提高系统的定位精度和增加系统定位的稳定性;所述方法包括下列操作步骤: In order to achieve the above object, the present invention also provides a multi-target positioning method using the indoor multi-target positioning system of the present invention, which is characterized in that the positioning data of the two measurement methods of RSSI and inertial measurement are fused , and then dynamically modify the positions of the positioning anchor nodes and locators to improve the positioning accuracy of the system and increase the stability of system positioning; the method includes the following steps:
步骤1,设置定位锚节点的初始位置:开始定位时,首先在定位服务器中设置定位锚节点的初始位置,再在定位开始前,先将已知的起始锚节点的位置坐标输入到定位服务器中,并根据初始锚节点的位置逐级计算得到后面各级的定位锚节点的位置; Step 1. Set the initial position of the positioning anchor node: when starting positioning, first set the initial position of the positioning anchor node in the positioning server, and then input the known position coordinates of the starting anchor node to the positioning server before starting the positioning , and according to the position of the initial anchor node, the position of the positioning anchor node of the following levels is calculated step by step;
步骤2,定位移动的目标:当目标移动一段距离后,放置在该目标上的定位器把接收到的RSSI值和本身的惯性测量参数发送给定位服务器,定位服务器以定位器接收到的RSSI数值中最大的前k个锚节点作为参考节点,结合惯性测量数据,对定位器进行数据融合定位;其中,自然数k应大于等于4。 Step 2, locate the moving target: when the target moves a certain distance, the locator placed on the target sends the received RSSI value and its own inertial measurement parameters to the positioning server, and the positioning server uses the RSSI value received by the locator The largest top k anchor nodes in , are used as reference nodes, combined with inertial measurement data, to perform data fusion positioning on the locator; among them, the natural number k should be greater than or equal to 4. the
本发明基于RSSI和惯性测量的室内多目标的定位系统和方法的优点是: The advantages of the present invention's indoor multi-target positioning system and method based on RSSI and inertial measurement are:
本发明利用递增式定位过程中锚节点位置相对固定的特点,通过增加测量时间和降低环境偶然因素对RSSI的影响,提高锚节点RSSI测量精度。 The invention utilizes the feature that the position of the anchor node is relatively fixed in the incremental positioning process, increases the measurement time and reduces the impact of environmental accidental factors on the RSSI, and improves the RSSI measurement accuracy of the anchor node. the
本发明在定位测量过程中,使用新的测距信号值对每一级锚节点位置进行周期性的修正,增加定位系统的稳定性和准确度。 In the positioning measurement process, the present invention uses the new ranging signal value to periodically correct the position of each level of anchor nodes, thereby increasing the stability and accuracy of the positioning system. the
本发明使用RSSI传播模型和惯性测量两种方法进行数据融合定位,相比较于单一的RSSI定位或惯性导航定位,具有更好的定位精度。 The present invention uses two methods of RSSI propagation model and inertial measurement to perform data fusion positioning, and has better positioning accuracy compared with single RSSI positioning or inertial navigation positioning. the
本发明的创新关键技术包括:利用递增式定位过程中各级锚节点的位置相对固定的特点,通过增加测量时间,降低环境的偶然因素对RSSI的影响,提高锚节点RSSI测量精度。还在定位测量过程中,使用新的测距信号值对每一级锚节点位置进行周期性修正,增加定位系统的稳定性和准确度。总之,本发明使用RSSI传播模型和惯性测量两种测量方法得到的数据进行融合定位,相比单独使用其中的RSSI定位或惯性导航定位都具有更好、更稳定的定位精度。 The innovative key technology of the present invention includes: using the feature that the positions of anchor nodes at all levels are relatively fixed in the incremental positioning process, by increasing the measurement time, reducing the impact of environmental accidental factors on RSSI, and improving the RSSI measurement accuracy of anchor nodes. In the process of positioning measurement, the new ranging signal value is used to periodically correct the position of each level of anchor nodes to increase the stability and accuracy of the positioning system. In a word, the present invention uses the data obtained by the RSSI propagation model and the inertial measurement method to perform fusion positioning, which has better and more stable positioning accuracy than using RSSI positioning or inertial navigation positioning alone. the
附图说明 Description of drawings
图1是本发明基于RSSI和惯性测量的室内多目标的定位系统网络结构组成示意图。 FIG. 1 is a schematic diagram of network structure composition of an indoor multi-target positioning system based on RSSI and inertial measurement according to the present invention. the
图2是本发明室内多目标的定位系统中的定位服务器结构组成示意图。 Fig. 2 is a schematic diagram of the structural composition of the positioning server in the indoor multi-target positioning system of the present invention. the
图3是本发明室内多目标的定位系统中的定位锚节点结构组成示意图。 Fig. 3 is a schematic diagram of the structural composition of the positioning anchor node in the indoor multi-target positioning system of the present invention. the
图4是本发明室内多目标的定位系统中的定位器结构组成示意图。 Fig. 4 is a schematic diagram of the structural composition of the locator in the indoor multi-target positioning system of the present invention. the
图5是本发明基于RSSI和惯性测量的室内多目标的定位系统的定位方法操作步骤流程图。 FIG. 5 is a flowchart of the operation steps of the positioning method of the indoor multi-target positioning system based on RSSI and inertial measurement according to the present invention. the
具体实施方式 Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面结合附图和实施例对本发明作进一步的详细描述。 In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. the
本发明结合RSSI传播模型定位法和惯性测量两种室内定位方法,提出了一种基于RSSI和惯性测量的室内多目标定位系统。该系统的核心思想是通过融合RSSI和惯性测量两种测量方法的定位数据,并对定位锚节点和定位器的位置进行动态校正,使得系统定位误差减小和增加系统定位的稳定性。 The invention combines two indoor positioning methods of RSSI propagation model positioning method and inertial measurement, and proposes an indoor multi-target positioning system based on RSSI and inertial measurement. The core idea of the system is to integrate the positioning data of RSSI and inertial measurement methods, and dynamically correct the positions of the positioning anchor node and the locator, so as to reduce the system positioning error and increase the stability of the system positioning. the
参见图1~图4,介绍本发明系统的三个部分:定位服务器、定位锚节点和定位器,其中定位锚节点根据其放置的先后顺序可分为初始锚节点、一级锚节点、二级锚节点等等。该系统框图如图1所示。下面分别介绍这三个组成部件: Referring to Figures 1 to 4, three parts of the system of the present invention are introduced: a positioning server, a positioning anchor node, and a locator, wherein the positioning anchor nodes can be divided into initial anchor nodes, first-level anchor nodes, and second-level anchor nodes according to the order in which they are placed. Anchor nodes and more. The block diagram of the system is shown in Figure 1. The three components are described below:
(一)定位服务器:负责根据定位锚节点和定位器发来的定位测量信息,计算定位锚节点和定位器的位置,并把定位结果通过定位锚节点发送给定位器。设有四个组成模块(参见图2):通信接口、系统定位模块、数据存储模块和数 据显示模块。定位服务器各个模块功能如下: (1) Positioning server: responsible for calculating the positions of the positioning anchor node and the locator according to the positioning measurement information sent by the positioning anchor node and the locator, and sending the positioning result to the locator through the positioning anchor node. There are four component modules (see Figure 2): communication interface, system positioning module, data storage module and data display module. The functions of each module of the positioning server are as follows:
通信接口,作为定位服务器的接收和发送数据的通信接口,使用WLAN通信协议保持与定位器和定位锚节点的交互通信,完成定位数据的收发功能。定位服务器与定位器的双向通信路径都是以定位锚节点作为中继节点。 The communication interface, as the communication interface for receiving and sending data of the positioning server, uses the WLAN communication protocol to maintain interactive communication with the locator and the positioning anchor node, and completes the sending and receiving function of positioning data. The two-way communication path between the positioning server and the locator uses the positioning anchor node as a relay node. the
数据存储模块,用于存储网络通信模块接收到的定位信息和系统定位模块计算生成的各节点的位置信息,以供其他模块调用。 The data storage module is used to store the location information received by the network communication module and the location information of each node calculated and generated by the system location module for calling by other modules. the
系统定位模块,用于根据数据存储模块的定位信息,运行定位算法,计算得到各个节点的位置信息,然后传递给数据存储模块。 The system positioning module is used to run a positioning algorithm according to the positioning information of the data storage module, calculate and obtain the position information of each node, and then transmit it to the data storage module. the
信息显示模块,负责从数据存储模块中读取定位信息,并向用户显示。 The information display module is responsible for reading location information from the data storage module and displaying it to the user. the
(二)定位锚节点:作为定位服务器与定位器的双向通信路径的中继节点,既负责将定位服务器的操作指令发送给定位器;同时还用于为定位器定位时提供位置参考数据,执行测量操作,并向定位服务器转发定位结果数据。定位锚节点根据其放置的先后顺序区分为多种等级的锚节点:位置已知的定位锚节点是初始锚节点,一级锚节点、二级锚节点和后续相应等级的锚节点。该定位系统是根据上一级锚节点的位置计算确定下一级锚节点的位置:先根据初始锚节点的位置计算得到一级锚节点的位置,再根据一级锚节点的位置计算得到二级锚节点的位置,依次类推,组成多级锚节点。每个定位锚节点分别设有三个组成模块(参见图3):通信接口、数据存储模块和RSSI测量模块。三个模块功能介绍如下: (2) Positioning anchor node: As the relay node of the two-way communication path between the positioning server and the locator, it is not only responsible for sending the operation instructions of the positioning server to the locator; it is also used to provide position reference data for the locator to perform positioning. Measurement operation, and forward the positioning result data to the positioning server. Positioning anchor nodes are divided into multiple levels of anchor nodes according to the order in which they are placed: positioning anchor nodes with known positions are initial anchor nodes, first-level anchor nodes, second-level anchor nodes, and subsequent anchor nodes of corresponding levels. The positioning system determines the position of the next-level anchor node based on the position of the upper-level anchor node: first calculate the position of the first-level anchor node according to the position of the initial anchor node, and then calculate the second-level anchor node according to the position of the first-level anchor node. The position of the anchor node, and so on, form a multi-level anchor node. Each positioning anchor node is respectively equipped with three constituent modules (see FIG. 3 ): a communication interface, a data storage module and an RSSI measurement module. The functions of the three modules are introduced as follows:
通信接口,用作定位锚节点的数据接收和发送的通信接口,使用WLAN通信协议分别保持与定位服务器和定位器的通信交互,完成定位信息的收发功能。 The communication interface is used as the communication interface for receiving and sending the data of the positioning anchor node, and uses the WLAN communication protocol to maintain the communication interaction with the positioning server and the locator respectively, and complete the sending and receiving function of positioning information. the
数据存储模块,用于存储网络通信模块接收到的定位信息和RSSI测量模块计算生成的各个节点的RSSI测量位置信息,以供其他模块调用。 The data storage module is used to store the positioning information received by the network communication module and the RSSI measurement position information of each node calculated and generated by the RSSI measurement module, for calling by other modules. the
RSSI测量模块,负责采集统计接收到的来自其他定位锚节点RSSI信息。 The RSSI measurement module is responsible for collecting and counting the received RSSI information from other positioning anchor nodes. the
(三)定位器:负责采集RSSI数据和惯性测量数据,并发送给定位服务器,以及接收和显示定位服务器的定位结果。设有四个组成模块(参见图4):通信接口、数据存储模块、传感器模块和显示模块。四个模块功能介绍如下: (3) Locator: Responsible for collecting RSSI data and inertial measurement data, sending them to the positioning server, and receiving and displaying the positioning results of the positioning server. There are four component modules (see Figure 4): communication interface, data storage module, sensor module and display module. The functions of the four modules are introduced as follows:
通信接口,用作定位器的数据接收和发送的通信接口,使用WLAN通信协议分别与定位服务器器和定位锚节点进行交互通信,完成定位信息的收发功能。 The communication interface is used as the communication interface for data receiving and sending of the locator, and uses the WLAN communication protocol to respectively communicate with the positioning server and the positioning anchor node to complete the sending and receiving function of positioning information. the
数据存储模块,用于存储网络通信模块接收到的定位信息和RSSI测量模块计算生成的各节点的RSSI测量信息。 The data storage module is used to store the positioning information received by the network communication module and the RSSI measurement information of each node calculated and generated by the RSSI measurement module. the
传感器,设有两个组件:RSSI测量单元和惯性测量单元,分别采集定位器的相应位置信息:RSSI测量单元负责采集与统计接收到的来自其他定位锚节点RSSI信息;惯性测量模块负责采集定位器自身测量得到的包括:移动步长、移动步数、移动方向角的多种运动信息。 The sensor has two components: the RSSI measurement unit and the inertial measurement unit, which respectively collect the corresponding position information of the locator: the RSSI measurement unit is responsible for collecting and counting the RSSI information received from other positioning anchor nodes; the inertial measurement module is responsible for collecting the locator The self-measured information includes: moving step length, moving steps, and moving direction angle. the
信息显示模块,用于从数据存储模块中读取定位信息,并向用户显示定位器的当前位置和运动轨迹。 The information display module is used to read the positioning information from the data storage module, and display the current position and movement track of the locator to the user. the
本发明基于RSSI和惯性测量的室内多目标定位系统的多目标定位方法,其核心思想主要是:将接收信号强度指示RSSI与惯性测量的两种测量方法的定位数据进行融合,再对定位锚节点和定位器的位置执行动态修正,以提高系统的定位精度和增加系统定位的稳定性。 The multi-target positioning method of the indoor multi-target positioning system based on RSSI and inertial measurement of the present invention, its core idea is mainly: to fuse the positioning data of the two measurement methods of RSSI and inertial measurement, and then locate the anchor node And the position of the locator is dynamically corrected to improve the positioning accuracy of the system and increase the stability of the system positioning. the
参见图5,介绍本发明多目标定位方法的下列操作步骤: Referring to Fig. 5, the following operating steps of the multi-target positioning method of the present invention are introduced:
步骤1,设置定位锚节点的初始位置:开始定位时,首先在定位服务器中设置定位锚节点的初始位置,再在定位开始前,先将已知的起始锚节点的位置坐标输入到定位服务器中,并根据初始锚节点的位置逐级计算得到后面各级的定位锚节点的位置。 Step 1. Set the initial position of the positioning anchor node: when starting positioning, first set the initial position of the positioning anchor node in the positioning server, and then input the known position coordinates of the starting anchor node to the positioning server before starting the positioning , and according to the position of the initial anchor node, the position of the positioning anchor node of the subsequent levels is calculated step by step. the
步骤2,定位移动的目标:当目标移动一段距离后,放置在该目标上的定位器把接收到的RSSI值和本身的惯性测量参数发送给定位服务器,定位服务器以定位器接收到的RSSI数值中最大的前k个锚节点作为参考节点,结合惯性测量数据,对定位器进行数据融合定位;其中,自然数k应大于等于4。 Step 2, locate the moving target: when the target moves a certain distance, the locator placed on the target sends the received RSSI value and its own inertial measurement parameters to the positioning server, and the positioning server uses the RSSI value received by the locator The largest top k anchor nodes in , are used as reference nodes, combined with inertial measurement data, to perform data fusion positioning on the locator; among them, the natural number k should be greater than or equal to 4. the
该步骤中,利用定位器接收到的RSSI数值中最大的前k个锚节点作为参考节点,结合惯性测量数据,对定位器进行数据融合定位的方法是通过系数加权,按照下述公式:(x,y,z)=λ0(xI,yI,zI)+(1-λ0)(xR,yR,zR)计算得到未知节点的三维空间的位置坐标(x,y,z);其中,(xI,yI,zI)为根据惯导测量通过行人航迹推算算法计算的节点三维空间位置,(xR,yR,zR)为采用RSSI传播模型定位计算得到的节点三维空间位置,λ0是惯导测量位置坐标(xI,yI,zI)的固定权重系数。 In this step, using the largest first k anchor nodes in the RSSI values received by the locator as reference nodes, combined with inertial measurement data, the method of data fusion positioning for the locator is weighted by coefficients, according to the following formula: (x ,y,z)=λ 0 (x I ,y I ,z I )+(1-λ 0 )(x R ,y R ,z R ) to calculate the position coordinates (x,y, z); Among them, (x I , y I , z I ) is the three-dimensional space position of the node calculated by the pedestrian dead reckoning algorithm according to the inertial navigation measurement, and (x R , y R , z R ) is the positioning calculation using the RSSI propagation model The obtained three-dimensional space position of the node, λ 0 is the fixed weight coefficient of the inertial navigation measurement position coordinates (x I , y I , z I ).
该步骤中结合惯性测量数据,对定位器进行数据融合定位的方法包括下列操作内容: In this step, combining the inertial measurement data, the method for data fusion positioning of the locator includes the following operations:
(21)因三维空间中,未知节点E(x,y,z)根据其与4个不共面的邻居参考节点A(x1,y1,z1)、B(x2,y2,z2)、C(x3,y3,z3)和D(x4,y4,z4)之间的距离信息确定自身三维空间坐标的公式为:设该四个不共面的邻居节点分别(xi,yi,zi)到未知节点E(x,y,z)的距离为di:
(22)设置:
(23)增加和记录新锚节点的位置:若锚节点的总数量小于系统允许的最大值S时,则在测量目标的当前所在位置设置新的锚节点,并记录新增的锚节点位置,锚节点数目加1。 (23) Add and record the position of the new anchor node: if the total number of anchor nodes is less than the maximum value S allowed by the system, set a new anchor node at the current location of the measurement target, and record the newly added anchor node position, The number of anchor nodes is increased by 1. the
(24)修正锚节点RSSI测量值:从一级锚节点开始,采用中位值滤波算法逐级对每一级定位锚节点的节点RSSI值进行修正。其中,中位算法滤波算法是采集N个有效的RSSI值后,将该N个RSSI值按照数值大小顺序排列,选取其中位于正中间的RSSI值作为滤波输出,即:锚节点的第n次RSSI修正时获得的中位值RSSImedn=Med(RSSI1,RSSI2,RSSI3,....,RSSIN);其中,自然数N为奇数。若采集的样本数量越大,中位值滤波方法就越能有效克服偶然因素引起的波动干扰。 (24) Correct the RSSI measurement value of the anchor node: starting from the first-level anchor node, the median value filtering algorithm is used to correct the node RSSI value of each level to locate the anchor node step by step. Among them, the median algorithm filtering algorithm is to collect N effective RSSI values, arrange the N RSSI values in numerical order, and select the RSSI value in the middle as the filtering output, that is: the nth RSSI of the anchor node The median value obtained during correction RSSI medn =Med(RSSI 1 , RSSI 2 , RSSI 3 ,..., RSSI N ); wherein, the natural number N is an odd number. If the number of samples collected is larger, the median filtering method can effectively overcome the fluctuation interference caused by accidental factors.
(25)修正锚节点位置:使用步骤(24)修正后的RSSI值,根据锚节点位置修正算法逐级对各级锚节点的位置进行修正。其中,锚节点位置修正算法 的计算公式为:通过系数加权,第n次修正后锚节点zn的位置三维空间坐标(xn,yn,zn)=(λ0+ε(n))(xI,yI,zI)+(1-λ0-ε(n))(xRn,yRn,zRn);式中,(xI,yI,zI)是使用航迹计算得到的锚节点的三维空间位置坐标,(xRn,yRn,zRn)为根据第n次修正后的信号接收强度值RSSImedn和传播模型法计算得到的锚节点的三维空间位置坐标,λ0是惯导测量坐标(xI,yI,zI)的固定权重系数,附加权重系数函数ε(n)是关于RSSI测量次数n为变量的减函数,且ε(n)<1-λ0, (25) Correcting the position of the anchor node: using the corrected RSSI value in step (24), the positions of the anchor nodes at all levels are corrected step by step according to the anchor node position correction algorithm. Among them, the calculation formula of the anchor node position correction algorithm is: through coefficient weighting, the three-dimensional space coordinates of the anchor node z n after the nth correction (x n , y n , z n ) = (λ 0 +ε(n)) (x I ,y I ,z I )+(1-λ 0 -ε(n))(x Rn ,y Rn ,z Rn ); where (x I ,y I ,z I ) is the used track The calculated three-dimensional space position coordinates of the anchor node, (x Rn , y Rn , z Rn ) is the three-dimensional space position coordinates of the anchor node calculated according to the received signal strength value RSSI medn after the nth correction and the propagation model method, λ 0 is the fixed weight coefficient of the inertial navigation measurement coordinates (x I , y I , z I ), and the additional weight coefficient function ε(n) is a decreasing function of the RSSI measurement times n as a variable, and ε(n)<1- λ 0 ,
(26)定位服务器判断是否接收到终止定位测量的指令,若接收到,则退出定位,结束定位全部流程。否则,返回步骤2,继续执行下一轮定位操作。 (26) The positioning server judges whether an instruction to terminate the positioning measurement is received, and if so, exits the positioning and ends the entire positioning process. Otherwise, return to step 2 and continue to perform the next round of positioning operations. the
本发明已经进行了多次实施试验,试验的结果是成功的,实现了发明目的。 The present invention has carried out many implementation tests, and the result of test is successful, has realized the purpose of the invention. the
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410474704.2A CN104333903A (en) | 2014-09-17 | 2014-09-17 | Indoor multi-object positioning system and method based on RSSI (receiver signal strength indicator) and inertia measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410474704.2A CN104333903A (en) | 2014-09-17 | 2014-09-17 | Indoor multi-object positioning system and method based on RSSI (receiver signal strength indicator) and inertia measurement |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104333903A true CN104333903A (en) | 2015-02-04 |
Family
ID=52408526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410474704.2A Pending CN104333903A (en) | 2014-09-17 | 2014-09-17 | Indoor multi-object positioning system and method based on RSSI (receiver signal strength indicator) and inertia measurement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104333903A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105021200A (en) * | 2015-07-27 | 2015-11-04 | 北京博阳世通信息技术有限公司 | Indoor location service information generation system and method |
CN105115487A (en) * | 2015-05-18 | 2015-12-02 | 陈希 | Positioning and navigation method in supermarket based on information fusion |
CN105357753A (en) * | 2015-10-16 | 2016-02-24 | 杭州电子科技大学 | Multimode fusion recursion iteration based indoor positioning method |
CN105510876A (en) * | 2015-12-25 | 2016-04-20 | 武汉大学 | Electromagnetic wave propagation characteristic-based indoor distance measurement positioning method |
WO2016180060A1 (en) * | 2015-05-08 | 2016-11-17 | 深圳市华颖泰科电子技术有限公司 | Calibration method |
CN106197406A (en) * | 2016-06-20 | 2016-12-07 | 天津大学 | A kind of based on inertial navigation with the fusion method of RSSI wireless location |
WO2017079975A1 (en) * | 2015-11-13 | 2017-05-18 | 华为技术有限公司 | Method and device for indoor positioning |
WO2017088196A1 (en) * | 2015-11-24 | 2017-06-01 | 东南大学 | Fusion navigation device and method based on wireless fingerprints and mems sensor |
CN106937377A (en) * | 2015-12-29 | 2017-07-07 | 中国移动通信集团公司 | A kind of method, device and equipment that classification positioning is realized for monitoring objective |
CN106993292A (en) * | 2017-03-21 | 2017-07-28 | 上海优璞信息科技有限公司 | Emergent alignment system and its distribution method based on ultra wide band |
CN107101616A (en) * | 2017-05-23 | 2017-08-29 | 北京小鸟看看科技有限公司 | A kind of personal identification method for positioning object, device and system |
CN107888289A (en) * | 2017-11-14 | 2018-04-06 | 东南大学 | The indoor orientation method and platform merged based on visible light communication with inertial sensor |
WO2018133264A1 (en) * | 2017-01-18 | 2018-07-26 | 深圳大学 | Indoor automatic human body positioning detection method and system |
CN108419216A (en) * | 2018-05-14 | 2018-08-17 | 深圳践行智能科技有限公司 | Indoor positioning wireless medical monitoring system and its monitoring method |
CN108696820A (en) * | 2018-05-23 | 2018-10-23 | 苏州博联科技有限公司 | Indoor orientation method based on iBeacon ranging technologies |
CN109362027A (en) * | 2018-10-19 | 2019-02-19 | 广州杰赛科技股份有限公司 | Localization method, device, equipment and storage medium |
CN109633544A (en) * | 2018-12-26 | 2019-04-16 | 奇点新源国际技术开发(北京)有限公司 | A kind of anchor point coordinate scaling method, anchor point localization method and device |
CN110049550A (en) * | 2019-03-06 | 2019-07-23 | 上海交通大学 | Wireless indoor positioning and cognitive method, system and storage medium |
CN110366104A (en) * | 2019-08-12 | 2019-10-22 | 中南大学湘雅医院 | Positioning method, apparatus, system and electronic device and computer-readable storage medium |
CN110572779A (en) * | 2019-08-30 | 2019-12-13 | 南京沃旭通讯科技有限公司 | System error estimation method of base station based on ToF model |
CN111829519A (en) * | 2019-05-29 | 2020-10-27 | 北京骑胜科技有限公司 | A positioning method, device, electronic device and storage medium |
CN112098925A (en) * | 2019-06-17 | 2020-12-18 | 群光电子股份有限公司 | Electronic device, tracking system and tracking method |
CN114175773A (en) * | 2019-07-19 | 2022-03-11 | 松下知识产权经营株式会社 | Area determination system, area determination method, and program |
CN117499861A (en) * | 2023-12-29 | 2024-02-02 | 济宁勤昌工贸有限公司 | Side slope anchoring drilling machine construction drill bit positioning method based on sensor acquisition |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060217132A1 (en) * | 2005-03-23 | 2006-09-28 | 3Com Corporation | High resolution localization for indoor environments |
US7660591B1 (en) * | 2005-09-09 | 2010-02-09 | Avaya Inc. | Propagation loss model based indoor wireless location of stations |
CN102419180A (en) * | 2011-09-02 | 2012-04-18 | 无锡智感星际科技有限公司 | Indoor positioning method based on inertial navigation system and WIFI (wireless fidelity) |
CN103415071A (en) * | 2013-07-23 | 2013-11-27 | 南京邮电大学 | Underwater wireless sensor network positioning method |
-
2014
- 2014-09-17 CN CN201410474704.2A patent/CN104333903A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060217132A1 (en) * | 2005-03-23 | 2006-09-28 | 3Com Corporation | High resolution localization for indoor environments |
US7660591B1 (en) * | 2005-09-09 | 2010-02-09 | Avaya Inc. | Propagation loss model based indoor wireless location of stations |
CN102419180A (en) * | 2011-09-02 | 2012-04-18 | 无锡智感星际科技有限公司 | Indoor positioning method based on inertial navigation system and WIFI (wireless fidelity) |
CN103415071A (en) * | 2013-07-23 | 2013-11-27 | 南京邮电大学 | Underwater wireless sensor network positioning method |
Non-Patent Citations (1)
Title |
---|
胡伟娅: "基于RSSI与惯性测量的室内定位系统", 《计算机工程》 * |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016180060A1 (en) * | 2015-05-08 | 2016-11-17 | 深圳市华颖泰科电子技术有限公司 | Calibration method |
CN105115487A (en) * | 2015-05-18 | 2015-12-02 | 陈希 | Positioning and navigation method in supermarket based on information fusion |
CN105115487B (en) * | 2015-05-18 | 2017-09-01 | 陈希 | Positioning navigation method in a kind of supermarket based on information fusion |
CN105021200A (en) * | 2015-07-27 | 2015-11-04 | 北京博阳世通信息技术有限公司 | Indoor location service information generation system and method |
CN105021200B (en) * | 2015-07-27 | 2018-06-05 | 北京博阳世通信息技术有限公司 | A kind of generation system and method for indoor location information on services |
CN105357753A (en) * | 2015-10-16 | 2016-02-24 | 杭州电子科技大学 | Multimode fusion recursion iteration based indoor positioning method |
CN105357753B (en) * | 2015-10-16 | 2018-09-18 | 杭州电子科技大学 | A kind of indoor orientation method based on multimodality fusion recursive iteration |
WO2017079975A1 (en) * | 2015-11-13 | 2017-05-18 | 华为技术有限公司 | Method and device for indoor positioning |
US10228453B2 (en) | 2015-11-13 | 2019-03-12 | Huawei Technologies Co., Ltd. | Indoor positioning method and device |
US10648816B2 (en) | 2015-11-24 | 2020-05-12 | Southeast University | Device and method for integrated navigation based on wireless fingerprints and MEMS sensors |
WO2017088196A1 (en) * | 2015-11-24 | 2017-06-01 | 东南大学 | Fusion navigation device and method based on wireless fingerprints and mems sensor |
CN105424030B (en) * | 2015-11-24 | 2018-11-09 | 东南大学 | Fusion navigation device and method based on wireless fingerprint and MEMS sensor |
CN105510876A (en) * | 2015-12-25 | 2016-04-20 | 武汉大学 | Electromagnetic wave propagation characteristic-based indoor distance measurement positioning method |
CN106937377A (en) * | 2015-12-29 | 2017-07-07 | 中国移动通信集团公司 | A kind of method, device and equipment that classification positioning is realized for monitoring objective |
CN106937377B (en) * | 2015-12-29 | 2020-04-21 | 中国移动通信集团公司 | A method, device and equipment for realizing hierarchical positioning for monitoring targets |
CN106197406A (en) * | 2016-06-20 | 2016-12-07 | 天津大学 | A kind of based on inertial navigation with the fusion method of RSSI wireless location |
CN106197406B (en) * | 2016-06-20 | 2019-06-25 | 天津大学 | A kind of fusion method based on inertial navigation and RSSI wireless location |
WO2018133264A1 (en) * | 2017-01-18 | 2018-07-26 | 深圳大学 | Indoor automatic human body positioning detection method and system |
CN106993292A (en) * | 2017-03-21 | 2017-07-28 | 上海优璞信息科技有限公司 | Emergent alignment system and its distribution method based on ultra wide band |
CN107101616A (en) * | 2017-05-23 | 2017-08-29 | 北京小鸟看看科技有限公司 | A kind of personal identification method for positioning object, device and system |
CN107101616B (en) * | 2017-05-23 | 2019-09-27 | 北京小鸟看看科技有限公司 | It is a kind of to position the personal identification method of object, device and system |
CN107888289A (en) * | 2017-11-14 | 2018-04-06 | 东南大学 | The indoor orientation method and platform merged based on visible light communication with inertial sensor |
CN107888289B (en) * | 2017-11-14 | 2020-08-11 | 东南大学 | Indoor positioning method and platform based on visible light communication and inertial sensor fusion |
CN108419216A (en) * | 2018-05-14 | 2018-08-17 | 深圳践行智能科技有限公司 | Indoor positioning wireless medical monitoring system and its monitoring method |
CN108696820A (en) * | 2018-05-23 | 2018-10-23 | 苏州博联科技有限公司 | Indoor orientation method based on iBeacon ranging technologies |
CN109362027A (en) * | 2018-10-19 | 2019-02-19 | 广州杰赛科技股份有限公司 | Localization method, device, equipment and storage medium |
CN109362027B (en) * | 2018-10-19 | 2021-04-09 | 广州杰赛科技股份有限公司 | Positioning method, device, equipment and storage medium |
CN109633544A (en) * | 2018-12-26 | 2019-04-16 | 奇点新源国际技术开发(北京)有限公司 | A kind of anchor point coordinate scaling method, anchor point localization method and device |
CN109633544B (en) * | 2018-12-26 | 2021-04-06 | 奇点新源国际技术开发(北京)有限公司 | Anchor point coordinate calibration method, anchor point positioning method and device |
CN110049550A (en) * | 2019-03-06 | 2019-07-23 | 上海交通大学 | Wireless indoor positioning and cognitive method, system and storage medium |
US11924805B2 (en) | 2019-05-29 | 2024-03-05 | Beijing Qisheng Science And Technology Co., Ltd. | Positioning method and device, electronic device and storage medium |
CN111829519A (en) * | 2019-05-29 | 2020-10-27 | 北京骑胜科技有限公司 | A positioning method, device, electronic device and storage medium |
CN112098925A (en) * | 2019-06-17 | 2020-12-18 | 群光电子股份有限公司 | Electronic device, tracking system and tracking method |
CN112098925B (en) * | 2019-06-17 | 2024-03-08 | 群光电子股份有限公司 | Electronic device, tracking system and tracking method |
CN114175773B (en) * | 2019-07-19 | 2024-06-11 | 松下知识产权经营株式会社 | Area judgment system, area judgment method, and non-transitory storage medium |
CN114175773A (en) * | 2019-07-19 | 2022-03-11 | 松下知识产权经营株式会社 | Area determination system, area determination method, and program |
CN110366104A (en) * | 2019-08-12 | 2019-10-22 | 中南大学湘雅医院 | Positioning method, apparatus, system and electronic device and computer-readable storage medium |
CN110572779A (en) * | 2019-08-30 | 2019-12-13 | 南京沃旭通讯科技有限公司 | System error estimation method of base station based on ToF model |
CN117499861A (en) * | 2023-12-29 | 2024-02-02 | 济宁勤昌工贸有限公司 | Side slope anchoring drilling machine construction drill bit positioning method based on sensor acquisition |
CN117499861B (en) * | 2023-12-29 | 2024-03-22 | 济宁勤昌工贸有限公司 | Side slope anchoring drilling machine construction drill bit positioning method based on sensor acquisition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104333903A (en) | Indoor multi-object positioning system and method based on RSSI (receiver signal strength indicator) and inertia measurement | |
Li et al. | Toward location-enabled IoT (LE-IoT): IoT positioning techniques, error sources, and error mitigation | |
CN105072581B (en) | A kind of indoor orientation method that storehouse is built based on path attenuation coefficient | |
CN103379427A (en) | Positioning method, device and system | |
CN101873692A (en) | Node Location Method for Wireless Sensor Networks Based on Time Reversal | |
CN104507097A (en) | Semi-supervised training method based on WiFi (wireless fidelity) position fingerprints | |
CN110856100B (en) | Method and device for terminal positioning and positioning model construction based on 5G signal | |
Wang et al. | An indoor UWB NLOS correction positioning method based on anchor LOS/NLOS map | |
Tian et al. | Application of a long short-term memory neural network algorithm fused with Kalman filter in UWB indoor positioning | |
CN109540154B (en) | Underwater sound navigation positioning method based on particle filter algorithm | |
WO2022124968A1 (en) | Method and apparatus for scatterer localization and material identification | |
Eldeeb et al. | Optimal placement of access points for indoor positioning using a genetic algorithm | |
Dai et al. | Analysis of target detection based on UWB NLOS ranging modeling | |
Abdellatif et al. | An improved indoor positioning based on crowd-sensing data fusion and particle filter | |
Qiao et al. | The trip to WiFi indoor localization across a decade—A systematic review | |
CN108398662A (en) | A method of improving spatial positioning accuracy | |
Du | Indoor localization techniques for wireless sensor networks | |
Waqar et al. | A range error reduction technique for positioning applications in sports | |
Bingbing et al. | An indoor positioning algorithm and its experiment research based on RFID | |
Li et al. | Edge computing-enabled green multisource fusion indoor positioning algorithm based on adaptive particle filter | |
CN116449406A (en) | A seamless switching method between GNSS positioning and indoor positioning | |
Zhang et al. | Noise reduction for radio map crowdsourcing building in WLAN indoor localization system | |
CN104215990B (en) | Auxiliary global positioning system (GPS) location method and system based on wireless network single node | |
Pazhoohesh et al. | A practical localization system based on principle component analysis | |
Wang et al. | An advanced algorithm for Fingerprint Localization based on Kalman Filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150204 |