CN104332819A - 基于受激布里渊散射效应的四倍频微波信号产生系统 - Google Patents

基于受激布里渊散射效应的四倍频微波信号产生系统 Download PDF

Info

Publication number
CN104332819A
CN104332819A CN201410442904.XA CN201410442904A CN104332819A CN 104332819 A CN104332819 A CN 104332819A CN 201410442904 A CN201410442904 A CN 201410442904A CN 104332819 A CN104332819 A CN 104332819A
Authority
CN
China
Prior art keywords
intensity modulator
port
polarization controller
microwave
light signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410442904.XA
Other languages
English (en)
Inventor
王文亭
李伟
刘建国
孙文惠
王玮钰
祝宁华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201410442904.XA priority Critical patent/CN104332819A/zh
Publication of CN104332819A publication Critical patent/CN104332819A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种基于受激布里渊散射的四倍频微波信号产生系统,该系统包括:窄线宽激光器、光耦合器、第一偏振控制器、第一强度调制器、光隔离器、色散位移光纤、环形器、光电探测器、矢量网络分析仪、第二偏振控制器、第二强度调制器、微波信号源、光滤波器、光放大器和第三偏振控制器。本发明结构简单、能够产生高频微波信号、毫米波信号甚至是太赫兹波信号,克服了传统使用光陷波滤波器的缺陷,解决了高频微波信号产生困难的问题,同时,由于泵浦光和信号都源于同一个激光器,因此,本发明所产生的多倍频微波信号的稳定性较好。

Description

基于受激布里渊散射效应的四倍频微波信号产生系统
技术领域
本发明属于微波光子学领域,更具体的说是一种基于光纤的受激布里渊散射效应的四倍频微波信号产生系统。
背景技术
微波光子学是上个世纪70年代提出一种融合微波技术和光子技术的交叉学科,其兼顾了微波技术的灵活性和光子技术的宽带以及低损耗特性。随着科技的进步,特别是信息技术的快速更新换代,微波技术与光子技术相互融合成为科技进步的必然趋势并且其取得了长足的进步。其中,高质量的微波信号产生技术是微波应用的关键和基础。高质量的微波信号主要体现为高频谱纯度、高射频稳定性和低相位噪声,其在很多领域有着广泛的应用,其中包括雷达系统、无线通信系统以及电子对抗系统。由于电子瓶颈的限制,基于电子系统直接产生高频微波或者毫米波是一大挑战。为了克服电子系统产生高频微波信号的难点,同时,由于对高频谱纯度和低相位噪声的微波信号的强烈需求,光生微波技术应用而生。
基于光生微波技术产生高频微波信号克服了传统微波系统在处理速度和传输带宽等方面的严重电子瓶颈,并且产生的微波信号的频谱纯度高、相位噪声低并具有灵活的可调谐能力,充分利用了光子技术的先天优势。同时,光生微波系统相比于传统的微波系统具有损耗低、重量轻、带宽大、速度快、抗电磁干扰和频率响应平坦等诸多优点。此外,由于本发明基于光子技术产生微波,因此可以与全光网络以及光载射频兼容。
综上,产生高频率、高频谱纯度、宽带可调谐以及低相位噪声的高频微波信号具有迫切的应用需求,也具有重要的战略意义。
发明内容
为了解决上述现有技术中存在的问题,本发明提出一种基于光纤的受激布里渊散射效应的四倍频微波信号产生系统,其基于光纤中的受激布里渊散射效应,使得奇阶边带抑制的光信号的载波被受激布里渊散射进行衰减,仅剩余±2阶光边带信号产生多倍频微波信号。
本发明提出的一种基于受激布里渊散射的四倍频微波信号产生系统包括:窄线宽激光器、光耦合器、第一偏振控制器、第一强度调制器、光隔离器、色散位移光纤、环形器、光电探测器、矢量网络分析仪、第二偏振控制器、第二强度调制器、微波信号源、光滤波器、光放大器和第三偏振控制器,其中:
所述窄线宽激光器用于提供连续光信号;
所述光耦合器用于将所述窄线宽激光器发出的光信号分为两束,一路光信号经第一偏振控制器后通过第一强度调制器进行强度调制,另一路光信号经第二偏振控制器后通过第二强度调制器进行强度调制;
所述第一偏振控制器的输入端口与所述光耦合器的一个输出端口连接,输出端口与所述第一强度控制器的输入端口连接,用于调节接收到的光信号的偏振态,使进入所述第一强度调制器的光信号的偏振方向对准所述第一强度调制器输入端口的起偏方向;
所述矢量网络分析仪的输出端口与所述第一强度调制器的射频端口连接,用于输出所述第一强度调制器需要的调制信号;
所述第一强度调制器的输入端口与所述第一偏振控制器的输出端口连接,用于根据所述矢量网络分析仪输出的调制信号对于接收到的光信号进行强度调制,强度调制之后的光信号经过所述光隔离器入射到色散位移光纤发生受激布里渊散射;
所述光隔离器与所述第一强度调制器连接,用于防止反向而来的受激布里渊散射的泵浦光进入所述第一强度调制器;
所述色散位移光纤用于发生受激布里渊散射;
所述环形器的第一端口与所述第三偏振控制器的输出端口连接,第二端口与所述色散位移光纤的输出端口连接,第三端口与所述光电探测器的输入端口连接;
所述光电探测器的输入端口与环形器的第三端口连接,用于将所述环形器输出的光信号转化为电信号,即为最终产生的四倍频微波信号;
所述第二偏振控制器的输入端口与所述光耦合器的另一个输出端口连接,输出端口与所述第二强度调制器的输入端口连接,用于调节接收到的光信号的偏振态,使进入所述第二强度调制器的光信号的偏振方向对准所述第二强度调制器输入端口的起偏方向;
所述微波信号源的输出端口与所述第二强度调制器的射频端口连接,用于输出所述第二强度调制器需要的调制信号;
所述第二强度调制器的输入端口与所述第二偏振控制器的输出端口连接,用于根据所述微波信号源输出的调制信号对于接收到的光信号进行强度调制,强度调制之后的光信号首先经过光滤波器进行滤波,然后再经过光放大器进行放大处理;
所述光滤波器的输入端口与所述第二强度调制器的输出端口连接,用于滤除所接收到的光信号中的光载波和其余的光边带,仅仅剩余用于受激布里渊散射的单一+1阶光边带;
所述光放大器的输入端口与所述光滤波器的输出端口连接,用于放大滤波之后的光信号,补偿光滤波器引起的光功率的损耗;
所述第三偏振控制器的输入端口与所述光放大器的输出口连接,输出端口与环形器的第一端口连接,用于调节经过光滤波器滤波之后的光信号的偏振态,经过偏振态调节的光信号由环形器的第一端口路由到第二端口,然后入射到色散位移光纤用于诱导受激布里渊散射。
其中,所述光耦合器的分光比为1:1。
其中,所述微波信号源为宽带微波源或矢量网络分析仪。
其中,所述微波信号源输出的微波调调制信号的频率为10.5GHz。
其中,所述第二强度调制器、微波信号源、光滤波器和光放大器可由双平衡马赫曾德调制器、宽带微波源和90度移相器代替,其中:
所述双平衡马赫曾德调制器的输入端口与所述第二偏振控制器的输出端口连接,用于对于接收到的光信号进行移频处理,并将移频处理后的光信号输出至所述第三偏振控制器;
所述宽带微波源用于输出微波信号,输出的微波信号通过微波功分器分为强度相等的两束微波信号,其中一路与所述双平衡马赫曾德调制器的一个射频端口连接,另一路与90度移相器连接;
所述90度移相器的输入端口与所述微波功分器的一路输出端口连接,输出端口与所述双平衡马赫曾德调制器的另一个射频端口连接。
其中,所述窄线宽激光器为半导体激光器或光纤激光器。
其中,所述偏振控制器为光纤结构、波导结构或空间结构的偏振控制器。
其中,所述强度调制器为铌酸锂晶体的、半导体聚合物的或者有机聚合物的强度调制器。
其中,所述偏振控制器为光纤结构、波导结构或空间结构的偏振控制器。
其中,所述光电探测器为光电二极管或光电倍增管。
从上述技术方案可以看出,本发明具有以下有益效果:
本发明基于受激布里渊散射的四倍频微波信号的产生系统结构简单、能够产生高频微波信号、毫米波信号甚至是太赫兹波信号;
本发明克服了传统使用光陷波滤波器的缺陷,解决了高频微波信号产生困难的问题,同时,由于泵浦光和信号都源于同一个激光器,因此,所产生的多倍频微波信号的稳定性较好。
附图说明
图1是本发明基于受激布里渊散射的四倍频微波信号产生系统的结构示意图;
图2是本发明基于受激布里渊散射的多的四倍频微波信号产生系统的原理示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
图1是本发明基于受激布里渊散射的四倍频微波信号产生系统的结构示意图,如图1所示,所述系统包括:窄线宽激光器1、光耦合器2、第一偏振控制器3、第一强度调制器4、光隔离器5、色散位移光纤6、环形器7、光电探测器8、矢量网络分析仪9、第二偏振控制器10、第二强度调制器11、微波信号源12、光滤波器13、光放大器14和第三偏振控制器15,其中:
所述窄线宽激光器1用于提供连续光信号;该光信号通过光耦合器分为等功率的两束光信号并且这两束光信号的偏振态由偏振控制器调节;
所述光耦合器2用于将所述窄线宽激光器1发出的光信号分为两束,一路光信号经第一偏振控制器3后通过第一强度调制器4进行强度调制,另一路光信号经第二偏振控制器10后通过第二强度调制器11进行强度调制;
在本发明一实施例中,所述光耦合器2分光比为1:1。
所述第一偏振控制器3的输入端口与所述光耦合器2的一个输出端口连接,输出端口与所述第一强度控制器4的输入端口连接,用于调节接收到的光信号的偏振态,使进入所述第一强度调制器4的光信号的偏振方向对准所述第一强度调制器4输入端口的起偏方向;
所述矢量网络分析仪9的输出端口与所述第一强度调制器4的射频端口连接,用于输出所述第一强度调制器4需要的调制信号;
所述第一强度调制器4的输入端口与所述第一偏振控制器3的输出端口连接,用于根据所述矢量网络分析仪9输出的调制信号对于接收到的光信号进行强度调制,强度调制之后的光信号经过所述光隔离器5入射到色散位移光纤6发生受激布里渊散射,其中,经过所述第一强度调制器4调制之后输出的光信号产生光载波和多个调制边带,通过调制所述第一强度调制器4的偏置电压来实现奇阶边带抑制;
所述光隔离器5与所述第一强度调制器4连接,用于防止反向而来的受激布里渊散射的泵浦光进入所述第一强度调制器4;
所述色散位移光纤6用于发生受激布里渊散射,在所述色散位移光纤6的内部,由于泵浦光信号的受激布里渊散射效应,所述第一强度调制器4的光载波将会经历受激布里渊散射的衰减作用,通过调整宽带微波源和光滤波器13使强度调制之后的光信号的+1阶边带的上变频的布里渊损耗谱落在第一强度调制器4的输出光信号的光载波位置处,由于布里渊衰减效应,该光载波功率将会被衰减,衰减光载波的调制信号仅仅剩余±2阶调制边带;
所述环形器7的第一端口①与所述第三偏振控制器15的输出端口连接,第二端口②与所述色散位移光纤6的输出端口连接,第三端口③与所述光电探测器8的输入端口连接;
所述光电探测器8的输入端口与环形器7的第三端口③连接,用于将所述环形器7输出的光信号转化为电信号,即为最终产生的四倍频微波信号;
所述第二偏振控制器10的输入端口与所述光耦合器2的另一个输出端口连接,输出端口与所述第二强度调制器11的输入端口连接,用于调节接收到的光信号的偏振态,使进入所述第二强度调制器11的光信号的偏振方向对准所述第二强度调制器11输入端口的起偏方向;
所述微波信号源12的输出端口与所述第二强度调制器11的射频端口连接,用于输出所述第二强度调制器11需要的调制信号;
其中,所述微波信号源12为宽带微波源,其输出的微波调调制信号的频率为10.5GHz。
所述第二强度调制器11的输入端口与所述第二偏振控制器10的输出端口连接,用于根据所述微波信号源12输出的调制信号对于接收到的光信号进行强度调制,强度调制之后的光信号首先经过光滤波器13进行滤波,然后再经过光放大器14进行放大处理;
所述光滤波器13的输入端口与所述第二强度调制器11的输出端口连接,用于滤除所接收到的光信号中的光载波和其余的光边带,仅仅剩余用于受激布里渊散射的单一+1阶光边带,所述+1阶光边带能够诱导色散位移光纤发生受激布里渊散射来衰减光载波;
所述光放大器14的输入端口与所述光滤波器13的输出端口连接,用于放大滤波之后的光信号,补偿光滤波器13引起的光功率的损耗;
所述第三偏振控制器15的输入端口与所述光放大器14的输出口连接,输出端口与环形器7的第一端口①连接,用于调节经过光滤波器滤波之后的光信号的偏振态,经过偏振态调节的光信号由环形器7的第一端口①路由到第二端口②,然后入射到色散位移光纤6用于诱导受激布里渊散射。
其中,所述第二强度调制器11、微波信号源12、光滤波器13和光放大器14组成的部分可由所述双平衡马赫曾德调制器16、宽带微波源17和90度移相器18代替,其中:
所述双平衡马赫曾德调制器16的输入端口与所述第二偏振控制器10的输出端口连接,用于对于接收到的光信号进行移频处理,并将移频处理后的光信号输出至所述第三偏振控制器15;
所述宽带微波源17用于输出微波信号,输出的微波信号通过微波功分器分为强度相等的两束微波信号,其中一路与所述双平衡马赫曾德调制器16的一个射频端口连接,另一路与90度移相器18连接;
所述90度移相器18的输入端口与所述微波功分器的一路输出端口连接,输出端口与所述双平衡马赫曾德调制器16的另一个射频端口连接。
其中,所述窄线宽激光器1可以是半导体激光器也可以是光纤激光器;
所述偏振控制器3、10、15可以是光纤结构或者是波导结构的偏振控制器,也可以是空间结构的偏振控制器;
所述强度调制器4、11可以是铌酸锂晶体的也可以是半导体聚合物的或者有机聚合物的强度调制器;调制带宽越宽越好,半波电压越小越好,偏压越稳定越好,插损越低越好。
所述微波信号源9、12可以由矢量网络分析仪代替;
所述色散位移光纤6可以是掺锗高非线性光纤也可以是硫化物高非线性光纤;只要保证1550nm的色散值为0即可;
所述光滤波器13可以是基于硅基液晶技术的波形整形器也可以是光滤波器或者是波分复用器以及光纤光栅;滤波器的通带边沿越陡越好,插损越小越好;
所述光电探测器8可以是光电二极管也可以是光电倍增管;可以是磷化铟材料的也可以是硅基材料的;带宽越宽越好,饱和输入光功率越大越好,光电转化效率越高越好。
图2是本发明基于受激布里渊散射的四倍频微波信号产生系统的原理示意图,其中,图2a为经过强度调制的光载波和调制边带(对应于图1中的位置a),此时的调制为大信号调制,光载波与调制边带的频率差等于强度调制器上所加载的微波信号的频率,此时调节强度调制的偏置电压实现调制边带的奇阶边带抑制;图2c为利用受激布里渊散射实现光载波衰减的示意图(对应于图1中的位置c),然后将衰减光载波的调制信号入射到光电探测器,得到四倍频微波信号;图2b为另外一路光信号通过强度调制器和光滤波器实现光信号移频后的信号示意图(对应于图1中的位置b),移频量等于受激布里渊散射的移频量,移频后的光信号作为受激布里渊散射的泵浦光;该泵浦光通过光环行器入射到色散位移光纤,泵浦光诱导强度调制的光载波功率衰减。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于受激布里渊散射的四倍频微波信号产生系统,其特征在于,该系统包括:窄线宽激光器、光耦合器、第一偏振控制器、第一强度调制器、光隔离器、色散位移光纤、环形器、光电探测器、矢量网络分析仪、第二偏振控制器、第二强度调制器、微波信号源、光滤波器、光放大器和第三偏振控制器,其中:
所述窄线宽激光器用于提供连续光信号;
所述光耦合器用于将所述窄线宽激光器发出的光信号分为两束,一路光信号经第一偏振控制器后通过第一强度调制器进行强度调制,另一路光信号经第二偏振控制器后通过第二强度调制器进行强度调制;
所述第一偏振控制器的输入端口与所述光耦合器的一个输出端口连接,输出端口与所述第一强度控制器的输入端口连接,用于调节接收到的光信号的偏振态,使进入所述第一强度调制器的光信号的偏振方向对准所述第一强度调制器输入端口的起偏方向;
所述矢量网络分析仪的输出端口与所述第一强度调制器的射频端口连接,用于输出所述第一强度调制器需要的调制信号;
所述第一强度调制器的输入端口与所述第一偏振控制器的输出端口连接,用于根据所述矢量网络分析仪输出的调制信号对于接收到的光信号进行强度调制,强度调制之后的光信号经过所述光隔离器入射到色散位移光纤发生受激布里渊散射;
所述光隔离器与所述第一强度调制器连接,用于防止反向而来的受激布里渊散射的泵浦光进入所述第一强度调制器;
所述色散位移光纤用于发生受激布里渊散射;
所述环形器的第一端口与所述第三偏振控制器的输出端口连接,第二端口与所述色散位移光纤的输出端口连接,第三端口与所述光电探测器的输入端口连接;
所述光电探测器的输入端口与环形器的第三端口连接,用于将所述环形器输出的光信号转化为电信号,即为最终产生的四倍频微波信号;
所述第二偏振控制器的输入端口与所述光耦合器的另一个输出端口连接,输出端口与所述第二强度调制器的输入端口连接,用于调节接收到的光信号的偏振态,使进入所述第二强度调制器的光信号的偏振方向对准所述第二强度调制器输入端口的起偏方向;
所述微波信号源的输出端口与所述第二强度调制器的射频端口连接,用于输出所述第二强度调制器需要的调制信号;
所述第二强度调制器的输入端口与所述第二偏振控制器的输出端口连接,用于根据所述微波信号源输出的调制信号对于接收到的光信号进行强度调制,强度调制之后的光信号首先经过光滤波器进行滤波,然后再经过光放大器进行放大处理;
所述光滤波器的输入端口与所述第二强度调制器的输出端口连接,用于滤除所接收到的光信号中的光载波和其余的光边带,仅仅剩余用于受激布里渊散射的单一+1阶光边带;
所述光放大器的输入端口与所述光滤波器的输出端口连接,用于放大滤波之后的光信号,补偿光滤波器引起的光功率的损耗;
所述第三偏振控制器的输入端口与所述光放大器的输出口连接,输出端口与环形器的第一端口连接,用于调节经过光滤波器滤波之后的光信号的偏振态,经过偏振态调节的光信号由环形器的第一端口路由到第二端口,然后入射到色散位移光纤用于诱导受激布里渊散射。
2.根据权利要求1所述的系统,其特征在于,所述光耦合器的分光比为1:1。
3.根据权利要求1所述的系统,其特征在于,所述微波信号源为宽带微波源或矢量网络分析仪。
4.根据权利要求1所述的系统,其特征在于,所述微波信号源输出的微波调调制信号的频率为10.5GHz。
5.根据权利要求1所述的系统,其特征在于,所述第二强度调制器、微波信号源、光滤波器和光放大器可由双平衡马赫曾德调制器、宽带微波源和90度移相器代替,其中:
所述双平衡马赫曾德调制器的输入端口与所述第二偏振控制器的输出端口连接,用于对于接收到的光信号进行移频处理,并将移频处理后的光信号输出至所述第三偏振控制器;
所述宽带微波源用于输出微波信号,输出的微波信号通过微波功分器分为强度相等的两束微波信号,其中一路与所述双平衡马赫曾德调制器的一个射频端口连接,另一路与90度移相器连接;
所述90度移相器的输入端口与所述微波功分器的一路输出端口连接,输出端口与所述双平衡马赫曾德调制器的另一个射频端口连接。
6.根据权利要求1所述的系统,其特征在于,所述窄线宽激光器为半导体激光器或光纤激光器。
7.根据权利要求1所述的系统,其特征在于,所述偏振控制器为光纤结构、波导结构或空间结构的偏振控制器。
8.根据权利要求1所述的系统,其特征在于,所述强度调制器为铌酸锂晶体的、半导体聚合物的或者有机聚合物的强度调制器。
9.根据权利要求1所述的系统,其特征在于,所述偏振控制器为光纤结构、波导结构或空间结构的偏振控制器。
10.根据权利要求1所述的系统,其特征在于,所述光电探测器为光电二极管或光电倍增管。
CN201410442904.XA 2014-09-02 2014-09-02 基于受激布里渊散射效应的四倍频微波信号产生系统 Pending CN104332819A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410442904.XA CN104332819A (zh) 2014-09-02 2014-09-02 基于受激布里渊散射效应的四倍频微波信号产生系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410442904.XA CN104332819A (zh) 2014-09-02 2014-09-02 基于受激布里渊散射效应的四倍频微波信号产生系统

Publications (1)

Publication Number Publication Date
CN104332819A true CN104332819A (zh) 2015-02-04

Family

ID=52407499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410442904.XA Pending CN104332819A (zh) 2014-09-02 2014-09-02 基于受激布里渊散射效应的四倍频微波信号产生系统

Country Status (1)

Country Link
CN (1) CN104332819A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733985A (zh) * 2015-04-09 2015-06-24 中国科学院半导体研究所 基于利奥光滤波器的微波脉冲产生装置
CN111525381A (zh) * 2020-04-28 2020-08-11 河北工业大学 一种单频布里渊组束激光器
CN114720780A (zh) * 2022-06-09 2022-07-08 杭州微纳智感光电科技有限公司 一种高功率高频微波场强传感方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040136649A1 (en) * 2002-11-15 2004-07-15 Mangir Metin S. Self-adapting limiter
FR2867000A1 (fr) * 2004-02-27 2005-09-02 Thales Sa Dispositif de reduction dynamique de la porteuse optique d'un signal module en hyperfrequence
CN101339346A (zh) * 2008-08-14 2009-01-07 上海交通大学 全光产生四倍频高速毫米波信号的装置和方法
CN101742738A (zh) * 2009-10-13 2010-06-16 北京邮电大学 基于4倍频的基站无源全双工毫米波RoF链路实现方案
CN102075258A (zh) * 2011-01-18 2011-05-25 汉鼎信息科技股份有限公司 利用光载波布里渊处理的频响均衡装置
CN102710335A (zh) * 2012-05-09 2012-10-03 浙江大学 一种产生微波/毫米波光子4倍频的装置及其方法
CN103439011A (zh) * 2013-08-26 2013-12-11 吉林大学 一种超宽频率范围的多频微波信号的光子瞬时频率测量装置
CN103955028A (zh) * 2014-04-29 2014-07-30 中国科学院半导体研究所 一种宽带可调谐单通带微波光子滤波器产生系统
CN103997375A (zh) * 2014-05-13 2014-08-20 北京邮电大学 一种产生四倍频光载毫米波的方法和系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040136649A1 (en) * 2002-11-15 2004-07-15 Mangir Metin S. Self-adapting limiter
FR2867000A1 (fr) * 2004-02-27 2005-09-02 Thales Sa Dispositif de reduction dynamique de la porteuse optique d'un signal module en hyperfrequence
CN101339346A (zh) * 2008-08-14 2009-01-07 上海交通大学 全光产生四倍频高速毫米波信号的装置和方法
CN101742738A (zh) * 2009-10-13 2010-06-16 北京邮电大学 基于4倍频的基站无源全双工毫米波RoF链路实现方案
CN102075258A (zh) * 2011-01-18 2011-05-25 汉鼎信息科技股份有限公司 利用光载波布里渊处理的频响均衡装置
CN102710335A (zh) * 2012-05-09 2012-10-03 浙江大学 一种产生微波/毫米波光子4倍频的装置及其方法
CN103439011A (zh) * 2013-08-26 2013-12-11 吉林大学 一种超宽频率范围的多频微波信号的光子瞬时频率测量装置
CN103955028A (zh) * 2014-04-29 2014-07-30 中国科学院半导体研究所 一种宽带可调谐单通带微波光子滤波器产生系统
CN103997375A (zh) * 2014-05-13 2014-08-20 北京邮电大学 一种产生四倍频光载毫米波的方法和系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUOHUA QI等: "Generation and distribution of a wide band continuously tunable millimeter-wave signal with an optical external modulation technique", 《IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES》 *
S.TONDA-GOLDSTEIN等: "40 dB dynamic enhancement of modulation depth for optically carried microwave signals", 《ELECTRONICS LETTERS》 *
王勇等: "新型四倍频光生毫米波矢量信号调制技术", 《光学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733985A (zh) * 2015-04-09 2015-06-24 中国科学院半导体研究所 基于利奥光滤波器的微波脉冲产生装置
CN111525381A (zh) * 2020-04-28 2020-08-11 河北工业大学 一种单频布里渊组束激光器
CN114720780A (zh) * 2022-06-09 2022-07-08 杭州微纳智感光电科技有限公司 一种高功率高频微波场强传感方法及装置
CN114720780B (zh) * 2022-06-09 2022-09-09 杭州微纳智感光电科技有限公司 一种高功率高频微波场强传感方法及装置

Similar Documents

Publication Publication Date Title
Chi et al. Frequency quadrupling and upconversion in a radio over fiber link
CN104618022B (zh) 毫米波信号的光子学产生方法及装置
CN104022830B (zh) 利用马赫‑曾德尔调制器产生八倍频毫米波的装置
CN104216196B (zh) 一种无外部电本振可调谐的全光微波光子变频装置
CN103715480B (zh) 一种超高品质因数的单带通可调谐微波光子滤波器
CN107065390B (zh) 基于受激布里渊散射效应和光频梳的微波信号产生方法及装置
CN103955028A (zh) 一种宽带可调谐单通带微波光子滤波器产生系统
CN104993358B (zh) 基于受激布里渊散射的单边带光载微波信号产生装置
Li et al. A tunable microwave photonic filter based on an all-optical differentiator
CN104165756B (zh) 基于受激布里渊散射的高灵敏度光矢量网络分析仪
CN104065416A (zh) 基于微波移相器的微波信号光纤稳相传输系统
CN109586798A (zh) 一种可调谐多输出微波信号的光子学产生装置
CN103297145A (zh) 全光产生十六倍频毫米波的装置
CN104330940A (zh) 基于超宽带光频率梳产生奈奎斯特光脉冲的装置
CN105337144A (zh) 基于锥形硫系光纤四波混频的太赫兹波生成系统及方法
CN104601240A (zh) 基于硫系玻璃光纤四波混频效应的毫米波生成系统及方法
Peng et al. A tunable and wideband microwave photonic phase shifter based on dual-polarization modulator
Chen et al. Optical millimeter-wave generation with tunable multiplication factors and reduced power fluctuation by using cascaded modulators
CN104168064A (zh) 一种基于往返相位校正的微波信号光纤稳相传输装置
CN104168063B (zh) 一种基于波长再利用的微波信号光纤稳相传输装置
CN104332819A (zh) 基于受激布里渊散射效应的四倍频微波信号产生系统
Zhu et al. Filter-free photonic frequency sextupler operated over a wide range of modulation index
CN104821850B (zh) 利用光电振荡器主动校准光纤传输微波信号相位的装置
Chan et al. All-optical frequency shifter based on stimulated Brillouin scattering in an optical fiber
Sun et al. High order SSB modulation and its application for advanced optical comb generation based on RFS

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150204