CN104331910A - Track obstacle detection system based on machine vision - Google Patents
Track obstacle detection system based on machine vision Download PDFInfo
- Publication number
- CN104331910A CN104331910A CN201410681599.XA CN201410681599A CN104331910A CN 104331910 A CN104331910 A CN 104331910A CN 201410681599 A CN201410681599 A CN 201410681599A CN 104331910 A CN104331910 A CN 104331910A
- Authority
- CN
- China
- Prior art keywords
- image
- track
- value
- pixel
- obstacle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 49
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 28
- 238000000605 extraction Methods 0.000 claims abstract description 15
- 230000008569 process Effects 0.000 claims abstract description 13
- 239000000284 extract Substances 0.000 claims abstract description 9
- 230000033001 locomotion Effects 0.000 claims description 14
- 230000003068 static effect Effects 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 5
- 230000011218 segmentation Effects 0.000 claims description 5
- 238000004088 simulation Methods 0.000 claims description 5
- 238000002474 experimental method Methods 0.000 claims description 4
- 238000009499 grossing Methods 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 4
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 238000005316 response function Methods 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims 14
- 230000009545 invasion Effects 0.000 claims 4
- 238000002372 labelling Methods 0.000 claims 2
- 238000004364 calculation method Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 230000004069 differentiation Effects 0.000 claims 1
- 238000005286 illumination Methods 0.000 claims 1
- 239000003550 marker Substances 0.000 claims 1
- 238000011946 reduction process Methods 0.000 claims 1
- 238000005728 strengthening Methods 0.000 claims 1
- 230000001629 suppression Effects 0.000 claims 1
- 230000009466 transformation Effects 0.000 abstract description 4
- 230000006872 improvement Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 206010039203 Road traffic accident Diseases 0.000 description 2
- 238000005314 correlation function Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000003137 locomotive effect Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000006740 morphological transformation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L23/00—Control, warning or like safety means along the route or between vehicles or trains
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Train Traffic Observation, Control, And Security (AREA)
Abstract
一种基于机器视觉的轨道障碍物检测系统,属于铁路安全领域。通过安装在列车头的车载摄像机获取黑白视频图像,根据摄像机是否超程判断轨道为类直道或弯道。弯道采用固定高清摄像机和无线发射装置接收无线图像实现人工检测弯道状况。类直道将获取到的实时图像序列进行分析,采用基于顶帽变换和Otsu阈值的轨道边缘提取算法,基于数学形态学改善的帧间差分法与背景差分法相结合以及角点特征匹配跟踪算法,实时将前方障碍物分为无危险(静止小型障碍物、快速横跨轨道的运动障碍物)和危险(静止大型障碍物、影响列车通过的运动障碍物)两类。本发明可以快速处理轨道图像,能更有效更准确的提取轨道边缘,对轨道障碍物检测准确度也较高。
A machine vision-based track obstacle detection system belongs to the field of railway safety. The black-and-white video image is obtained by the on-board camera installed on the train head, and the track is judged as straight or curved according to whether the camera is overtraveled. The curve uses a fixed high-definition camera and a wireless transmitter to receive wireless images to realize manual detection of the curve. Quasi-straight track will analyze the acquired real-time image sequence, adopt the track edge extraction algorithm based on top-hat transformation and Otsu threshold, combine the inter-frame difference method based on mathematical morphology improvement with the background difference method and the corner feature matching tracking algorithm, real-time The obstacles in front are divided into two categories: non-dangerous (stationary small obstacles, moving obstacles that quickly cross the track) and dangerous (stationary large obstacles, moving obstacles that affect the passage of trains). The invention can quickly process track images, can extract track edges more effectively and accurately, and has higher detection accuracy for track obstacles.
Description
技术领域technical field
本发明属于铁路安全领域,具体涉及一种基于机器视觉的轨道障碍物检测系统。The invention belongs to the field of railway safety, and in particular relates to a machine vision-based track obstacle detection system.
背景技术Background technique
近年来,随着列车大面积提速,列车操作模式的改变,客货运量明显的提高,对铁路运输的安全性和可靠性提出了更高的要求。目前国外在轨道障碍物研究方面虽然已经有了比较成熟的产品,但大多数产品的设计理念都是通过向待检测方位发出某种形式的信号(主要包括激光、雷达、磁感应,超声波等),并分析经过传感器检测并反射回来的信号,作为判断识别障碍物的依据。这些检测方法中,比如利用超声波进行铁路路轨检测,能够比较准确地检测识别出目标障碍物的位置,但仍然存在对于体积较大并具有一定高度的目标障碍物检测效果较好,会出现漏检扁小障碍物的问题;激光和雷达检测具有空间覆盖率有限以及分辨率不高的缺点。同时,此类方法属于侵犯式检测,不可避免地增加了环境噪声,并且传感器之间还会产生干扰。这些缺点和不足,无一不会影响障碍物准确有效的检测和识别。In recent years, with the large-scale speed increase of trains, the change of train operation mode, and the obvious increase of passenger and freight volume, higher requirements have been put forward for the safety and reliability of railway transportation. At present, although there are relatively mature products abroad in the research of orbital obstacles, the design concept of most products is to send some form of signal (mainly including laser, radar, magnetic induction, ultrasonic, etc.) to the direction to be detected. And analyze the signal detected and reflected by the sensor as the basis for judging and identifying obstacles. Among these detection methods, for example, the use of ultrasonic waves for railway track detection can detect and identify the position of the target obstacle more accurately, but there is still a problem that the detection effect of the target obstacle with a large volume and a certain height is better, and there will be missed detection. The problem of flat and small obstacles; laser and radar detection have the disadvantages of limited spatial coverage and low resolution. At the same time, this kind of method belongs to aggressive detection, which inevitably increases the environmental noise, and also produces interference between sensors. All these shortcomings and deficiencies will affect the accurate and effective detection and identification of obstacles.
我国发明专利,公开号为CN201825066U的“机车地面信号及障碍物自动识别系统”,提出用车体上安装电子图像识别系统,分析运行前方线路上的图形。由系统识别判断图形上的色灯信号、道岔位置及道岔开闭状态、尽头线土档及停留车,来提醒司机或控制机车自动制动来防止事故发生。但是上述系统也只是针对个别特定物质的检测具有良好效果,在自动检测识别列车运行前方的行人、落石以及车辆的领域内,仍无法发挥其作用。my country's invention patent, the publication number is CN201825066U "Locomotive Ground Signal and Obstacle Automatic Recognition System", it is proposed to install an electronic image recognition system on the car body to analyze the graphics on the line ahead of the operation. The system recognizes and judges the color light signal on the graph, the position of the turnout, the opening and closing status of the turnout, the soil stop at the end line and the parking car to remind the driver or control the automatic braking of the locomotive to prevent accidents. However, the above-mentioned system is only effective in the detection of individual specific substances, and it still cannot play its role in the field of automatic detection and identification of pedestrians, falling rocks and vehicles in front of the train.
发明内容Contents of the invention
本发明针对现有技术的不足和缺点,提供一种基于机器视觉的轨道障碍物检测系统,其可以快速处理轨道图像,轨道边缘提取更精确,对轨道障碍物检测准确度较高。Aiming at the deficiencies and shortcomings of the prior art, the present invention provides a machine vision-based track obstacle detection system, which can quickly process track images, extract track edges more accurately, and detect track obstacles with higher accuracy.
本发明提出的技术方案为一种基于机器视觉的轨道障碍物检测系统,通过安装在列车头的车载摄像机获取黑白视频图像,根据车在摄像机是否超程判断轨道为类直道或弯道。弯道采用固定高清摄像机和无线发射装置接收无线图像实现人工检测弯道状况。类直道将获取到的实时图像序列进行分析,采用基于顶帽变换和Otsu阈值的轨道边缘提取算法,基于数学形态学改善的帧间差分法与背景差分法相结合以及角点特征匹配跟踪算法,实时将前方障碍物分为无危险(静止小型障碍物、快速横跨轨道的运动障碍物)和危险(静止大型障碍物、影响列车通过的运动障碍物)两类。将检测分析识别的后结果通报给司乘人员,达到有效避免误判或交通事故发生的目的。具体步骤如下:The technical solution proposed by the present invention is a track obstacle detection system based on machine vision, which obtains black and white video images through a vehicle-mounted camera installed on the train head, and judges whether the track is a straight track or a curve according to whether the vehicle's camera is overtraveled. The curve uses a fixed high-definition camera and a wireless transmitter to receive wireless images to realize manual detection of the curve. Quasi-straight track will analyze the acquired real-time image sequence, adopt the track edge extraction algorithm based on top-hat transformation and Otsu threshold, combine the inter-frame difference method based on mathematical morphology improvement with the background difference method and the corner feature matching tracking algorithm, real-time The obstacles in front are divided into two categories: non-dangerous (stationary small obstacles, moving obstacles that quickly cross the track) and dangerous (stationary large obstacles, moving obstacles that affect the passage of trains). The final results of detection, analysis and identification are notified to the drivers and passengers, so as to effectively avoid misjudgment or traffic accidents. Specific steps are as follows:
1、采集实时图像1. Collect real-time images
采用单目摄像机方式、光学防抖、超远焦距的黑白摄像机,在列车行进过程中实时采集图像序列。Monocular camera, optical anti-shake, ultra-telephoto black-and-white camera is used to collect image sequences in real time during the train's travel.
2、判断轨道类型2. Determine the track type
当车载摄像机超程时,判断为弯道(大角度转弯轨道、直角轨道);则采用固定高清摄像机和无线发射装置接收无线图像实现人工检测弯道轨道状况;When the on-board camera exceeds the distance, it is judged as a curve (large-angle turning track, right-angle track); then a fixed high-definition camera and a wireless transmitter are used to receive wireless images to realize manual detection of the curve track status;
若车载摄像机没有超程时,则判定为类直道(直线轨道、小弧度转弯轨道),继续采用车载摄像机获取实时图像,进入下一步处理图像。If the on-board camera does not exceed the distance, it is judged as a straight track (straight track, small arc turning track), continue to use the on-board camera to obtain real-time images, and enter the next step to process the image.
3、图像预处理3. Image preprocessing
首先,对图像做增强处理,采用直径为4的“diamond”结构元素做顶帽运算,图像X关于结构元素B的顶帽运算记为X°B,定义为提亮双轨部分,抑制背景高亮部分;First, the image is enhanced, and the "diamond" structural element with a diameter of 4 is used for the top-hat operation. The top-hat operation of the image X with respect to the structural element B is denoted as X°B, which is defined as Brighten the double-track part and suppress the background highlight part;
接着,对增强后的图像采用Otsu阈值计算最佳阈值T,将图像二值化,得到二值图像;经过阈值分割后的图像包含多个不连续区域;Then, the Otsu threshold is used to calculate the optimal threshold T for the enhanced image, and the image is binarized to obtain a binary image; the image after threshold segmentation contains multiple discontinuous regions;
最后,检查不连续区域中各像素与其相邻像素的连通性,标记提取区域,通过连通域标记保留双轨特征直线。Finally, the connectivity of each pixel in the discontinuous area with its adjacent pixels is checked, the extracted area is marked, and the double-track feature line is preserved through the connected domain mark.
4、建立检测窗4. Establish a detection window
根据连通域标记保留双轨特征直线,利用直线拟合,采用最小二乘法实现对轨道提取边缘定位,将两轨道线性化,求出直线方程;以铁轨的具体位置确定检测窗窗口的位置、尺寸和形状,检测窗将轨道部分框定在其范围内。Preserve the double-track characteristic straight line according to the connected domain mark, use the straight line fitting, and use the least square method to realize the edge positioning of the track extraction, linearize the two tracks, and obtain the straight line equation; determine the position, size and size of the detection window based on the specific position of the rail. shape, the detection window frames the portion of the track within its bounds.
5、判断是否有障碍物5. Determine whether there are obstacles
基于类直道轨道规则不变性以及检测窗内图像已排除背景的特点,可以忽略轨道运动,当有可疑障碍物入侵检测窗时,势必会引起图像特征变化,本方法选取直方图特征。Based on the invariance of straight-like orbital rules and the fact that the image in the detection window has excluded the background, the orbital motion can be ignored. When suspicious obstacles invade the detection window, it will inevitably cause changes in image features. This method selects the histogram feature.
根据经验值定义阈值T1和T2用于判别直方图方差变化量Δσk 2和直方图毛刺个数BurrNum的值变化状况,通过对二值黑白像素比值ratio,Δσk 2和BurrNum三个参数的监测,判断有无障碍物入侵可能。算法如下:Thresholds T 1 and T 2 are defined based on empirical values to determine the value change of the histogram variance variation Δσ k 2 and the histogram burr number BurrNum, through the binary black and white pixel ratio ratio, Δσ k 2 and BurrNum three parameters Monitoring to determine whether there is a possibility of obstacle intrusion. The algorithm is as follows:
直方图均值:
(其中rk为直方图特征数据,pk为其所对应的概率,L为特征数据的个数)(where r k is the histogram feature data, p k is the corresponding probability, and L is the number of feature data)
直方图方差:
二值黑白像素比值: Binary black and white pixel ratio:
(nb为黑像素的数量,nk为白像素的数量)(n b is the number of black pixels, n k is the number of white pixels)
从重要程度和可靠度来看,比值nb/nk更为直观,更能表现实际情况,因此列举一下判断依据:From the point of view of importance and reliability, the ratio n b /n k is more intuitive and can better reflect the actual situation, so here is the basis for judging:
(1)ratio<4.5时,无论Δσk 2和BurrNum的值如何,都判断有入侵障碍物;(1) When ratio<4.5, regardless of the value of Δσ k 2 and BurrNum, it is judged that there is an intrusion obstacle;
(2)ratio>4.5时,则观察Δσk 2和BurrNum的值如何变化,若两者超出阈值,则判断有入侵障碍物;(2) When ratio>4.5, observe how the values of Δσ k 2 and BurrNum change, and if the two exceed the threshold, it is judged that there is an intrusion obstacle;
(3)ratio>4.5时,且Δσk 2和BurrNum的值都未超出阈值或者其中一个超出阈值,则判断没有障碍物,可能是光照条件等外界干扰的影响。(3) When ratio>4.5, and the values of Δσ k 2 and BurrNum do not exceed the threshold or one of them exceeds the threshold, it is judged that there is no obstacle, which may be affected by external disturbances such as lighting conditions.
若没有障碍物,则返回从头开始;若有障碍物,则进行下一步。If there are no obstacles, return to the beginning; if there are obstacles, proceed to the next step.
6、障碍物检测6. Obstacle detection
静止障碍物对火车也有相对运动,所以通过运动轨迹和运动特征来判别是静止还是运动障碍物。Stationary obstacles also have relative motion to the train, so it is judged whether it is a stationary or a moving obstacle by the motion track and motion characteristics.
采用经过数学形态学改善的帧间差分法,对检测窗中的图像进行差分运算,提取分割运动目标;帧间差分法就是在视频图像序列中,提取相邻两帧三帧或者多帧图像,并对提取的帧图像进行像素相减的图像运算。如果相邻像素的差值小于设定的阈值,则认为该像素是静止的背景,反之,则提取该像素作为运动目标,根据这个原则,将所有符合运动目标阈值的像素联合起来便可以提取出场景中的运动目标,并去除干扰背景,以此达到提取分割运动目标的目的。The inter-frame difference method improved by mathematical morphology is used to perform differential operations on the images in the detection window to extract and segment moving objects; the inter-frame difference method is to extract two adjacent frames, three frames or multiple frames of images in the video image sequence, And the image operation of pixel subtraction is performed on the extracted frame image. If the difference between adjacent pixels is less than the set threshold, the pixel is considered to be a static background, otherwise, the pixel is extracted as a moving target. According to this principle, all pixels that meet the threshold of the moving target can be extracted by combining all the pixels that meet the threshold of the moving target. The moving target in the scene, and remove the interference background, so as to achieve the purpose of extracting and segmenting the moving target.
帧间差分法原理如下所示:The principle of inter-frame difference method is as follows:
Dk(x,y)=|Fk(x,y)-Fk-1(x,y)|D k (x,y)=|F k (x,y)-F k-1 (x,y)|
Fk(x,y)表示视频中连续的图像,Dk(x,y)表示连续两帧图像相减所得到的差值图像,然后将Dk(x,y)做如下处理:F k (x, y) represents continuous images in the video, D k (x, y) represents the difference image obtained by subtracting two consecutive frames of images, and then D k (x, y) is processed as follows:
Rk(x,y)为判断目标是否运动的依据:若为1,则目标判定为运动;反之,为静止。R k (x, y) is the basis for judging whether the target is moving: if it is 1, the target is determined to be moving; otherwise, it is static.
同时,利用背景差分法,将检测窗中的检测图像与背景图像进行差分,然后用阈值来检测运动区域。设b(x,y)为背景图像,定义图像序列f(x,y,i),其中(x,y)为图像位置坐标,i为图像帧数。将每一帧图像的灰度值减去背景的灰度值得到差值图像:At the same time, using the background difference method, the detection image in the detection window is differentiated from the background image, and then a threshold is used to detect the moving area. Let b(x,y) be the background image, and define an image sequence f(x,y,i), where (x,y) is the coordinate of the image position, and i is the number of image frames. Subtract the gray value of the background from the gray value of each frame image to obtain the difference image:
id(x,y,i)=f(x,y,i)-b(x,y)id(x,y,i)=f(x,y,i)-b(x,y)
通过设置阈值T可得到一个二值化差分图像:A binary difference image can be obtained by setting the threshold T:
(阈值T通过实验模拟得到) (Threshold T is obtained through experimental simulation)
最后,对两种算法所得的图像进行像素点取交集,更准确的对目标进行提取,得到目标的尺寸、目标的形状特征。Finally, the pixel points of the images obtained by the two algorithms are intersected to extract the target more accurately, and the size and shape characteristics of the target are obtained.
7、障碍物的识别和分类7. Identification and classification of obstacles
采用角点特征匹配跟踪算法进行障碍物尺寸大小、速度和方向识别,特征提取采用Harris角点检测算法,是一种基于信号的点特征提取算子,本方法中,将与邻点亮度对比(像素领域点的灰度对比)足够大的点定义为角点。The corner point feature matching tracking algorithm is used to identify the size, speed and direction of obstacles, and the feature extraction uses the Harris corner point detection algorithm, which is a signal-based point feature extraction operator. In this method, the brightness of adjacent points will be compared with ( The gray scale contrast of points in the pixel field) is defined as a corner point that is large enough.
所用的像素相关函数如下所示:The pixel correlation function used is as follows:
其中,w为进行降噪处理的平滑窗,(u,v)为偏移坐标,I为图像像素矩阵,I(x,y)值图像中点(x,y)的像素值。Ix和Iy分别代表图像像素在水平方向、垂直方向上的一阶偏微分,Ix 2和Iy 2则分别为两个方向上的二阶梯度值。然后通过计算角点响应函数就可以检测出图像中的角点:Among them, w is the smoothing window for noise reduction processing, (u, v) is the offset coordinate, I is the image pixel matrix, and I(x, y) is the pixel value of the point (x, y) in the image. I x and I y represent the first-order partial differentials of the image pixels in the horizontal and vertical directions, respectively, and I x 2 and I y 2 are the second-order gradient values in the two directions, respectively. Then the corners in the image can be detected by calculating the corner response function:
R=det(M)-k*tr2(M)R=det(M)-k*tr 2 (M)
其中,tr(M)和det(M)分别代表矩阵M的迹和行列式值,Harris角点检测算法推荐k取0.04。Among them, tr(M) and det(M) represent the trace and determinant values of the matrix M respectively, and the Harris corner detection algorithm recommends k to be 0.04.
特征匹配采用基于灰度相关的特征点匹配算法,以三帧提取为例:Feature matching uses a feature point matching algorithm based on gray-scale correlation, taking three-frame extraction as an example:
首先,对于每一个特征点pi∈E1,pj∈E3,分别以特征点为中心,构造一个N×N大小的窗口,分别记为Wi,Wj,然后分别计算各窗口的相关函数First, for each feature point p i ∈ E 1 , p j ∈ E 3 , respectively centering on the feature point, construct a window of N×N size, denoted as W i , W j , and then calculate the related functions
可根据Ccor(i,j)的值即可判定相应特征点的相关值,该值越大,相应的特征点邻域灰度越接近。在找寻匹配点的过程中,采用互匹配的方式进行匹配,即当E1中的特征点pi的最佳匹配点为E3中的pi,同时pj的最佳匹配点亦为pi时,就认为(pipj)为一对最佳匹配特征点。据此得到最终角点匹配结果。The correlation value of the corresponding feature point can be determined according to the value of C cor (i,j), and the larger the value is, the closer the neighborhood gray level of the corresponding feature point is. In the process of finding the matching point, the mutual matching method is used for matching, that is, when the best matching point of the feature point pi in E1 is p i in E3, and the best matching point of p j is also p i , It is considered that (p i p j ) is a pair of best matching feature points. Based on this, the final corner point matching result is obtained.
以此判断前方障碍物的类型,为无危险(静止小型障碍物、快速横跨轨道的运动障碍物)或危险(静止大型障碍物、影响列车通过的运动障碍物)。Based on this, the type of obstacle ahead can be judged as non-dangerous (stationary small obstacle, moving obstacle that quickly crosses the track) or dangerous (stationary large obstacle, moving obstacle affecting train passing).
本发明与现有系统相比具有下述有益效果:Compared with the existing system, the present invention has the following beneficial effects:
由于算法相对简单、复杂度降低,缩短了处理时间,可以快速处理轨道图像;基于顶帽变换和Otsu阈值的轨道边缘提取算法能更有效更准确的提取轨道边缘;采用基于形态变换的混合方法进行目标检测,有效改善了帧差法因在时间间隔选取上的局限性而伴随大量噪声和断点的缺点,对帧差法处理结果有去噪和平滑轮廓的作用,克服背景差分法在判断目标物由静到动进行运动时,出现“鬼影”缺陷,优化了运动目标检测的效果;所以对轨道障碍物检测准确度也较高。Because the algorithm is relatively simple, the complexity is reduced, the processing time is shortened, and the track image can be processed quickly; the track edge extraction algorithm based on top-hat transformation and Otsu threshold can extract track edges more effectively and accurately; a hybrid method based on morphological transformation is used for Target detection effectively improves the shortcomings of the frame difference method accompanied by a large amount of noise and breakpoints due to the limitations in the selection of time intervals. It has the effect of denoising and smoothing the outline of the processing results of the frame difference method, and overcomes the background difference method in judging the target. When an object moves from static to dynamic, a "ghost" defect appears, which optimizes the effect of moving target detection; therefore, the detection accuracy of track obstacles is also high.
附图说明Description of drawings
为了更清楚地说明本发明实施例,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the embodiments of the present invention more clearly, the following will briefly introduce the accompanying drawings that are required in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. Those of ordinary skill in the art can also obtain other drawings based on these drawings without any creative effort.
图1为本发明的直道、类直道系统检测流程图;Fig. 1 is the detection flow chart of straight road and class straight road system of the present invention;
图2为本发明的弯道系统框架流程图;Fig. 2 is the frame flow diagram of the curve system of the present invention;
图3为弯道监测模型示意图;Fig. 3 is a schematic diagram of a curve monitoring model;
图4为直道、类直道静止、运动障碍物模拟运动轨迹示意图;Fig. 4 is a schematic diagram of a simulated trajectory of a straight road, a quasi-straight road at rest, and a moving obstacle;
图5帧间差分法与数学形态学融合算法框图;Fig. 5 block diagram of inter-frame difference method and mathematical morphology fusion algorithm;
图6运动目标检测算法框图。Figure 6 is a block diagram of the moving target detection algorithm.
具体实施方式Detailed ways
参看图1-图6,一种基于机器视觉的轨道障碍物检测系统,该系统通过安装在列车头的车载摄像机获取黑白视频图像,判断轨道为类直道或弯道。弯道采用固定高清摄像机和无线发射装置接收无线图像实现人工检测弯道状况。类直道将获取到的实时图像序列进行分析,采用基于顶帽变换和Otsu阈值的轨道边缘提取算法,基于数学形态学改善的帧间差分法与背景差分法相结合以及角点特征匹配跟踪算法,实时将前方障碍物分为无危险(静止小型障碍物、快速横跨轨道的运动障碍物)和危险(静止大型障碍物、影响列车通过的运动障碍物)两类。将检测分析识别的后结果通报给司乘人员,达到有效避免误判或交通事故发生的目的。具体步骤如下:Referring to Figures 1-6, a track obstacle detection system based on machine vision, the system obtains black and white video images through the on-board camera installed on the train head, and judges whether the track is a straight track or a curve. The curve uses a fixed high-definition camera and a wireless transmitter to receive wireless images to realize manual detection of the curve. Quasi-straight track will analyze the acquired real-time image sequence, adopt the track edge extraction algorithm based on top-hat transformation and Otsu threshold, combine the inter-frame difference method based on mathematical morphology improvement with the background difference method and the corner feature matching tracking algorithm, real-time The obstacles in front are divided into two categories: non-dangerous (stationary small obstacles, moving obstacles that quickly cross the track) and dangerous (stationary large obstacles, moving obstacles that affect the passage of trains). The final results of detection, analysis and identification are notified to the drivers and passengers, so as to effectively avoid misjudgment or traffic accidents. Specific steps are as follows:
1、采集实时图像1. Collect real-time images
采用单目摄像机方式、光学防抖、超远焦距的黑白摄像机,在列车行进过程中实时采集图像序列。本实施例中采用宏电H3225A-K-G MDVR车载录像机,具有光学防抖、超远焦距的黑白摄像机都可以应用。采集的图像存储装置为车载工业计算机:北京华康泰双19寸平板电脑P1903。Monocular camera, optical anti-shake, ultra-telephoto black-and-white camera is used to collect image sequences in real time during the train's travel. In this embodiment, Hongdian H3225A-K-G MDVR vehicle-mounted video recorder is used, and black and white cameras with optical image stabilization and ultra-telephoto focal length can be applied. The collected image storage device is a vehicle-mounted industrial computer: Beijing Huakangtai double 19-inch tablet computer P1903.
2、判断轨道类型2. Determine the track type
当车载摄像机超程时,判断为弯道(大角度转弯轨道、直角轨道);则采用固定高清摄像机和无线发射装置接收无线图像实现人工检测弯道轨道状况,参考图2和图3;本实施例中固定高清摄像机采用弯道高清探头,品牌Ansky型号Ask-3510-67,无线发射装置采用无线传送装置:工业级无线模拟量信号传输DTD110FC。弯道高清探头固定位置可以是除图3外的别的位置。When the vehicle-mounted camera overruns, it is judged to be a curve (large-angle turning track, right-angle track); then a fixed high-definition camera and a wireless transmitter are used to receive wireless images to realize manual detection of the curve track status, referring to Figures 2 and 3; this implementation In the example, the fixed high-definition camera adopts a curved high-definition probe, brand Ansky model Ask-3510-67, and the wireless transmitter adopts a wireless transmission device: industrial-grade wireless analog signal transmission DTD110FC. The fixed position of the curved high-definition probe can be other positions than those shown in Figure 3.
若车载摄像机没有超程时,则判定为类直道(直线轨道、小弧度转弯轨道),继续采用车载摄像机获取实时图像,进入下一步,采用车载工业计算机:北京华康泰双19寸平板电脑P1903处理图像。If the on-board camera does not exceed the distance, it is judged as a straight track (straight track, small arc turning track), continue to use the on-board camera to obtain real-time images, and enter the next step, using the on-board industrial computer: Beijing Huakangtai dual 19-inch tablet PC P1903 for processing image.
3、图像预处理3. Image preprocessing
首先,对图像做增强处理,采用直径为4的“diamond”结构元素做顶帽运算,图像X关于结构元素B的顶帽运算记为X°B,定义为提亮双轨部分,抑制背景高亮部分;First, the image is enhanced, and the "diamond" structural element with a diameter of 4 is used for the top-hat operation. The top-hat operation of the image X with respect to the structural element B is denoted as X°B, which is defined as Brighten the double-track part and suppress the background highlight part;
接着,对增强后的图像采用Otsu阈值计算最佳阈值T,将图像二值化,得到二值图像;经过阈值分割后的图像包含多个不连续区域;Then, the Otsu threshold is used to calculate the optimal threshold T for the enhanced image, and the image is binarized to obtain a binary image; the image after threshold segmentation contains multiple discontinuous regions;
最后,检查不连续区域中各像素与其相邻像素的连通性,标记提取区域,通过连通域标记保留双轨特征直线。Finally, the connectivity of each pixel in the discontinuous area with its adjacent pixels is checked, the extracted area is marked, and the double-track feature line is preserved through the connected domain mark.
4、建立检测窗4. Establish a detection window
根据连通域标记保留双轨特征直线,利用直线拟合,采用最小二乘法实现对轨道提取边缘定位,将两轨道线性化,求出直线方程;以铁轨的具体位置确定检测窗窗口的位置、尺寸和形状,检测窗将轨道部分框定在其范围内。Preserve the double-track characteristic straight line according to the connected domain mark, use the straight line fitting, and use the least square method to realize the edge positioning of the track extraction, linearize the two tracks, and obtain the straight line equation; determine the position, size and size of the detection window based on the specific position of the rail. shape, the detection window frames the portion of the track within its bounds.
5、判断是否有障碍物5. Determine whether there are obstacles
基于类直道轨道规则不变性以及检测窗内图像已排除背景的特点,可以忽略轨道运动,当有可疑障碍物入侵检测窗时,势必会引起图像特征变化,本步骤选取直方图特征Based on the invariance of the straight-like orbital rules and the fact that the background image in the detection window has been excluded, the orbital motion can be ignored. When suspicious obstacles invade the detection window, it will inevitably cause changes in image features. In this step, the histogram feature is selected.
根据经验值定义阈值T1和T2用于判别直方图方差变化量Δσk 2和直方图毛刺个数BurrNum的值变化状况,通过对二值黑白像素比值ratio,Δσk 2和BurrNum三个参数的监测,判断有无障碍物入侵可能。算法如下:Thresholds T 1 and T 2 are defined based on empirical values to determine the value change of the histogram variance variation Δσ k 2 and the histogram burr number BurrNum, through the binary black and white pixel ratio ratio, Δσ k 2 and BurrNum three parameters Monitoring to determine whether there is a possibility of obstacle intrusion. The algorithm is as follows:
直方图均值:
(其中rk为直方图特征数据,pk为其所对应的概率,L为特征数据的个数)(where r k is the histogram feature data, p k is the corresponding probability, and L is the number of feature data)
直方图方差:
二值黑白像素比值: Binary black and white pixel ratio:
(nb为黑像素的数量,nk为白像素的数量)(n b is the number of black pixels, n k is the number of white pixels)
从重要程度和可靠度来看,比值nb/nk更为直观,更能表现实际情况,因此列举一下判断依据:From the point of view of importance and reliability, the ratio n b /n k is more intuitive and can better reflect the actual situation, so here is the basis for judging:
(1)ratio<4.5时,无论Δσk 2和BurrNum的值如何,都判断有入侵障碍物;(1) When ratio<4.5, regardless of the value of Δσ k 2 and BurrNum, it is judged that there is an intrusion obstacle;
(2)ratio>4.5时,则观察Δσk 2和BurrNum的值如何变化,若两者超出阈值,则判断有入侵障碍物;(2) When ratio>4.5, observe how the values of Δσ k 2 and BurrNum change, and if the two exceed the threshold, it is judged that there is an intrusion obstacle;
(3)ratio>4.5时,且Δσk 2和BurrNum的值都未超出阈值或者其中一个超出阈值,则判断没有障碍物,可能是光照条件等外界干扰的影响。(3) When ratio>4.5, and the values of Δσ k 2 and BurrNum do not exceed the threshold or one of them exceeds the threshold, it is judged that there is no obstacle, which may be affected by external disturbances such as lighting conditions.
若没有障碍物,则返回从头开始;若有障碍物,则进行下一步。If there are no obstacles, return to the beginning; if there are obstacles, proceed to the next step.
6、障碍物检测6. Obstacle detection
静止障碍物对火车也有相对运动,所以通过运动轨迹和运动特征来判别是静止还是运动障碍物。参考图3。Stationary obstacles also have relative motion to the train, so it is judged whether it is a stationary or a moving obstacle by the motion track and motion characteristics. Refer to Figure 3.
参考图5,采用经过数学形态学改善的帧间差分法,对检测窗中的图像进行差分运算,提取分割运动目标;帧间差分法就是在视频图像序列中,提取相邻两帧三帧或者多帧图像,并对提取的帧图像进行像素相减的图像运算。如果相邻像素的差值小于设定的阈值,则认为该像素是静止的背景,反之,则提取该像素作为运动目标,根据这个原则,将所有符合运动目标阈值的像素联合起来便可以提取出场景中的运动目标,并去除干扰背景,以此达到提取分割运动目标的目的。Referring to Figure 5, the inter-frame difference method improved by mathematical morphology is used to perform differential operations on the images in the detection window to extract and segment moving objects; the inter-frame difference method is to extract two adjacent frames or three frames or Multi-frame images, and perform pixel subtraction image operations on the extracted frame images. If the difference between adjacent pixels is less than the set threshold, the pixel is considered to be a static background, otherwise, the pixel is extracted as a moving target. According to this principle, all pixels that meet the threshold of the moving target can be extracted by combining all the pixels that meet the threshold of the moving target. The moving target in the scene, and remove the interference background, so as to achieve the purpose of extracting and segmenting the moving target.
帧间差分法原理如下所示:The principle of inter-frame difference method is as follows:
Dk(x,y)=|Fk(x,y)-Fk-1(x,y)|D k (x,y)=|F k (x,y)-F k-1 (x,y)|
Fk(x,y)表示视频中连续的图像,Dk(x,y)表示连续两帧图像相减所得到的差值图像,然后将Dk(x,y)做如下处理:F k (x, y) represents continuous images in the video, D k (x, y) represents the difference image obtained by subtracting two consecutive frames of images, and then D k (x, y) is processed as follows:
Rk(x,y)为判断目标是否运动的依据:若为1,则目标判定为运动;反之,为静止。R k (x, y) is the basis for judging whether the target is moving: if it is 1, the target is determined to be moving; otherwise, it is static.
同时,参考图6,利用背景差分法,将检测窗中的检测图像与背景图像进行差分,然后用阈值来检测运动区域。设b(x,y)为背景图像,定义图像序列f(x,y,i),其中(x,y)为图像位置坐标,i为图像帧数。将每一帧图像的灰度值减去背景的灰度值得到差值图像:Meanwhile, referring to FIG. 6 , the detection image in the detection window is differentiated from the background image by using the background difference method, and then a threshold is used to detect the moving region. Let b(x,y) be the background image, and define an image sequence f(x,y,i), where (x,y) is the coordinate of the image position, and i is the number of image frames. Subtract the gray value of the background from the gray value of each frame image to obtain the difference image:
id(x,y,i)=f(x,y,i)-b(x,y)id(x,y,i)=f(x,y,i)-b(x,y)
通过设置阈值T可得到一个二值化差分图像:A binary difference image can be obtained by setting the threshold T:
(阈值T通过实验模拟得到) (Threshold T is obtained through experimental simulation)
最后,对两种算法所得的图像进行像素点取交集,更准确的对目标进行提取,得到目标的尺寸、目标的形状特征。Finally, the pixel points of the images obtained by the two algorithms are intersected to extract the target more accurately, and the size and shape characteristics of the target are obtained.
7、障碍物的识别和分类7. Identification and classification of obstacles
采用角点特征匹配跟踪算法进行障碍物尺寸大小、速度和方向识别,特征提取采用Harris角点检测算法,是一种基于信号的点特征提取算子,本方法中,将与邻点亮度对比(像素领域点的灰度对比)足够大的点定义为角点,所用的像素相关函数如下所示:The corner point feature matching tracking algorithm is used to identify the size, speed and direction of obstacles, and the feature extraction uses the Harris corner point detection algorithm, which is a signal-based point feature extraction operator. In this method, the brightness of adjacent points will be compared with ( The gray scale contrast of points in the pixel field) is defined as a corner point with a large enough point, and the pixel correlation function used is as follows:
其中,w为进行降噪处理的平滑窗,(u,v)为偏移坐标,I为图像像素矩阵,I(x,y)值图像中点(x,y)的像素值。Ix和Iy分别代表图像像素在水平方向、垂直方向上的一阶偏微分,Ix 2和Iy 2则分别为两个方向上的二阶梯度值。然后通过计算角点响应函数就可以检测出图像中的角点:Among them, w is the smoothing window for noise reduction processing, (u, v) is the offset coordinate, I is the image pixel matrix, and I(x, y) is the pixel value of the point (x, y) in the image. I x and I y represent the first-order partial differentials of the image pixels in the horizontal and vertical directions, respectively, and I x 2 and I y 2 are the second-order gradient values in the two directions, respectively. Then the corners in the image can be detected by calculating the corner response function:
R=det(M)-k*tr2(M)R=det(M)-k*tr 2 (M)
其中,tr(M)和det(M)分别代表矩阵M的迹和行列式值,Harris角点检测算法推荐k取0.04。Among them, tr(M) and det(M) represent the trace and determinant values of the matrix M respectively, and the Harris corner detection algorithm recommends k to be 0.04.
特征匹配采用基于灰度相关的特征点匹配算法,以三帧提取为例:Feature matching uses a feature point matching algorithm based on gray-scale correlation, taking three-frame extraction as an example:
首先,对于每一个特征点pi∈E1,pj∈E3,分别以特征点为中心,构造一个N×N大小的窗口,分别记为Wi,Wj,然后分别计算各窗口的相关函数First, for each feature point p i ∈ E 1 , p j ∈ E 3 , respectively centering on the feature point, construct a window of N×N size, denoted as W i , W j , and then calculate the related functions
可根据Ccor(i,j)的值即可判定相应特征点的相关值,该值越大,相应的特征点邻域灰度越接近。在找寻匹配点的过程中,采用互匹配的方式进行匹配,即当E1中的特征点pi的最佳匹配点为E3中的pi,同时pj的最佳匹配点亦为pi时,就认为(pipj)为一对最佳匹配特征点。据此得到最终角点匹配结果。The correlation value of the corresponding feature point can be determined according to the value of C cor (i,j), and the larger the value is, the closer the neighborhood gray level of the corresponding feature point is. In the process of finding the matching point, the mutual matching method is used for matching, that is, when the best matching point of the feature point pi in E1 is p i in E3, and the best matching point of p j is also p i , It is considered that (p i p j ) is a pair of best matching feature points. Based on this, the final corner point matching result is obtained.
以此判断前方障碍物的类型,为无危险(静止小型障碍物、快速横跨轨道的运动障碍物)或危险(静止大型障碍物、影响列车通过的运动障碍物)。根据检测识别结果调整列车运行。Based on this, the type of obstacle ahead can be judged as non-dangerous (stationary small obstacle, moving obstacle that quickly crosses the track) or dangerous (stationary large obstacle, moving obstacle affecting train passing). Adjust the train operation according to the detection and identification results.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410681599.XA CN104331910B (en) | 2014-11-24 | 2014-11-24 | A kind of track obstacle detecting system based on machine vision |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410681599.XA CN104331910B (en) | 2014-11-24 | 2014-11-24 | A kind of track obstacle detecting system based on machine vision |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104331910A true CN104331910A (en) | 2015-02-04 |
CN104331910B CN104331910B (en) | 2017-06-16 |
Family
ID=52406630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410681599.XA Expired - Fee Related CN104331910B (en) | 2014-11-24 | 2014-11-24 | A kind of track obstacle detecting system based on machine vision |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104331910B (en) |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105809679A (en) * | 2016-03-04 | 2016-07-27 | 李云栋 | Mountain railway side slope rockfall detection method based on visual analysis |
CN105882683A (en) * | 2016-04-13 | 2016-08-24 | 北京康拓红外技术股份有限公司 | Machine vision based technical inspection and detection system and method for railway trains |
CN106114503A (en) * | 2015-05-05 | 2016-11-16 | 沃尔沃汽车公司 | method and device for determining safe vehicle track |
CN106156742A (en) * | 2016-07-06 | 2016-11-23 | 尚艳燕 | A kind of balance car barrier bypassing method and device |
CN106254823A (en) * | 2016-07-28 | 2016-12-21 | 广州紫川电子科技有限公司 | Object based on thermal infrared imager swarms into method for detecting, Apparatus and system |
CN106709928A (en) * | 2016-12-22 | 2017-05-24 | 湖北工业大学 | Fast noise-containing image two-dimensional maximum between-class variance threshold value method |
CN106778569A (en) * | 2016-12-05 | 2017-05-31 | 河海大学 | Train preceding object object detecting method based on video image |
CN106808482A (en) * | 2015-12-02 | 2017-06-09 | 中国科学院沈阳自动化研究所 | A kind of crusing robot multisensor syste and method for inspecting |
CN107169401A (en) * | 2017-02-10 | 2017-09-15 | 北京交通大学 | Object detecting method is invaded based on the track that track visual signature is composed |
CN107622666A (en) * | 2016-07-13 | 2018-01-23 | 尚艳燕 | A kind of balance car cruise enforcement approach and device |
CN107784606A (en) * | 2016-08-30 | 2018-03-09 | 源渠(上海)信息技术有限公司 | A kind of training organization's commending system and method |
CN107780324A (en) * | 2016-08-28 | 2018-03-09 | 上海华测导航技术股份有限公司 | A kind of airfield pavement method for inspecting and system |
CN107831760A (en) * | 2017-09-27 | 2018-03-23 | 安徽硕威智能科技有限公司 | Robot barrier thing processing system and method |
CN107985335A (en) * | 2016-10-26 | 2018-05-04 | 深圳金澜汉源科技有限公司 | track traffic safety detection method |
WO2018120027A1 (en) * | 2016-12-30 | 2018-07-05 | 深圳前海达闼云端智能科技有限公司 | Method and apparatus for detecting obstacles |
CN108427931A (en) * | 2018-03-21 | 2018-08-21 | 合肥工业大学 | The detection method of barrier before a kind of mine locomotive based on machine vision |
CN108491758A (en) * | 2018-02-08 | 2018-09-04 | 深圳市睿灵创新科技开发有限公司 | A kind of track detection method and robot |
CN108536141A (en) * | 2018-03-08 | 2018-09-14 | 杭州晶智能科技有限公司 | A kind of stochastic path planning method of automatic dust absorption machine people |
CN108803588A (en) * | 2017-04-28 | 2018-11-13 | 深圳乐动机器人有限公司 | The control system of robot |
CN108830257A (en) * | 2018-06-29 | 2018-11-16 | 电子科技大学 | A kind of potential obstacle detection method based on monocular light stream |
CN109153393A (en) * | 2016-06-02 | 2019-01-04 | 株式会社日立制作所 | vehicle control system |
CN109165600A (en) * | 2018-08-27 | 2019-01-08 | 浙江大丰实业股份有限公司 | Stage performance personnel's intelligent search platform |
CN109165629A (en) * | 2018-09-13 | 2019-01-08 | 百度在线网络技术(北京)有限公司 | It is multifocal away from visual barrier cognitive method, device, equipment and storage medium |
CN109195856A (en) * | 2016-03-31 | 2019-01-11 | 西门子移动有限公司 | Identify the method and system of the barrier in the hazard space in front of rail vehicle |
CN109188460A (en) * | 2018-09-25 | 2019-01-11 | 北京华开领航科技有限责任公司 | Unmanned foreign matter detection system and method |
CN109311496A (en) * | 2016-03-31 | 2019-02-05 | 西门子移动有限公司 | Method and system for identifying obstacles in hazardous spaces in front of rail vehicles |
CN109389617A (en) * | 2018-08-27 | 2019-02-26 | 深圳大学 | A kind of motion estimate based on piece heterogeneous system and method for tracing and system |
CN109521757A (en) * | 2017-09-18 | 2019-03-26 | 百度在线网络技术(北京)有限公司 | Static-obstacle thing recognition methods and device |
CN109522847A (en) * | 2018-11-20 | 2019-03-26 | 中车株洲电力机车有限公司 | A kind of track and road barricade object detecting method based on depth map |
CN109591850A (en) * | 2018-12-24 | 2019-04-09 | 郑州畅想高科股份有限公司 | A kind of track foreign matter detecting method and device |
CN109709843A (en) * | 2018-12-13 | 2019-05-03 | 西安电子科技大学 | A method for detecting and locating water injection ports of trains |
CN109766839A (en) * | 2019-01-11 | 2019-05-17 | 上海泽高电子工程技术有限公司 | A kind of track foreign matter detecting method based on image |
CN109857112A (en) * | 2019-02-21 | 2019-06-07 | 广东智吉科技有限公司 | Obstacle Avoidance and device |
CN110062727A (en) * | 2016-10-20 | 2019-07-26 | 铁路视像有限公司 | System and method for object and detection of obstacles and classification in the collision prevention of railway applications |
CN110287897A (en) * | 2019-06-27 | 2019-09-27 | 清华大学 | A visual positioning system for rail trains based on deep learning |
CN110443819A (en) * | 2018-05-03 | 2019-11-12 | 比亚迪股份有限公司 | A kind of track detection method and device of monorail train |
CN110435689A (en) * | 2019-09-09 | 2019-11-12 | 中铁电气化局集团西安电气化工程有限公司 | Disturbance of intelligence probe vehicles and detection method based on modularity control |
CN103957387B (en) * | 2014-05-09 | 2019-11-22 | 江苏万友消防安全远程监控系统有限公司 | A kind of security protection channel sundries detection method and detection system |
CN110716212A (en) * | 2019-11-14 | 2020-01-21 | 吉林大学 | Method and system for detecting road surface obstacle |
CN110717477A (en) * | 2019-10-22 | 2020-01-21 | 深圳市微度数字技术有限公司 | Intelligent early warning and analyzing device for track |
CN110974088A (en) * | 2019-11-29 | 2020-04-10 | 深圳市杉川机器人有限公司 | Sweeping robot control method, sweeping robot and storage medium |
CN111127534A (en) * | 2019-11-05 | 2020-05-08 | 深圳市三宝创新智能有限公司 | Obstacle detection method |
CN112183337A (en) * | 2020-09-28 | 2021-01-05 | 华北电力大学(保定) | Detection method and device for preventing mechanical invasion of power transmission line |
US10984588B2 (en) | 2018-09-07 | 2021-04-20 | Baidu Online Network Technology (Beijing) Co., Ltd | Obstacle distribution simulation method and device based on multiple models, and storage medium |
CN112989883A (en) * | 2019-12-16 | 2021-06-18 | 中国科学院沈阳计算技术研究所有限公司 | Method for identifying obstacle in front of train |
US11047673B2 (en) | 2018-09-11 | 2021-06-29 | Baidu Online Network Technology (Beijing) Co., Ltd | Method, device, apparatus and storage medium for detecting a height of an obstacle |
CN113442913A (en) * | 2020-03-27 | 2021-09-28 | 丰田自动车株式会社 | Automatic driving method and automatic driving platform of vehicle and vehicle system |
CN113465621A (en) * | 2021-06-22 | 2021-10-01 | 同济大学 | Dijkstra path planning method and device considering conflict probability and storage medium |
CN113642453A (en) * | 2021-08-11 | 2021-11-12 | 北京京东乾石科技有限公司 | Obstacle detection method, device and system |
CN113697501A (en) * | 2017-04-14 | 2021-11-26 | 株式会社大福 | Article conveying apparatus |
US11205289B2 (en) | 2018-09-07 | 2021-12-21 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method, device and terminal for data augmentation |
US11307302B2 (en) | 2018-09-07 | 2022-04-19 | Baidu Online Network Technology (Beijing) Co., Ltd | Method and device for estimating an absolute velocity of an obstacle, and non-volatile computer-readable storage medium |
CN114638895A (en) * | 2022-03-24 | 2022-06-17 | 暨南大学 | A switch identification method, system, and track cleaning vehicle |
CN115100633A (en) * | 2022-08-24 | 2022-09-23 | 广东中科凯泽信息科技有限公司 | Obstacle identification method based on machine learning |
CN115311642A (en) * | 2022-08-10 | 2022-11-08 | 西北铁道电子股份有限公司 | A method and system for visual detection of railway obstacles |
CN116101275A (en) * | 2023-04-12 | 2023-05-12 | 禾多科技(北京)有限公司 | Obstacle avoidance method and system based on automatic driving |
US11718318B2 (en) | 2019-02-22 | 2023-08-08 | Apollo Intelligent Driving (Beijing) Technology Co., Ltd. | Method and apparatus for planning speed of autonomous vehicle, and storage medium |
CN116612119A (en) * | 2023-07-20 | 2023-08-18 | 山东行创科技有限公司 | Machine vision-based method for detecting working state image of drill bit for machine tool |
CN116778532A (en) * | 2023-08-24 | 2023-09-19 | 汶上义桥煤矿有限责任公司 | Underground coal mine personnel target tracking method |
CN116862910A (en) * | 2023-09-04 | 2023-10-10 | 山东经典印务有限责任公司 | Visual detection method based on automatic cutting production |
US11780463B2 (en) | 2019-02-19 | 2023-10-10 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method, apparatus and server for real-time learning of travelling strategy of driverless vehicle |
CN117475388A (en) * | 2023-12-08 | 2024-01-30 | 江苏天空智慧城市运营有限公司 | Road sign line detection method and detection device |
CN118071832A (en) * | 2024-04-19 | 2024-05-24 | 湖南蓝天机器人科技有限公司 | RGV trolley visual positioning method and system based on laser identification |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10113413A1 (en) * | 2001-03-20 | 2002-09-26 | Alfred Spitzley | Method for opto-electronic monitoring of spatial regions, especially for use with driverless rail and agricultural vehicles using an opto-electronic obstruction detection and collision avoidance system |
JP2011076214A (en) * | 2009-09-29 | 2011-04-14 | Alps Electric Co Ltd | Obstacle detection device |
CN103116743A (en) * | 2013-02-01 | 2013-05-22 | 浙江捷尚视觉科技有限公司 | Railway obstacle detecting method based on on-line study |
-
2014
- 2014-11-24 CN CN201410681599.XA patent/CN104331910B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10113413A1 (en) * | 2001-03-20 | 2002-09-26 | Alfred Spitzley | Method for opto-electronic monitoring of spatial regions, especially for use with driverless rail and agricultural vehicles using an opto-electronic obstruction detection and collision avoidance system |
JP2011076214A (en) * | 2009-09-29 | 2011-04-14 | Alps Electric Co Ltd | Obstacle detection device |
CN103116743A (en) * | 2013-02-01 | 2013-05-22 | 浙江捷尚视觉科技有限公司 | Railway obstacle detecting method based on on-line study |
Non-Patent Citations (5)
Title |
---|
宋娟: "《路轨自动检测系统及障碍物识别技术的研究》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
李孟歆等: "《一种基于顶帽变换和Otsu阈值的轨道边缘提取方法》", 《集成技术》 * |
超木日力格: "《机车司机视野扩展系统及路轨障碍物检测的研究》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
钟昊然: "《轨道几何状态测量仪检测方法研究》", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
陈若望: "《列车前方障碍物图像检测算法研究》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103957387B (en) * | 2014-05-09 | 2019-11-22 | 江苏万友消防安全远程监控系统有限公司 | A kind of security protection channel sundries detection method and detection system |
CN106114503A (en) * | 2015-05-05 | 2016-11-16 | 沃尔沃汽车公司 | method and device for determining safe vehicle track |
CN106808482B (en) * | 2015-12-02 | 2019-07-19 | 中国科学院沈阳自动化研究所 | A kind of inspection robot multi-sensor system and inspection method |
CN106808482A (en) * | 2015-12-02 | 2017-06-09 | 中国科学院沈阳自动化研究所 | A kind of crusing robot multisensor syste and method for inspecting |
CN105809679A (en) * | 2016-03-04 | 2016-07-27 | 李云栋 | Mountain railway side slope rockfall detection method based on visual analysis |
CN105809679B (en) * | 2016-03-04 | 2019-06-18 | 李云栋 | Mountain railway side slope rockfall detection method based on visual analysis |
CN109311496A (en) * | 2016-03-31 | 2019-02-05 | 西门子移动有限公司 | Method and system for identifying obstacles in hazardous spaces in front of rail vehicles |
CN109195856A (en) * | 2016-03-31 | 2019-01-11 | 西门子移动有限公司 | Identify the method and system of the barrier in the hazard space in front of rail vehicle |
US10875557B2 (en) | 2016-03-31 | 2020-12-29 | Siemens Mobility GmbH | Method and system for detecting obstacles in a hazardous area in front of a rail vehicle |
US11465658B2 (en) | 2016-03-31 | 2022-10-11 | Siemens Mobility GmbH | Method and system for identifying obstacles in a danger zone in front of a rail vehicle |
CN105882683A (en) * | 2016-04-13 | 2016-08-24 | 北京康拓红外技术股份有限公司 | Machine vision based technical inspection and detection system and method for railway trains |
CN105882683B (en) * | 2016-04-13 | 2018-04-17 | 北京康拓红外技术股份有限公司 | Railroad train check-up detecting system and method based on machine vision |
CN109153393A (en) * | 2016-06-02 | 2019-01-04 | 株式会社日立制作所 | vehicle control system |
CN109153393B (en) * | 2016-06-02 | 2021-02-26 | 株式会社日立制作所 | vehicle control system |
CN106156742A (en) * | 2016-07-06 | 2016-11-23 | 尚艳燕 | A kind of balance car barrier bypassing method and device |
CN107622666A (en) * | 2016-07-13 | 2018-01-23 | 尚艳燕 | A kind of balance car cruise enforcement approach and device |
CN106254823A (en) * | 2016-07-28 | 2016-12-21 | 广州紫川电子科技有限公司 | Object based on thermal infrared imager swarms into method for detecting, Apparatus and system |
CN107780324A (en) * | 2016-08-28 | 2018-03-09 | 上海华测导航技术股份有限公司 | A kind of airfield pavement method for inspecting and system |
CN107784606A (en) * | 2016-08-30 | 2018-03-09 | 源渠(上海)信息技术有限公司 | A kind of training organization's commending system and method |
CN110062727A (en) * | 2016-10-20 | 2019-07-26 | 铁路视像有限公司 | System and method for object and detection of obstacles and classification in the collision prevention of railway applications |
US11648968B2 (en) | 2016-10-20 | 2023-05-16 | Rail Vision Ltd | System and method for object and obstacle detection and classification in collision avoidance of railway applications |
US11021177B2 (en) | 2016-10-20 | 2021-06-01 | Rail Vision Ltd | System and method for object and obstacle detection and classification in collision avoidance of railway applications |
US12139183B2 (en) | 2016-10-20 | 2024-11-12 | Rail Vision Ltd. | System and method for object and obstacle detection and classification in collision avoidance of railway applications |
CN107985335A (en) * | 2016-10-26 | 2018-05-04 | 深圳金澜汉源科技有限公司 | track traffic safety detection method |
CN106778569A (en) * | 2016-12-05 | 2017-05-31 | 河海大学 | Train preceding object object detecting method based on video image |
CN106709928A (en) * | 2016-12-22 | 2017-05-24 | 湖北工业大学 | Fast noise-containing image two-dimensional maximum between-class variance threshold value method |
CN106709928B (en) * | 2016-12-22 | 2019-12-10 | 湖北工业大学 | fast two-dimensional maximum inter-class variance threshold method for noisy images |
WO2018120027A1 (en) * | 2016-12-30 | 2018-07-05 | 深圳前海达闼云端智能科技有限公司 | Method and apparatus for detecting obstacles |
CN107169401A (en) * | 2017-02-10 | 2017-09-15 | 北京交通大学 | Object detecting method is invaded based on the track that track visual signature is composed |
CN107169401B (en) * | 2017-02-10 | 2020-05-05 | 北京交通大学 | Track Intrusion Detection Method Based on Track Visual Feature Spectrum |
CN113697501A (en) * | 2017-04-14 | 2021-11-26 | 株式会社大福 | Article conveying apparatus |
CN108803588A (en) * | 2017-04-28 | 2018-11-13 | 深圳乐动机器人有限公司 | The control system of robot |
CN109521757A (en) * | 2017-09-18 | 2019-03-26 | 百度在线网络技术(北京)有限公司 | Static-obstacle thing recognition methods and device |
CN107831760A (en) * | 2017-09-27 | 2018-03-23 | 安徽硕威智能科技有限公司 | Robot barrier thing processing system and method |
CN108491758B (en) * | 2018-02-08 | 2020-11-20 | 深圳市睿灵创新科技开发有限公司 | Track detection method and robot |
CN108491758A (en) * | 2018-02-08 | 2018-09-04 | 深圳市睿灵创新科技开发有限公司 | A kind of track detection method and robot |
CN108536141A (en) * | 2018-03-08 | 2018-09-14 | 杭州晶智能科技有限公司 | A kind of stochastic path planning method of automatic dust absorption machine people |
CN108427931A (en) * | 2018-03-21 | 2018-08-21 | 合肥工业大学 | The detection method of barrier before a kind of mine locomotive based on machine vision |
CN108427931B (en) * | 2018-03-21 | 2019-09-10 | 合肥工业大学 | The detection method of barrier before a kind of mine locomotive based on machine vision |
CN110443819A (en) * | 2018-05-03 | 2019-11-12 | 比亚迪股份有限公司 | A kind of track detection method and device of monorail train |
CN110443819B (en) * | 2018-05-03 | 2022-04-15 | 比亚迪股份有限公司 | Method and device for detecting track of monorail train |
CN108830257A (en) * | 2018-06-29 | 2018-11-16 | 电子科技大学 | A kind of potential obstacle detection method based on monocular light stream |
CN109165600A (en) * | 2018-08-27 | 2019-01-08 | 浙江大丰实业股份有限公司 | Stage performance personnel's intelligent search platform |
CN109165600B (en) * | 2018-08-27 | 2021-11-26 | 浙江大丰实业股份有限公司 | Intelligent search platform for stage performance personnel |
CN109389617A (en) * | 2018-08-27 | 2019-02-26 | 深圳大学 | A kind of motion estimate based on piece heterogeneous system and method for tracing and system |
US11307302B2 (en) | 2018-09-07 | 2022-04-19 | Baidu Online Network Technology (Beijing) Co., Ltd | Method and device for estimating an absolute velocity of an obstacle, and non-volatile computer-readable storage medium |
US11205289B2 (en) | 2018-09-07 | 2021-12-21 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method, device and terminal for data augmentation |
US10984588B2 (en) | 2018-09-07 | 2021-04-20 | Baidu Online Network Technology (Beijing) Co., Ltd | Obstacle distribution simulation method and device based on multiple models, and storage medium |
US11519715B2 (en) | 2018-09-11 | 2022-12-06 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method, device, apparatus and storage medium for detecting a height of an obstacle |
US11047673B2 (en) | 2018-09-11 | 2021-06-29 | Baidu Online Network Technology (Beijing) Co., Ltd | Method, device, apparatus and storage medium for detecting a height of an obstacle |
CN109165629A (en) * | 2018-09-13 | 2019-01-08 | 百度在线网络技术(北京)有限公司 | It is multifocal away from visual barrier cognitive method, device, equipment and storage medium |
US11126875B2 (en) | 2018-09-13 | 2021-09-21 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method and device of multi-focal sensing of an obstacle and non-volatile computer-readable storage medium |
CN109188460A (en) * | 2018-09-25 | 2019-01-11 | 北京华开领航科技有限责任公司 | Unmanned foreign matter detection system and method |
CN109522847A (en) * | 2018-11-20 | 2019-03-26 | 中车株洲电力机车有限公司 | A kind of track and road barricade object detecting method based on depth map |
CN109709843A (en) * | 2018-12-13 | 2019-05-03 | 西安电子科技大学 | A method for detecting and locating water injection ports of trains |
CN109591850A (en) * | 2018-12-24 | 2019-04-09 | 郑州畅想高科股份有限公司 | A kind of track foreign matter detecting method and device |
CN109766839A (en) * | 2019-01-11 | 2019-05-17 | 上海泽高电子工程技术有限公司 | A kind of track foreign matter detecting method based on image |
US11780463B2 (en) | 2019-02-19 | 2023-10-10 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method, apparatus and server for real-time learning of travelling strategy of driverless vehicle |
CN109857112A (en) * | 2019-02-21 | 2019-06-07 | 广东智吉科技有限公司 | Obstacle Avoidance and device |
US11718318B2 (en) | 2019-02-22 | 2023-08-08 | Apollo Intelligent Driving (Beijing) Technology Co., Ltd. | Method and apparatus for planning speed of autonomous vehicle, and storage medium |
CN110287897A (en) * | 2019-06-27 | 2019-09-27 | 清华大学 | A visual positioning system for rail trains based on deep learning |
CN110435689A (en) * | 2019-09-09 | 2019-11-12 | 中铁电气化局集团西安电气化工程有限公司 | Disturbance of intelligence probe vehicles and detection method based on modularity control |
CN110717477A (en) * | 2019-10-22 | 2020-01-21 | 深圳市微度数字技术有限公司 | Intelligent early warning and analyzing device for track |
CN111127534A (en) * | 2019-11-05 | 2020-05-08 | 深圳市三宝创新智能有限公司 | Obstacle detection method |
CN110716212A (en) * | 2019-11-14 | 2020-01-21 | 吉林大学 | Method and system for detecting road surface obstacle |
CN110716212B (en) * | 2019-11-14 | 2021-07-27 | 吉林大学 | A method and system for detecting road obstacles |
CN110974088A (en) * | 2019-11-29 | 2020-04-10 | 深圳市杉川机器人有限公司 | Sweeping robot control method, sweeping robot and storage medium |
CN112989883B (en) * | 2019-12-16 | 2024-02-02 | 中国科学院沈阳计算技术研究所有限公司 | Method for identifying obstacle in front of train |
CN112989883A (en) * | 2019-12-16 | 2021-06-18 | 中国科学院沈阳计算技术研究所有限公司 | Method for identifying obstacle in front of train |
CN113442913A (en) * | 2020-03-27 | 2021-09-28 | 丰田自动车株式会社 | Automatic driving method and automatic driving platform of vehicle and vehicle system |
CN112183337A (en) * | 2020-09-28 | 2021-01-05 | 华北电力大学(保定) | Detection method and device for preventing mechanical invasion of power transmission line |
CN113465621A (en) * | 2021-06-22 | 2021-10-01 | 同济大学 | Dijkstra path planning method and device considering conflict probability and storage medium |
CN113465621B (en) * | 2021-06-22 | 2022-09-20 | 同济大学 | Dijkstra path planning method and device considering conflict probability and storage medium |
CN113642453A (en) * | 2021-08-11 | 2021-11-12 | 北京京东乾石科技有限公司 | Obstacle detection method, device and system |
CN114638895B (en) * | 2022-03-24 | 2024-12-27 | 暨南大学 | A turnout identification method, system, and track cleaning vehicle |
CN114638895A (en) * | 2022-03-24 | 2022-06-17 | 暨南大学 | A switch identification method, system, and track cleaning vehicle |
CN115311642A (en) * | 2022-08-10 | 2022-11-08 | 西北铁道电子股份有限公司 | A method and system for visual detection of railway obstacles |
CN115100633A (en) * | 2022-08-24 | 2022-09-23 | 广东中科凯泽信息科技有限公司 | Obstacle identification method based on machine learning |
CN116101275A (en) * | 2023-04-12 | 2023-05-12 | 禾多科技(北京)有限公司 | Obstacle avoidance method and system based on automatic driving |
CN116612119A (en) * | 2023-07-20 | 2023-08-18 | 山东行创科技有限公司 | Machine vision-based method for detecting working state image of drill bit for machine tool |
CN116612119B (en) * | 2023-07-20 | 2023-09-19 | 山东行创科技有限公司 | Machine vision-based method for detecting working state image of drill bit for machine tool |
CN116778532B (en) * | 2023-08-24 | 2023-11-07 | 汶上义桥煤矿有限责任公司 | Underground coal mine personnel target tracking method |
CN116778532A (en) * | 2023-08-24 | 2023-09-19 | 汶上义桥煤矿有限责任公司 | Underground coal mine personnel target tracking method |
CN116862910B (en) * | 2023-09-04 | 2023-11-21 | 山东经典印务有限责任公司 | Visual detection method based on automatic cutting production |
CN116862910A (en) * | 2023-09-04 | 2023-10-10 | 山东经典印务有限责任公司 | Visual detection method based on automatic cutting production |
CN117475388A (en) * | 2023-12-08 | 2024-01-30 | 江苏天空智慧城市运营有限公司 | Road sign line detection method and detection device |
CN118071832A (en) * | 2024-04-19 | 2024-05-24 | 湖南蓝天机器人科技有限公司 | RGV trolley visual positioning method and system based on laser identification |
CN118071832B (en) * | 2024-04-19 | 2024-07-05 | 湖南蓝天机器人科技有限公司 | RGV trolley visual positioning method and system based on laser identification |
Also Published As
Publication number | Publication date |
---|---|
CN104331910B (en) | 2017-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104331910B (en) | A kind of track obstacle detecting system based on machine vision | |
CN101739829B (en) | Video-based vehicle overspeed monitoring method and system | |
Wu et al. | Applying a functional neurofuzzy network to real-time lane detection and front-vehicle distance measurement | |
CN103295420B (en) | A kind of method of Lane detection | |
CN103984950B (en) | A kind of moving vehicle brake light status recognition methods for adapting to detection on daytime | |
CN113370977A (en) | Intelligent vehicle forward collision early warning method and system based on vision | |
KR100969995B1 (en) | Traffic Conflict Determination System and Method of Signal Intersection Using Image Processing Technique | |
CN111198371A (en) | Forward-looking obstacle detection system | |
CN110210363A (en) | A kind of target vehicle crimping detection method based on vehicle-mounted image | |
CN108805065A (en) | One kind being based on the improved method for detecting lane lines of geometric properties | |
CN103593981B (en) | A kind of model recognizing method based on video | |
CN103324913A (en) | Pedestrian event detection method based on shape features and trajectory analysis | |
CN103129468A (en) | Vehicle-mounted roadblock recognition system and method based on laser imaging technique | |
CN103927548B (en) | Novel vehicle collision avoiding brake behavior detection method | |
CN107274678B (en) | A Kinect-based night traffic flow statistics and vehicle identification method | |
WO2022267266A1 (en) | Vehicle control method based on visual recognition, and device | |
CN110659552B (en) | Tramcar obstacle detection and alarm method | |
CN105701844A (en) | Method for detecting obstacle or shadow on the basis of color characteristics | |
JP2000285245A (en) | Method and device for preventing collision of moving body and recording medium | |
CN113793533A (en) | A collision warning method and device based on the recognition of obstacles in front of the vehicle | |
CN104867332B (en) | Based on the detection method every driving vehicle in the front lane line of frame difference method | |
Cualain et al. | Multiple-camera lane departure warning system for the automotive environment | |
CN102637362A (en) | Tunnel vehicle type identification method based on video | |
CN117292351A (en) | Subway obstacle detection system and method based on background subtraction method | |
KR102653270B1 (en) | Lane-changing vehicles detect method of cctv |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170616 Termination date: 20171124 |
|
CF01 | Termination of patent right due to non-payment of annual fee |