CN104331881A - 一种基于血管内超声图像的血管内腔分割方法 - Google Patents

一种基于血管内超声图像的血管内腔分割方法 Download PDF

Info

Publication number
CN104331881A
CN104331881A CN201410566443.7A CN201410566443A CN104331881A CN 104331881 A CN104331881 A CN 104331881A CN 201410566443 A CN201410566443 A CN 201410566443A CN 104331881 A CN104331881 A CN 104331881A
Authority
CN
China
Prior art keywords
image
fuzzy connectivity
fuzzy
connectivity intensity
intravascular space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410566443.7A
Other languages
English (en)
Other versions
CN104331881B (zh
Inventor
严加勇
崔崤峣
向永嘉
韩志乐
简小华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Biomedical Engineering and Technology of CAS
Original Assignee
Suzhou Institute of Biomedical Engineering and Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Biomedical Engineering and Technology of CAS filed Critical Suzhou Institute of Biomedical Engineering and Technology of CAS
Priority to CN201410566443.7A priority Critical patent/CN104331881B/zh
Publication of CN104331881A publication Critical patent/CN104331881A/zh
Application granted granted Critical
Publication of CN104331881B publication Critical patent/CN104331881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于血管内超声图像的血管内腔分割方法,包括一个确定血管内腔(即血管内膜所包含区域)种子点的过程;包括一个利用模糊连通(FuzzyConnectedness)算法计算图像中从每个象素点与血管内腔种子点模糊连通强度,获得模糊连通强度图像的过程;包括一个利用超声图像梯度信息确定模糊连通强度阈值,并根据模糊连通强度阈值和模糊连通强度图像确定血管内腔边界的过程。本发明通过自动确定种子点和模糊连通阈值,保证了分割过程的自动性。基于模糊连通算法的处理方法,不仅保证了分割方法的简单、有效性,而且避免了现有算法模型的复杂性和对成像条件的依赖性。

Description

一种基于血管内超声图像的血管内腔分割方法
 
技术领域
本发明涉及医学图像处理领域,特别是涉及一种模糊连通(Fuzzy Connectedness)算法、应用于血管内超声(IVUS:Intravascular ultrasound)图像的血管内腔分割方法。
 
背景技术
血管内超声(IVUS: Intravascular Ultrasound)图像,不仅能显示血管内腔形态,还能显示血管壁分层结构,对动脉粥样硬化等心血管疾病的诊断和治疗具有非常重要的价值。基于IVUS图像诊断动脉粥样硬化需要粥样硬化图像的特征如血管内腔面积、斑块面积等量化指标,这些量化指标的准确提取依赖于有效的图像分割。人工分割即由医生手动勾画血管内腔、中外膜边界等,不仅费时费力,而且受医生经验等主观性的限制。因此,用计算机算法准确、快速、自动地分割IVUS图像就显得很有必要。目前,基于IVUS图像的血管内腔计算机自动分割算法主要有三类:第一类为统计学方法(G. Mendizabal-Ruiz, M. Rivera, et al., “A probabilistic segmentation method for the identification of luminal borders in intravascular ultrasound images”, IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.),对图像的灰度分布进行统计学建模实现IVUS图像分割,但IVUS图像中的伪影、钙化等复杂的图像特征将大大降低统计建模的准确性;第二类是机器学习的方法(1.E. G. Bovenkamp, J. Dijkstra, J. G. Bosch, et al., “Multi-agent segmentation of IVUS images”, Patten Recognition, Vol.37, No.4, pp.647-663, 2004; 2. G. Unal, S. Bucher, S. Carlier, et al., “Shape-driven segmentation of the arterial wall in intravascular ultrasound images”, IEEE Trans. On information technology in biomedicine, Vol.12, No.3, pp.335-346, 2008.),该类方法模型复杂,实际应用时受到诸多限制;第三类是基于活动轮廓线模型的方法(1. 张麒,汪源源等,“活动轮廓模型和Contourlet多分辨率分析分割血管内超声图像”,光学精密工程, Vol.16, No.11, pp.2301-311, 2008; 2. X. Zhu, P. Zhang, J. Shao, et al., “A snake-based method for segmentation of intravascular ultrasound images and its in vivo validation”, Ultrasonics, Vol.51, pp.181-189, 2011.),该类方法简单易行,但是往往需要给定初始轮廓线,而且,分割结果易受噪声等复杂图像特征的影响。上述几类基于IVUS图像的血管内腔分割方法都使用了一定的预先设定的模型,如图像灰度分布模型、形状模型等,而这些模型往往依赖于具体的成像条件。为更好地实现对IVUS图像中血管内腔的有效分割,本发明提出一种基于模糊连通(Fuzzy Connectedness)算法的IVUS图像血管内腔自动分割算法。
 
发明内容
本发明的目的在于针对现有技术的不足,提供一种更简单、更有效、更通用的IVUS图像血管内腔自动分割方法。
本发明的技术解决方案如下:
一种基于血管内超声图像的血管内腔分割方法,包括一个确定血管内腔(即血管内膜所包含区域)种子点的过程;包括一个利用模糊连通(Fuzzy Connectedness)算法计算图像中从每个象素点与血管内腔种子点模糊连通强度,获得相应的模糊连通强度图像的过程;包括一个利用超声图像梯度信息确定模糊连通强度阈值,并根据模糊连通强度阈值和模糊连通强度图像确定血管内腔边界的过程。
进一步的,在一个利用血管内超声图像确定血管内腔(即血管内膜所包含区域)种子点的过程中,首先根据距离图像中心点同一距离的像素平均灰度值确定血管内腔种子点,即在大于导管半径的距离中,以最小像素平均灰度值对应的距离为半径,图像中心为圆心的圆周所在的像素点。
进一步的,在一个利用模糊连通算法计算图像中从每个像素点与血管内腔种子点模糊连通强度,获得相应的模糊连通强度图像,并根据模糊连通强度图像和超声图像梯度信息确定模糊连通强度阈值的过程中,首先基于模糊连通算法计算图像中从每个象素点与血管内腔种子点模糊连通强度,获得相应的模糊连通强度图像;然后计算待处理血管内超声图像的梯度图像,最后根据血管内超声图像的梯度信息和模糊连通强度图像确定模糊连通强度阈值。
 进一步的,在一个根据血管内超声图像梯度信息和模糊连通强度图像确定模糊连通强度阈值的过程中,首先利用整幅梯度图像的平均值G mean和标准差G std确定一梯度阈值G thes(如G thes=G mean+0.5*G std),并将梯度高于梯度阈值G thes的像素点看作高梯度象素点,最后连续变化的模糊连通强度阈值(如从0.95逐步降低)对与模糊连通强度图像作阈值处理,并考察高于连通强度阈值且与种子点相连的连通区域,若其外侧边界对应的高梯度象素点的比例高于某一给定的设定的值(如0.65),则以此连通强度阈值作为最终的模糊连通强度阈值。
进一步的,在一个根据模糊连通强度阈值和模糊连通强度图像确定血管内腔边界的过程中,首先以模糊连通强度阈值对模糊连通强度图像作阈值处理,然后将模糊连通强度图像中模糊连通强度高于模糊连通强度阈值且与种子点相连的连通区域作为血管内腔区域。
    与现有技术相比,本发明的有益效果如下:
本发明和已有技术相比,其效果是积极的和明显的。通过自动确定种子点和模糊连通阈值,本发明保证了分割过程的自动性。基于模糊连通算法的处理方法,不仅保证了分割方法的简单、有效性,而且避免了现有算法模型的复杂性和对成像条件的依赖性。
附图说明
图1是本发明基于血管内超声图像的血管内腔分割方法流程图;
图2是本发明血管内超声图像示意图;
图3是本发明极坐标变换后的血管内超声图像示意图;
图4 是本发明不同半径像素平均灰度示意图;
图5 是本发明血管内腔种子点示意图;
图6 是本发明模糊连通强度示意图;
图7 是本发明图像梯度示意图;
图8 是本发明高梯度像素示意图;
图9 是本发明血管内腔分割结果示意图(极坐标);
图10 是本发明血管内腔分割结果示意图(原始直角坐标)。
 
具体实施方式
下面结合实施案例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
图1是本发明一种基于血管内超声图像的血管内腔分割方法的流程图。如图所示,一种基于血管内超声(IVUS:Intravascular Ultrasound)图像的血管内腔分割方法,包括一个确定血管内腔(即血管内膜所包含区域)种子点的过程;包括一个利用模糊连通(Fuzzy Connectedness)算法计算图像中从每个象素点与血管内腔种子点模糊连通强度,获得模糊连通强度图像的过程;包括一个利用超声图像梯度信息确定模糊连通强度阈值,并根据模糊连通强度阈值和模糊连通强度图像确定血管内腔边界的过程。
对于IVUS图像,在实际处理过程中,为方便计算,首先将原始图像(图2)转化成极坐标图像(图3),然后进行各类计算和处理。在极坐标图像中,原点为原始IVUS图像的中心。纵坐标为采样半径,横坐标为扫描角度。
进一步的,在一个利用IVUS图像确定血管内腔(即血管内膜所包含区域)种子点的过程中,首先根据距离图像中心点同一距离的像素平均灰度值(图4)确定血管内腔种子点,即在大于导管半径的距离中,以最小像素平均灰度值对应的距离为半径,图像中心为圆心的圆周所在的像素为血管内腔种子点。因为半径相同,所以在极坐标图像中,内腔种子点为一条直线(图5中白线所示)。
  进一步的,在一个利用模糊连通算法计算图像中从每个像素点与血管内腔种子点模糊连通强度,获得相应的模糊连通强度图像,并根据模糊连通强度图像和超声图像梯度信息确定模糊连通强度阈值的过程中,首先基于模糊连通算法计算图像中从每个象素点与血管内腔种子点模糊连通强度,获得相应的模糊连通强度图像(图6);然后用式(1)作算子计算极坐标图像梯度(图7)(考虑到IVUS图像自身的特征,梯度图像中,小于零的梯度置零);最后根据血管内超声图像的梯度信息和模糊连通强度图像确定模糊连通强度阈值。
      (1)
进一步的,在一个根据血管内超声图像梯度信息和模糊连通强度图像确定模糊连通强度阈值的过程中,首先根据血管内超声图像的梯度图像(图7)的平均值G mean和标准差G std确定一梯度阈值G thes(梯度阈值公式为G thes=G mean+0.5*G std),并将梯度高于梯度阈值G thes的像素点看作高梯度象素点(图8),然后连续变化的模糊连通强度阈值(模糊连通强度阈值从0.95逐步降低)对与模糊连通强度图像作阈值处理,并考察高于连通强度阈值且与种子点相连的连通区域,若其外侧边界对应的高梯度象素点的比例高于设定值(设定值为0.65),则以此连通强度阈值作为最终的模糊连通强度阈值。
进一步的,在一个根据模糊连通强度阈值和模糊连通强度图像确定血管内腔边界的过程中,首先以模糊连通强度阈值对模糊连通强度图像作阈值处理,然后将模糊连通强度图像中模糊连通强度高于模糊连通强度阈值且与种子点相连的连通区域的边界作为血管内腔区域的边界(图9和图10)。

Claims (8)

1. 一种基于血管内超声图像的血管内腔分割方法,其特征在于,该方法包括一个确定血管内腔(即血管内膜所包含区域)种子点的过程;包括一个利用模糊连通算法计算图像中从每个象素点与血管内腔种子点模糊连通强度,获得相应的模糊连通强度图像的过程;包括一个利用超声图像梯度信息确定模糊连通强度阈值,并根据模糊连通强度阈值和模糊连通强度图像确定血管内腔边界的过程。
2. 根据权利要求1所述的一种基于血管内超声图像的血管内腔分割方法,其特征在于:在一个利用血管内超声图像确定血管内腔种子点的过程中,首先根据距离图像中心点同一距离的像素平均灰度值确定血管内腔种子点,即在大于导管半径的距离中,以最小像素平均灰度值对应的距离为半径,图像中心为圆心的圆周所在的像素点。
3. 根据权利要求1所述的一种基于血管内超声图像的血管内腔分割方法,其特征在于:在一个利用模糊连通算法计算图像中从每个像素点与血管内腔种子点模糊连通强度,获得相应的模糊连通强度图像,并根据模糊连通强度图像和超声图像梯度信息确定模糊连通强度阈值的过程中,首先基于模糊连通算法计算图像中从每个象素点与血管内腔种子点模糊连通强度,获得相应的模糊连通强度图像;然后计算待处理血管内超声图像的梯度图像,最后根据血管内超声图像的梯度信息和模糊连通强度图像确定模糊连通强度阈值。
4. 根据权利要求3所述的一种基于血管内超声图像的血管内腔分割方法,其特征在于:在一个根据血管内超声图像梯度信息和模糊连通强度图像确定模糊连通强度阈值的过程中,首先根据整幅图像梯度的平均值G mean和标准差G std确定一梯度阈值G thes,并将梯度高于梯度阈值G thes的像素点看作高梯度象素点,最后连续变化的模糊连通强度阈值对与模糊连通强度图像作阈值处理,并考察高于连通强度阈值且与种子点相连的连通区域,若其外侧边界对应的高梯度象素点的比例高于给定的设定的值,则以此连通强度阈值作为最终的模糊连通强度阈值。
5. 根据权利要求4所述的一种基于血管内超声图像的血管内腔分割方法,其特征在于:首先利用整幅梯度图像的平均值G mean和标准差G std确定一梯度阈值,确定梯度阈值的公式为G thes=G mean+0.5*G std
6. 根据权利要求4所述的一种基于血管内超声图像的血管内腔分割方法,其特征在于:将梯度高于梯度阈值G thes的像素点看作高梯度象素点,最后连续变化的模糊连通强度阈值对与模糊连通强度图像作阈值处理中,模糊连通强度阈值从0.95逐步降低。
7. 根据权利要求4所述的一种基于血管内超声图像的血管内腔分割方法,其特征在于:若其外侧边界对应的高梯度象素点的比例高于某一给定的设定的值,设定的值为0.65。
8. 根据权利要求1所述基于血管内超声图像的血管内腔分割方法,其特征在于:在一个根据模糊连通强度阈值和模糊连通强度图像确定血管内腔边界的过程中,首先以模糊连通强度阈值对模糊连通强度图像作阈值处理,然后将模糊连通强度图像中模糊连通强度高于模糊连通强度阈值且与种子点相连的连通区域作为血管内腔区域。
CN201410566443.7A 2014-10-23 2014-10-23 一种基于血管内超声图像的血管内腔分割方法 Active CN104331881B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410566443.7A CN104331881B (zh) 2014-10-23 2014-10-23 一种基于血管内超声图像的血管内腔分割方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410566443.7A CN104331881B (zh) 2014-10-23 2014-10-23 一种基于血管内超声图像的血管内腔分割方法

Publications (2)

Publication Number Publication Date
CN104331881A true CN104331881A (zh) 2015-02-04
CN104331881B CN104331881B (zh) 2017-06-30

Family

ID=52406601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410566443.7A Active CN104331881B (zh) 2014-10-23 2014-10-23 一种基于血管内超声图像的血管内腔分割方法

Country Status (1)

Country Link
CN (1) CN104331881B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110288610A (zh) * 2019-06-05 2019-09-27 苏州比格威医疗科技有限公司 一种视网膜oct硬性渗出分割方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164859A (zh) * 2013-04-11 2013-06-19 上海理工大学 一种血管内超声图像分割方法
WO2014042902A1 (en) * 2012-09-13 2014-03-20 The Regents Of The University Of California Lung, lobe, and fissure imaging systems and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042902A1 (en) * 2012-09-13 2014-03-20 The Regents Of The University Of California Lung, lobe, and fissure imaging systems and methods
CN103164859A (zh) * 2013-04-11 2013-06-19 上海理工大学 一种血管内超声图像分割方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GABOR T. HERMAN 等: "Multiseeded Segmentation Using Fuzzy Connectedness", 《IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE》 *
HUANG YONG-FENG 等: "Liver Segmentation in CT Images Based on DRLSE Model", 《JOURNAL OF DONGHUA UNIVERSITY》 *
JAYARAM K. UDUPA 等: "Fuzzy Connectedness and Object Definition: Theory, Algorithms,and Applications in Image Segmentation", 《GRAPHICAL MODELS AND IMAGE PROCESSING》 *
VIDA HARATI 等: "Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images", 《COMPUTERS IN BIOLOGY AND MEDICINE》 *
吴建: "融合模糊连通图和区域生长的MRI脑组织图像分割算法", 《科学技术与工程》 *
李雪丽 等: "用于血管图像分割的简化模糊连接算法", 《计算机辅助设计与图形学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110288610A (zh) * 2019-06-05 2019-09-27 苏州比格威医疗科技有限公司 一种视网膜oct硬性渗出分割方法

Also Published As

Publication number Publication date
CN104331881B (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
US9119559B2 (en) Method and system of generating a 3D visualization from 2D images
CN103164859B (zh) 一种血管内超声图像分割方法
US8942423B2 (en) Methods for automatic segmentation and temporal tracking
CN107133959B (zh) 一种快速的血管边界三维分割方法及系统
US9230331B2 (en) Systems and methods for registration of ultrasound and CT images
CN109685809B (zh) 一种基于神经网络的肝包虫病灶分割方法及系统
CN102136135B (zh) 眼前节光学相干层析图像的角膜及眼前房内轮廓提取方法
CN104361554B (zh) 一种基于血管内超声图像的血管外膜自动检测方法
CN108618749B (zh) 基于便携式数字化眼底照相机的视网膜血管三维重建方法
CN104978725A (zh) 一种冠状动脉分割方法和装置
CN108198174B (zh) 一种心血管ivoct与ivus自动配准方法与装置
CN108416793B (zh) 基于三维相干断层成像图像的脉络膜血管分割方法及系统
WO2019023819A1 (zh) 基于仿真和实测数据的多目标三维超声图像分割方法
CN112102275A (zh) 肺主动脉血管图像提取方法、装置、存储介质及电子设备
Kiraly et al. 3D human airway segmentation for virtual bronchoscopy
CN104331881A (zh) 一种基于血管内超声图像的血管内腔分割方法
JP2022513424A (ja) 視神経乳頭の自動形状定量化の方法
CN111798438B (zh) 一种血管内超声图像智能分割方法及系统
Yan et al. A novel approach for segmentation of intravascular ultrasound images
Rajchl et al. Real-time segmentation in 4D ultrasound with continuous max-flow
CN110610147A (zh) 血管图像提取方法、相关装置及存储设备
Rodrigues et al. An algorithm for the surgical planning of hepatic resections
Wong-od et al. Intravascular ultrasound image recovery and segmentation based on circular analysis
Antunes et al. A new level set based segmentation method for the four cardiac chambers
CN109118499B (zh) 基于回溯最短路径算法的相干光断层图像的层分割方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant