CN104319377A - Ternary multilevel multi-dimensional structure composite material and preparation method thereof - Google Patents

Ternary multilevel multi-dimensional structure composite material and preparation method thereof Download PDF

Info

Publication number
CN104319377A
CN104319377A CN201410525275.7A CN201410525275A CN104319377A CN 104319377 A CN104319377 A CN 104319377A CN 201410525275 A CN201410525275 A CN 201410525275A CN 104319377 A CN104319377 A CN 104319377A
Authority
CN
China
Prior art keywords
specific capacity
pristine graphene
tio
dimensional
high specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410525275.7A
Other languages
Chinese (zh)
Other versions
CN104319377B (en
Inventor
朱晓东
王可心
孙克宁
马汝甲
闫杜娟
乐士儒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN201410525275.7A priority Critical patent/CN104319377B/en
Publication of CN104319377A publication Critical patent/CN104319377A/en
Application granted granted Critical
Publication of CN104319377B publication Critical patent/CN104319377B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种三元多级多维结构复合材料及其制备方法,利用其突出的协同效应和独特的多级多维结构,发挥出优异的电化学综合性能。所述复合材料由低维纳米结构的TiO2和次相高比容量金属氧化物以及二维微米(x-y平面方向)高电导率质朴石墨烯构成。本发明通过四氢呋喃溶液混合法,以降低溶液系统的总表面自由能为驱动力,将纳米结构的TiO2和高比容量金属氧化物均匀负载并紧密结合在质朴石墨烯纳米片的裸露表面上。本发明的三元多级多维结构复合材料有效结合了每一种组分的突出功能:TiO2优异的循环性能和突出的安全性,次相金属氧化物的高比容量和质朴石墨烯良好的导电性能。The invention discloses a ternary multi-level multi-dimensional structure composite material and a preparation method thereof. By utilizing its outstanding synergistic effect and unique multi-level multi-dimensional structure, it can exert excellent electrochemical comprehensive performance. The composite material is composed of TiO 2 with low-dimensional nanostructure, secondary phase high specific capacity metal oxide and two-dimensional micron (xy plane direction) pristine graphene with high conductivity. The invention adopts the THF solution mixing method, takes reducing the total surface free energy of the solution system as the driving force, uniformly loads and tightly combines nanostructured TiO2 and high specific capacity metal oxides on the exposed surface of the pristine graphene nanosheets. The ternary multi-level multi-dimensional structure composite material of the present invention effectively combines the outstanding functions of each component: the excellent cycle performance and outstanding safety of TiO2 , the high specific capacity of the secondary phase metal oxide and the good performance of pristine graphene Electrical conductivity.

Description

三元多级多维结构复合材料及其制备方法Ternary multilevel multidimensional structure composite material and its preparation method

技术领域 technical field

本发明属于能源材料技术领域,涉及一种三元多级多维结构TiO2-高比容量金属氧化物-质朴石墨烯复合材料及其制备方法。  The invention belongs to the technical field of energy materials, and relates to a ternary multilevel multidimensional structure TiO 2 -high specific capacity metal oxide-pristine graphene composite material and a preparation method thereof.

背景技术 Background technique

人类对化石资源的过度开采带来了严重的能源危机和环境污染,由此引发了电动车的蓬勃发展,这就要求锂离子电池向更高能量密度和功率密度发展。然而目前锂离子电池商业化负极材料——石墨,不仅比容量低,而且较低的嵌锂电位容易引发严重的安全问题,远远不能满足下一代高性能锂离子电池的需求。所以寻求具有更高电化学性能的负极替代材料吸引了全世界科研者的广泛关注。  The over-exploitation of fossil resources by humans has brought serious energy crisis and environmental pollution, which has triggered the vigorous development of electric vehicles, which requires the development of lithium-ion batteries to higher energy density and power density. However, graphite, the current commercial anode material for lithium-ion batteries, not only has a low specific capacity, but also has a low lithium intercalation potential that may easily cause serious safety problems, which is far from meeting the needs of the next generation of high-performance lithium-ion batteries. Therefore, the search for anode alternative materials with higher electrochemical performance has attracted extensive attention of researchers all over the world. the

在研究者们提出的众多阳极替代材料中,纳米结构(如纳米粒子、纳米棒、纳米管等)的TiO2,由于其拥有如下优势而脱颖而出,比如低成本、对环境友好、Li+扩散路径短,特别是零体积应变特性带来的高结构稳定性。此外,其相对较高的嵌锂电位(1.6-1.8Vvs.Li+/Li)可以有效避免电解液的分解(其还原电位在1V(vs.Li+/Li)以下)和锂枝晶的形成,使得纳米结构的TiO2成为一种高安全性负极材料。然而尽管存在上述诸多优势,纳米结构TiO2仍然因为如下两方面的缺陷限制了其实际应用:(1)较低的理论比容量(~170mAh g-1)甚至不能同石墨相竞争;(2)较低的电子电导率(~10-12S cm-1)导致高倍率放电时的容量降低。  Among the many anode alternative materials proposed by researchers, TiO 2 with nanostructures (such as nanoparticles, nanorods, nanotubes, etc.) stands out due to its advantages, such as low cost, environmental friendliness, Li + diffusion path Short, especially the high structural stability brought about by the zero volume strain characteristic. In addition, its relatively high lithium intercalation potential (1.6-1.8Vvs.Li + /Li) can effectively avoid the decomposition of the electrolyte (its reduction potential is below 1V(vs.Li + /Li)) and the formation of lithium dendrites , making nanostructured TiO 2 a highly safe anode material. However, despite the above-mentioned advantages, the practical application of nanostructured TiO 2 is still limited by the following two defects: (1) the low theoretical specific capacity (~170mAh g -1 ) cannot even compete with graphite; (2) Lower electronic conductivity (~10 -12 S cm-1) leads to lower capacity at high rate discharge.

为了弥补容量低的缺陷,人们试图将纳米结构TiO2与具有高比容量(750-1250mA h g-1)的次相金属氧化物材料相结合,比如Fe2O3、Fe3O4、SnO2、Co3O4或MnO2等。这些二元异质结构在保留纳米TiO2优点的同时大大提高了比容量。然而这些氧化物材料同TiO2相同,都属于宽能带隙半导体材料甚至是绝缘体,其固有的低电导率导致较 差的电荷传输动力学,使得容量快速衰减。低电导率也不利于消除电极上产生的焦耳热,带来一定的安全隐患。而且纳米级的金属氧化物由于增加了晶界而增大了电阻,进一步恶化了循环性能。  In order to make up for the defect of low capacity, people try to combine nanostructured TiO 2 with secondary metal oxide materials with high specific capacity (750-1250mA h g -1 ), such as Fe 2 O 3 , Fe 3 O 4 , SnO 2 , Co 3 O 4 or MnO 2 etc. These binary heterostructures greatly increase the specific capacity while retaining the advantages of nano- TiO2 . However, these oxide materials, like TiO 2 , belong to wide-bandgap semiconductor materials or even insulators, and their inherent low conductivity leads to poor charge transport kinetics and rapid capacity decay. Low conductivity is also not conducive to eliminating the Joule heat generated on the electrodes, which brings certain safety hazards. Moreover, the nanoscale metal oxide increases the resistance due to the increase of the grain boundary, further deteriorating the cycle performance.

一般来说,活性材料的电导率缺陷可以通过引入导电剂来解决,比如化学修饰的石墨烯(Chemically Converted Grephene,CCG)或称还原氧化石墨烯(reduced-Grephene Oxide,r-GO)。以CCG作为负载金属氧化物纳米粒子的基体,可以为电极提供快速的电子传输通道。不幸的是,制备CCG时的氧化—还原过程需要消耗大量的有毒氧化剂和还原剂,对环境造成不可避免的破坏。而且在此过程中,CCG的电导率也会遭到很大程度上的消弱。因此与从天然石墨中直接超声剥离得到的高质量质朴石墨烯(Pristine Graphene,PG)相比,CCG的电导率既不充足也不均一。而且质朴石墨烯的制备条件更为温和,比CCG更为经济和环保,因此质朴石墨烯更利于作为电极的高效导电剂,以确保活性材料在循环和倍率性能方面的良好可靠性和重现性。然而将金属氧化物负载在质朴石墨烯上,在技术上是一个巨大的挑战。到目前为止,少见报道。其难点在于质朴石墨烯具有化学惰性,缺乏CCG所具有的含氧官能团,难以利用水热合成或者静电相互作用实现功能化。清华大学Liu Yitao等采用络合作用成功地实现了质朴石墨烯与金属或金属氧化物纳米粒子的组装。然而这种方法需要引入有机配体和金属离子作为交联剂,不仅步骤繁琐,工艺复杂,而且成本较高。  In general, the conductivity defect of active materials can be solved by introducing conductive agents, such as chemically modified graphene (Chemically Converted Grephene, CCG) or reduced-Grephene Oxide (r-GO). Using CCG as a matrix to support metal oxide nanoparticles can provide a fast electron transport channel for the electrode. Unfortunately, the oxidation-reduction process in the preparation of CCG needs to consume a large amount of toxic oxidants and reductants, causing inevitable damage to the environment. And in the process, the conductivity of CCG will also be weakened to a large extent. Therefore, compared with the high-quality pristine graphene (Pristine Graphene, PG) obtained directly from natural graphite by ultrasonic exfoliation, the conductivity of CCG is neither sufficient nor uniform. Moreover, the preparation conditions of pristine graphene are milder, more economical and environmentally friendly than CCG, so pristine graphene is more conducive to being used as a high-efficiency conductive agent for electrodes to ensure good reliability and reproducibility of active materials in terms of cycle and rate performance. . However, loading metal oxides on pristine graphene is a huge technical challenge. So far, few reports have been reported. The difficulty is that pristine graphene is chemically inert and lacks the oxygen-containing functional groups of CCG, so it is difficult to realize functionalization by hydrothermal synthesis or electrostatic interaction. Liu Yitao of Tsinghua University and others successfully realized the assembly of pristine graphene and metal or metal oxide nanoparticles by complexation. However, this method needs to introduce organic ligands and metal ions as cross-linking agents, which is not only cumbersome steps, complex process, but also high cost. the

经过对现有技术检索发现,目前国内外尚未见有关TiO2-高比容量金属氧化物(Fe2O3、Fe3O4、SnO2、Co3O4或MnO2等)-质朴石墨烯复合材料的公开报道,仅见的几例如TiO2-Fe3O4-Graphene(Lu Jin et al.Appl.Mater.Interfaces 2013,5,7330-7334)、TiO2-SnO2-Graphene(Jiang Xin et al.New J.Chem.2013,37,3671-3678)、G-TiO2Co3O4NBs(Luo Yongsong et al.J.Mater.Chem.A2013,1,273-281)皆为TiO2和金属氧化物与CCG的复合,甚至TiO2-Fe3O4-Graphene(Min Qianhao et al.Chem.Commun.2011,47, 11709-11711;Lin Yue et al.Eur.J.Inorg.Chem.2012,4439-4444;Tian Miaomiao et al.Anal.Methods 2013,5,3984-3991;Liang Yulu et al.RSCAdv.2014,4,18132-18135)、TiO2-SnO2-Graphene(Tang Yanping et al.Energy Environ.Sci.2013,6,2447-2451)是TiO2和金属氧化物与氧化石墨烯(Graphene Oxide,GO)的复合。氧化石墨烯(GO)电导率极低,而化学修饰的石墨烯(CCG)的电导率相比质朴石墨烯(PG)既不充足也不均一。  After searching the existing technology, it is found that there is no relevant TiO 2 - high specific capacity metal oxide (Fe 2 O 3 , Fe 3 O 4 , SnO 2 , Co 3 O 4 or MnO 2 , etc.) - pristine graphene at home and abroad. Public reports of composite materials, such as TiO 2 -Fe 3 O 4 -Graphene (Lu Jin et al. Appl. Mater. Interfaces 2013, 5, 7330-7334), TiO 2 -SnO 2 -Graphene (Jiang Xin et al. al.New J.Chem.2013, 37, 3671-3678), G-TiO 2 Co 3 O 4 NBs (Luo Yongsong et al.J.Mater.Chem.A2013, 1, 273-281) are all TiO 2 and Combination of metal oxides with CCG, even TiO 2 -Fe 3 O 4 -Graphene (Min Qianhao et al.Chem.Commun.2011, 47, 11709-11711; Lin Yue et al.Eur.J.Inorg.Chem.2012 , 4439-4444; Tian Miaomiao et al.Anal.Methods 2013, 5, 3984-3991; Liang Yulu et al.RSCAdv.2014, 4, 18132-18135), TiO 2 -SnO 2 -Graphene (Tang Yanping et al. Energy Environ.Sci.2013, 6, 2447-2451) is a composite of TiO 2 and metal oxides with graphene oxide (Graphene Oxide, GO). The electrical conductivity of graphene oxide (GO) is extremely low, while the electrical conductivity of chemically modified graphene (CCG) is neither sufficient nor uniform compared to that of pristine graphene (PG).

发明内容 Contents of the invention

针对纳米TiO2比容量和电导率方面的缺陷,本发明通过次相高比容量金属氧化物和高电导率质朴石墨烯组分的共掺杂,提供了一种三元多级多维结构TiO2-高比容量金属氧化物-质朴石墨烯复合材料及其制备方法,利用其突出的协同效应和独特的多级多维结构,发挥出优异的电化学综合性能。  Aiming at the defects in specific capacity and electrical conductivity of nano-TiO 2 , the present invention provides a ternary multi-level multi-dimensional structure TiO 2 through the co-doping of sub-phase high specific capacity metal oxides and high-conductivity pristine graphene components - High specific capacity metal oxide-pristine graphene composite material and its preparation method, using its outstanding synergistic effect and unique multi-level multi-dimensional structure, to exert excellent comprehensive electrochemical performance.

本发明的三元多级多维结构TiO2-高比容量金属氧化物-质朴石墨烯复合材料,其组成特征为复合材料为由低维纳米结构的TiO2、次相高比容量金属氧化物和二维微米(x-y平面方向)高电导率质朴石墨烯三种组分以摩尔比为2~5∶1~4∶3~5的比例构成的三元异质结构,有效结合了每一种组分的突出功能:TiO2优异的循环性能和突出的安全性,次相金属氧化物的高比容量(750-1250mAh g-1)和质朴石墨烯良好的导电性能。  The ternary multi-level multi-dimensional structure TiO 2 -high specific capacity metal oxide-pristine graphene composite material of the present invention is characterized in that the composite material is composed of low-dimensional nanostructured TiO 2 , secondary phase high specific capacity metal oxide and Two-dimensional micron (xy plane direction) high-conductivity pristine graphene is a ternary heterostructure composed of three components with a molar ratio of 2 to 5:1 to 4:3 to 5, effectively combining each component The outstanding functions of TiO 2 are: excellent cycle performance and outstanding safety of TiO 2 , high specific capacity (750-1250mAh g -1 ) of secondary metal oxides and good electrical conductivity of pristine graphene.

本发明中,所述高比容量金属氧化物为Fe2O3、Fe3O4、SnO2、Co3O4或MnO2等高比容量金属氧化物的任意一种。  In the present invention, the high specific capacity metal oxide is any one of high specific capacity metal oxides such as Fe 2 O 3 , Fe 3 O 4 , SnO 2 , Co 3 O 4 or MnO 2 .

本发明中,所述TiO2、高比容量金属氧化物和质朴石墨烯的摩尔比可以为3∶3∶4、4∶2∶4、4∶3∶3、3∶4∶3、5∶2∶3、4∶1∶5、3∶2∶5、2∶3∶5中的一种比例,该摩尔比根据复合材料表现出的实际电化学性能进行确定。  In the present invention, the molar ratio of TiO 2 , high specific capacity metal oxide and pristine graphene can be 3:3:4, 4:2:4, 4:3:3, 3:4:3, 5: 2:3, 4:1:5, 3:2:5, 2:3:5, the molar ratio is determined according to the actual electrochemical performance of the composite material.

本发明的三元多级多维结构TiO2-高比容量金属氧化物-质朴石墨烯复合材料,其结构特征为纳米结构的TiO2和高比容量金属氧化物均匀负载并紧密结合在质朴石墨烯纳米片的裸露表面上所构成 的多级多维结构,其中质朴石墨烯纳米片在x-y平面上为微米级二维结构,TiO2为零维纳米粒子,而高比容量金属氧化物为一维纳米棒、纳米线、纳米管、纳米针或纳米带等任一种一维纳米结构;或TiO2为一维纳米棒、纳米线、纳米管、纳米针或纳米带等任一种一维纳米结构,而高比容量金属氧化物为零维纳米粒子,这样形成的三元复合材料,不仅具有零维、一维和二维共存的多维结构,而且同时具备纳米、微米相结合的多级结构,这种微纳多级结构增大了反应活性区的同时,也为电荷输运提供了快速通道。这种三元多级多维复合结构可以充分发挥每一种组分的结构特性:(1)零/一维TiO2和高比容量金属氧化物的纳米级结构,可以缩短Li+和电子的传输路径,提高复合材料的高倍率性能;(2)微米级二维质朴石墨烯纳米片作为导电剂,可以与TiO2和高比容量金属氧化物构成三维立体网络,构成快速导电的三维立体网络结构;(3)TiO2作为一种零结构应变材料,可以在充放电过程中提供首要的安全性;(4)质朴石墨烯纳米片作为一种基体,具有良好的柔韧性和弹性,可以缓解高比容量金属氧化物中Li+嵌入/脱出过程带来的结构应力,抑制复合材料的体积变化和电极的粉化;(5)质朴石墨烯表面的零/一维高比容量金属氧化物和TiO2作为一种隔离物,可以避免质朴石墨烯的重新堆叠,进一步增大层间距,有利于Li+的嵌入/脱出。  The ternary multilevel multidimensional structure TiO 2 -high specific capacity metal oxide-pristine graphene composite material of the present invention is characterized in that the nanostructured TiO 2 and high specific capacity metal oxide are uniformly loaded and tightly combined on the pristine graphene The multi-level and multi-dimensional structure formed on the exposed surface of the nanosheets, in which the pristine graphene nanosheets have a micron-scale two-dimensional structure on the xy plane, TiO 2 is a zero-dimensional nanoparticle, and the high specific capacity metal oxide is a one-dimensional nanometer Any one-dimensional nanostructures such as rods, nanowires, nanotubes, nanoneedles or nanobelts; or TiO2 is any one-dimensional nanostructures such as one-dimensional nanorods, nanowires, nanotubes, nanoneedles or nanobelts , while the high specific capacity metal oxides are zero-dimensional nanoparticles. The ternary composite material formed in this way not only has a multi-dimensional structure with zero-dimensional, one-dimensional and two-dimensional coexistence, but also has a multi-level structure combining nanometers and micrometers. This kind of micro-nano multi-level structure not only increases the reactive area, but also provides a fast channel for charge transport. This ternary multi-level multi-dimensional composite structure can give full play to the structural properties of each component: (1) Nano-scale structure of zero/one-dimensional TiO2 and high specific capacity metal oxide, which can shorten the transport of Li + and electrons (2) As a conductive agent, micron-sized two-dimensional pristine graphene nanosheets can form a three-dimensional network with TiO 2 and high-capacity metal oxides to form a fast conductive three-dimensional network structure (3) TiO2 , as a zero-structural strain material, can provide primary safety during charging and discharging; (4) As a matrix, pristine graphene nanosheets have good flexibility and elasticity, which can alleviate high Structural stress brought about by the Li + intercalation/extraction process in the specific capacity metal oxide, inhibiting the volume change of the composite and the pulverization of the electrode; (5) Zero/one-dimensional high specific capacity metal oxide and TiO on the surface of pristine graphene 2 as a spacer can avoid the restacking of pristine graphene, further increase the interlayer spacing, and facilitate the intercalation/extraction of Li + .

上述一维纳米结构,可以为纳米棒、纳米线、纳米管、纳米针或纳米带等任意一种一维纳米结构。  The above-mentioned one-dimensional nanostructure may be any one-dimensional nanostructure such as nanorod, nanowire, nanotube, nanoneedle or nanoribbon. the

上述三元多级多维结构TiO2-高比容量金属氧化物-质朴石墨烯复合材料的制备方法,其具体实施步骤如下:  The preparation method of the above-mentioned ternary multi-level multi-dimensional structure TiO 2 -high specific capacity metal oxide-pristine graphene composite material, its specific implementation steps are as follows:

(1)将天然石墨粉体在N-甲基-2-吡咯烷酮(NMP)中超声直接剥离为质朴石墨烯,并将质朴石墨烯转移到其不良溶剂四氢呋喃(THF)中;  (1) Ultrasonically exfoliate the natural graphite powder into pristine graphene in N-methyl-2-pyrrolidone (NMP), and transfer the pristine graphene to its poor solvent tetrahydrofuran (THF);

(2)利用水热反应、水解反应等合成纳米结构TiO2,并将TiO2转移到其良溶剂四氢呋喃中;  (2) Synthesize nanostructured TiO 2 by hydrothermal reaction, hydrolysis reaction, etc., and transfer TiO 2 to its good solvent tetrahydrofuran;

(3)利用水热反应、水解反应等合成一种Fe2O3、Fe3O4、SnO2、 Co3O4或MnO2纳米结构高比容量金属氧化物,并转移到其良溶剂四氢呋喃中;  (3) Synthesize a Fe 2 O 3 , Fe 3 O 4 , SnO 2 , Co 3 O 4 or MnO 2 nanostructured metal oxide with high specific capacity by hydrothermal reaction, hydrolysis reaction, etc., and transfer it to its good solvent tetrahydrofuran middle;

(4)将上述三种溶液以一定比例混合,并搅拌6~12小时,在降低系统的自由能的驱动力下,组装成三元多级多维结构TiO2纳米粒子-高比容量金属氧化物-质朴石墨烯纳米片复合材料。  (4) Mix the above three solutions in a certain proportion and stir for 6 to 12 hours. Under the driving force of reducing the free energy of the system, assemble into a ternary multi-level multi-dimensional structure TiO 2 nanoparticles-high specific capacity metal oxide - Pristine graphene nanosheet composites.

本发明中,步骤(1)所述的四氢呋喃(THF)为质朴石墨烯的不良溶剂,在THF中质朴石墨烯与四氢呋喃间具有不匹配的汉森溶解度参数,从而具有强烈的重新堆叠的倾向,因而THF不能降低质朴石墨烯所具有的巨大表面自由能。  In the present invention, the tetrahydrofuran (THF) described in step (1) is a poor solvent for pristine graphene, and there is a mismatched Hansen solubility parameter between pristine graphene and THF in THF, thereby having a strong tendency to re-stack, Therefore, THF cannot reduce the huge surface free energy of pristine graphene. the

本发明中,步骤(2)和(3)所述的四氢呋喃(THF)为TiO2和高比容量金属氧化物的良溶剂,这些金属氧化物可以在四氢呋喃中稳定存在。  In the present invention, the tetrahydrofuran (THF) described in steps (2) and (3) is a good solvent for TiO 2 and metal oxides with high specific capacity, and these metal oxides can exist stably in THF.

本发明中,步骤(4)所述的驱动力为降低溶液系统的总自由能。在THF中质朴石墨烯具有巨大的表面自由能,一旦更稳定的纳米结构的TiO2和高比容量金属氧化物被引入到THF中,就会在van der Waals相互作用下趋向于驻留在质朴石墨烯纳米片的裸露表面上,以降低溶液系统的总表面自由能,使THF中的质朴石墨烯二维纳米片稳定化,从而成功组装了三元多级多维结构TiO2-高比容量金属氧化物-质朴石墨烯复合材料。  In the present invention, the driving force described in step (4) is to reduce the total free energy of the solution system. Pristine graphene has a huge surface free energy in THF, and once the more stable nanostructured TiO2 and high specific capacity metal oxides are introduced into THF, they tend to reside in pristine graphene under the van der Waals interaction. On the exposed surface of graphene nanosheets to reduce the total surface free energy of the solution system, the pristine graphene 2D nanosheets in THF were stabilized, resulting in the successful assembly of ternary hierarchical multidimensional TiO2 -high specific capacity metals Oxide-pristine graphene composites.

本发明将天然石墨粉体在N-甲基-2-吡咯烷酮(NMP)中超声直接剥离为质朴石墨烯;然后将质朴石墨烯转移到其不良溶剂一四氢呋喃(THF)中,在THF中质朴石墨烯由于与溶剂间不匹配的汉森溶解度参数有强烈的重新堆叠的倾向,这一步骤对于后面成功进行分级协同组装非常关键,因为THF不能降低不溶的二维纳米片所具有的巨大表面自由能。因此更稳定的纳米结构的TiO2和高比容量金属氧化物一旦被引入到THF中,就会因为van der Waals相互作用而趋向于驻留在质朴石墨烯纳米片的裸露表面上,以降低溶液系统的总表面自由能,使THF中的二维纳米层稳定化。这种自组装方法因为不引 入外来的交联剂,相比利用络合作用制备金属氧化物-质朴石墨烯复合材料的方法,具有温和和低成本的优点。  In the present invention, the natural graphite powder is directly exfoliated into pristine graphene by ultrasonic in N-methyl-2-pyrrolidone (NMP); then pristine graphene is transferred to its poor solvent-tetrahydrofuran (THF), and pristine graphite is Alkenes have a strong tendency to restack due to the mismatched Hansen solubility parameters between solvents. This step is critical for the subsequent successful hierarchical cooperative assembly, because THF cannot reduce the huge surface free energy of insoluble 2D nanosheets. . Thus more stable nanostructured TiO2 and high specific capacity metal oxides, once introduced into THF, tend to reside on the bare surfaces of pristine graphene nanosheets due to the van der Waals interaction, reducing the solution The total surface free energy of the system, which stabilizes the 2D nanolayer in THF. This self-assembly method has the advantages of mildness and low cost compared with the method of preparing metal oxide-pristine graphene composites by complexation because no foreign cross-linking agent is introduced.

附图说明 Description of drawings

图1为实施例1中三元多级多维结构TiO2-高比容量金属氧化物(Fe3O4)-质朴石墨烯(PG)复合材料的X射线衍射图;  Fig. 1 is the X-ray diffraction pattern of ternary multilevel multidimensional structure TiO 2 -high specific capacity metal oxide (Fe 3 O 4 )-pristine graphene (PG) composite material in embodiment 1;

图2为实施例1中三元多级多维结构TiO2-高比容量金属氧化物(Fe3O4)-质朴石墨烯(PG)复合材料的透射电镜图;  Fig. 2 is the transmission electron microscope image of the ternary multi-level multi-dimensional structure TiO 2 -high specific capacity metal oxide (Fe 3 O 4 )-pristine graphene (PG) composite material in Example 1;

图3为实施例1中三元多级多维结构TiO2-高比容量金属氧化物(Fe3O4)-质朴石墨烯(PG)复合材料的高分辨透射电镜图;  3 is a high-resolution transmission electron microscope image of the ternary multi-level multi-dimensional structure TiO 2 -high specific capacity metal oxide (Fe 3 O 4 )-pristine graphene (PG) composite material in Example 1;

图4为实施例1中三元多级多维结构TiO2-高比容量金属氧化物(Fe3O4)-质朴石墨烯(PG)复合材料在0.5A g-1电流密度下的循环性能曲线图。  Figure 4 is the cycle performance curve of the ternary multi-level multi-dimensional structure TiO 2 - high specific capacity metal oxide (Fe 3 O 4 ) - pristine graphene (PG) composite material in Example 1 at a current density of 0.5A g -1 picture.

具体实施方式 Detailed ways

下面结合附图对本发明的技术方案作进一步的说明,但并不局限如此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。  The technical solution of the present invention will be further described below in conjunction with the accompanying drawings, but it is not limited to this. Any modification or equivalent replacement of the technical solution of the present invention without departing from the spirit and scope of the technical solution of the present invention should be covered by the technical solution of the present invention. in the scope of protection. the

实施例1  Example 1

针对纳米TiO2低比容量和低电导率方面的缺陷,通过次相高比容量金属氧化物Fe3O4(927mA h g-1)和高电导率质朴石墨烯组分的共掺杂,本实施例提供了一种三元多级多维结构TiO2纳米棒-Fe3O4纳米粒子-质朴石墨烯纳米片复合材料,利用其突出的协同效应和独特的多级多维结构,发挥出优异的电化学综合性能。  Aiming at the defects of low specific capacity and low electrical conductivity of nano-TiO 2 , through the co-doping of secondary phase high specific capacity metal oxide Fe 3 O 4 (927mA h g -1 ) and pristine graphene components with high electrical conductivity, this implementation The example provides a ternary multi-level multi-dimensional structure TiO 2 nanorod-Fe 3 O 4 nano-particles-pristine graphene nanosheet composite material, using its outstanding synergistic effect and unique multi-level multi-dimensional structure, it exerts excellent electrical properties Comprehensive chemical properties.

本实施例提供的三元多级多维结构TiO2纳米棒-Fe3O4纳米粒子-质朴石墨烯纳米片复合材料为由TiO2、Fe3O4和高电导率质朴石墨烯三种组分以4∶2∶4的摩尔比构成的三元异质结构,其制备方法如下:  The ternary multilevel multidimensional structure TiO2 nanorod- Fe3O4 nanoparticle- pristine graphene nanosheet composite material provided by this embodiment is composed of three components: TiO2 , Fe3O4 and high conductivity pristine graphene The ternary heterostructure formed with a molar ratio of 4:2:4 can be prepared as follows:

(1)将天然石墨粉体加入到N-甲基-2-吡咯烷酮(NMP)中,初始浓度为10mg mL-1,然后在70W功率下超声4小时。将得到的悬浮液在2000转/分钟的转速下离心30分钟,然后收集上清液并真空 抽滤。将滤得的固体粉末加入到THF中并超声,得到黑色质朴石墨烯分散溶液。  (1) The natural graphite powder was added to N-methyl-2-pyrrolidone (NMP) with an initial concentration of 10 mg mL -1 , and then ultrasonicated at 70W for 4 hours. The resulting suspension was centrifuged at 2000 rpm for 30 minutes, then the supernatant was collected and vacuum filtered. The filtered solid powder was added into THF and ultrasonicated to obtain a black pristine graphene dispersion solution.

(2)将3mmol Fe(acac)3、30mL油胺和30mL十八烯混合,并在氮气气氛保护下加热到280℃保温1小时,然后自然冷却到室温。将沉降后产物用乙醇洗2~3次,并在40℃真空干燥12小时,得到Fe3O4纳米粒子。将上述干燥后的Fe3O4纳米粒子溶于THF中,得到1mg/mL的褐色Fe3O4溶液。  (2) 3 mmol Fe(acac) 3 , 30 mL oleylamine and 30 mL octadecene were mixed, heated to 280° C. for 1 hour under the protection of nitrogen atmosphere, and then naturally cooled to room temperature. The precipitated product was washed 2-3 times with ethanol, and vacuum-dried at 40° C. for 12 hours to obtain Fe 3 O 4 nanoparticles. The above dried Fe 3 O 4 nanoparticles were dissolved in THF to obtain a 1 mg/mL brown Fe 3 O 4 solution.

(3)将5mmol钛酸四丁酯、25mmol油胺、25mmol油酸和100mL乙醇加入到35mL聚四氟乙烯杯中并搅拌10分钟,然后将该聚四氟乙烯杯放入一130mL聚四氟乙烯内衬中,并在内衬中加入20mL(96Vol%)的乙醇溶液。将不锈钢反应釜在180℃下保温18小时。自然冷却后收集产物并用乙醇洗涤2~3次,在40℃真空干燥12小时,得到TiO2纳米棒。将上述干燥后的TiO2纳米棒溶于THF中,得到1mg/mL的乳白色溶液。  (3) Add 5mmol tetrabutyl titanate, 25mmol oleylamine, 25mmol oleic acid and 100mL ethanol to a 35mL polytetrafluoroethylene cup and stir for 10 minutes, then put the polytetrafluoroethylene cup into a 130mL polytetrafluoroethylene Vinyl liner, and add 20mL (96Vol%) ethanol solution to the liner. The stainless steel reaction kettle was kept at 180°C for 18 hours. After natural cooling, the product was collected and washed with ethanol for 2 to 3 times, and dried in vacuum at 40 °C for 12 hours to obtain TiO2 nanorods. Dissolve the above dried TiO2 nanorods in THF to obtain a milky white solution at 1 mg/mL.

(4)将上述三种组分以TiO2∶Fe3O4∶PG=4∶2∶4的摩尔比混合,并搅拌10小时。在搅拌过程中,有机改性的Fe3O4纳米粒子和TiO2纳米棒会自发地组装在质朴石墨烯的裸露表面上,得到三元多级多维结构TiO2纳米棒-Fe3O4纳米粒子-质朴石墨烯纳米片复合材料。  (4) The above three components were mixed at a molar ratio of TiO 2 :Fe 3 O 4 :PG=4:2:4, and stirred for 10 hours. During the stirring process, the organically modified Fe 3 O 4 nanoparticles and TiO 2 nanorods would spontaneously assemble on the exposed surface of the pristine graphene, resulting in a ternary hierarchical multidimensional structure of TiO 2 nanorods-Fe 3 O 4 nanorods Particle-pristine graphene nanosheet composites.

本实施例的三元多级多维结构TiO2纳米棒-Fe3O4纳米粒子-质朴石墨烯复合材料,可以有效结合每一种组分的突出功能:TiO2优异的循环性能和突出的安全性,Fe3O4的高比容量(927mA h g-1)、低成本和质朴石墨烯良好的导电性能,从而表现出优异的电化学综合性能。其结构特征为:TiO2纳米棒和Fe3O4纳米粒子均匀负载并紧密结合在质朴石墨烯纳米片的裸露表面上所构成的多级多维结构,其中质朴石墨烯纳米片在x-y平面上为微米级二维结构,TiO2为一维纳米棒,而Fe3O4为零维纳米粒子,这样形成的三元复合材料不仅具有零维、一维和二维共存的多维结构,而且同时具备纳米、微米相结合的多级结构。这种三元多级多维复合结构可以充分发挥每一种组分的结构特性:(1)低维TiO2和Fe3O4的纳米级结构,可以缩短Li+和电子的传 输路径,提高复合材料的高倍率性能;(2)微米级二维质朴石墨烯纳米片作为导电剂,可以与TiO2和Fe3O4形成三维立体网络,构筑快速导电的三维立体网络结构电极;(3)TiO2作为一种零结构应变材料,可以在充放电过程中提供首要的安全性;(4)质朴石墨烯纳米片作为一种基体,具有良好的柔韧性和弹性,可以缓解Fe3O4在Li+嵌入/脱出过程带来的结构应力,抑制复合材料的体积变化和电极的粉化;(5)质朴石墨烯表面的零维Fe3O4和一维TiO2作为隔离物,可以避免质朴石墨烯的重新堆叠,进一步增大层间距,有利于Li+的嵌入/脱出。  The ternary multilevel multidimensional structure TiO 2 nanorods-Fe 3 O 4 nanoparticles-pristine graphene composite material in this example can effectively combine the outstanding functions of each component: excellent cycle performance and outstanding safety of TiO 2 properties, high specific capacity (927mA h g -1 ) of Fe 3 O 4 , low cost and good electrical conductivity of pristine graphene, thus exhibiting excellent comprehensive electrochemical performance. Its structural features are: TiO 2 nanorods and Fe 3 O 4 nanoparticles are uniformly loaded and tightly combined on the exposed surface of the pristine graphene nanosheets to form a multi-level multidimensional structure, in which the pristine graphene nanosheets on the xy plane are Micron-scale two-dimensional structure, TiO 2 is one-dimensional nanorods, and Fe 3 O 4 is zero-dimensional nanoparticles. The ternary composite material formed in this way not only has a multi-dimensional structure with zero-dimensional, one-dimensional and two-dimensional coexistence, but also has nano , Micron combined multi-level structure. This ternary multi-level multi-dimensional composite structure can give full play to the structural characteristics of each component: (1) The nanoscale structure of low-dimensional TiO 2 and Fe 3 O 4 can shorten the transmission path of Li + and electrons, and improve the recombination High rate performance of the material; (2) micron-scale two-dimensional pristine graphene nanosheets as a conductive agent can form a three-dimensional network with TiO 2 and Fe 3 O 4 to build a fast conductive three-dimensional network structure electrode; (3) TiO 2 As a zero-structural-strain material, it can provide the primary safety during charging and discharging; (4) As a matrix, pristine graphene nanosheets have good flexibility and elasticity, which can relieve Fe 3 O 4 in Li + The structural stress brought by the intercalation/extraction process can inhibit the volume change of the composite material and the pulverization of the electrode; (5) the zero-dimensional Fe 3 O 4 and one-dimensional TiO 2 on the surface of pristine graphene can be used as spacers to avoid pristine graphite The re-stacking of alkenes further increases the interlayer spacing, which is beneficial to the intercalation/extraction of Li + .

实施例2  Example 2

本实施例与实施例1中不同的是:步骤(3):将35克油酸加入到连有回流冷却器的50毫升三颈瓶中,并在剧烈搅拌下120℃干燥1小时,在氮气流中冷却到80~100℃。然后将1mmol四异丙醇钛加入到油酸中并搅拌5分钟,使溶液从白色变为浅黄色。将10mmol羟化四丁基氨溶于2mL水中,并吸入注射器中,然后快速注入混合溶液中,使溶液保持在80~100℃,并在温和的水回流条件下搅拌8小时,然后停止加热,在真空条件下将水除去得到清澈溶液。向上述溶液中加入20mL乙醇,得到沉淀,离心后用乙醇清洗2次,并在40℃真空干燥12小时,得到TiO2纳米棒。将上述干燥后的TiO2纳米粒子溶于THF中,得到1mg/mL的乳白色溶液。步骤(4):三种组分的摩尔比为TiO2∶Fe3O4∶PG=3∶3∶4。  The difference between this embodiment and Example 1 is: Step (3): 35 grams of oleic acid was added to a 50 ml three-necked bottle connected with a reflux cooler, and dried at 120° C. for 1 hour under vigorous stirring, Cool to 80-100°C in the stream. Then 1 mmol of titanium tetraisopropoxide was added to oleic acid and stirred for 5 minutes to make the solution change from white to pale yellow. Dissolve 10mmol hydroxylated tetrabutylammonium in 2mL water, suck it into the syringe, and then quickly inject it into the mixed solution, keep the solution at 80-100°C, and stir for 8 hours under mild water reflux conditions, then stop heating, Water was removed under vacuum to give a clear solution. 20 mL of ethanol was added to the above solution to obtain a precipitate, which was washed with ethanol twice after centrifugation and vacuum dried at 40 °C for 12 h to obtain TiO2 nanorods. The above dried TiO nanoparticles were dissolved in THF to obtain a milky white solution at 1 mg/mL. Step (4): The molar ratio of the three components is TiO 2 :Fe 3 O 4 :PG=3:3:4.

实施例3  Example 3

针对纳米TiO2低比容量和低电导率方面的缺陷,通过次相高比容量金属氧化物Co3O4(891mA h g-1)和高电导率质朴石墨烯组分的共掺杂,本实施例提供了一种三元多级多维结构TiO2纳米粒子-Co3O4纳米带-质朴石墨烯纳米片复合材料,利用其突出的协同效应和独特的多级多维结构,发挥出优异的电化学综合性能。  Aiming at the defects of low specific capacity and low electrical conductivity of nano-TiO 2 , through the co-doping of secondary phase high specific capacity metal oxide Co 3 O 4 (891mA h g -1 ) and pristine graphene components with high electrical conductivity, this implementation The example provides a ternary multi-level multi-dimensional structure TiO 2 nanoparticles-Co 3 O 4 nanoribbons-pristine graphene nanosheet composite material, using its outstanding synergistic effect and unique multi-level multi-dimensional structure, it exerts excellent electrical Comprehensive chemical properties.

本实施例中的三元多级多维结构TiO2纳米粒子-Co3O4纳米带-质朴石墨烯纳米片复合材料为由TiO2、Co3O4和高电导率质朴石墨烯三种组分以3∶3∶4的摩尔比构成的三元异质结构,其制备方法如下:  The ternary multilevel multidimensional structure TiO2 nanoparticle- Co3O4 nanoribbon-pristine graphene nanosheet composite material in this embodiment is composed of three components: TiO2 , Co3O4 and high conductivity pristine graphene The ternary heterostructure formed with a molar ratio of 3:3:4 can be prepared as follows:

(1)将天然石墨粉体加入到N-甲基-2-吡咯烷酮(NMP)中,初始浓度为10mg mL-1,然后在70W功率下超声4小时。将得到的悬浮液在2000转/分钟的转速下离心30分钟,然后收集上清液并真空抽滤。将滤得的固体粉末加入到THF中并超声,得到黑色质朴石墨烯分散溶液。  (1) The natural graphite powder was added to N-methyl-2-pyrrolidone (NMP) with an initial concentration of 10 mg mL -1 , and then ultrasonicated at 70W for 4 hours. The resulting suspension was centrifuged at 2000 rpm for 30 minutes, then the supernatant was collected and vacuum filtered. The filtered solid powder was added into THF and ultrasonicated to obtain a black pristine graphene dispersion solution.

(2)将0.1g Co(NO3)2·6H2O、0.5g CO(NH2)2和0.37g NH4F加入到40mL去离子水中,并在室温下搅拌10分钟。然后转移到50mL不锈钢反应釜中,在120℃反应4小时,自然冷却到室温。将产物用乙醇洗涤3次,并在40℃真空干燥12小时得到Co3O4纳米带。将上述干燥后的Co3O4纳米带溶于THF中,得到1mg/mL的Co3O4溶液。  (2) 0.1 g of Co(NO 3 ) 2 ·6H 2 O, 0.5 g of CO(NH 2 ) 2 and 0.37 g of NH 4 F were added to 40 mL of deionized water, and stirred at room temperature for 10 minutes. Then transferred to a 50mL stainless steel reaction kettle, reacted at 120°C for 4 hours, and cooled naturally to room temperature. The product was washed 3 times with ethanol, and dried under vacuum at 40 °C for 12 hours to obtain Co 3 O 4 nanobelts. The above dried Co 3 O 4 nanobelts were dissolved in THF to obtain a 1 mg/mL Co 3 O 4 solution.

(3)将0.2mL钛酸四丁酯和25mL异丙醇混合并搅拌30分钟,然后逐滴加入1mL去离子水并搅拌30分钟。然后将上述混合溶液转到50mL的聚四氟乙烯内衬不锈钢高压釜中,在180℃反应6小时,自然冷却至室温,将产物用乙醇洗涤3次,并在40℃真空干燥12小时,得到TiO2纳米粒子。将上述干燥后的TiO2纳米粒子溶于THF中,得到1mg/mL的乳白色溶液。  (3) 0.2 mL of tetrabutyl titanate and 25 mL of isopropanol were mixed and stirred for 30 minutes, then 1 mL of deionized water was added dropwise and stirred for 30 minutes. Then the above mixed solution was transferred to a 50mL polytetrafluoroethylene-lined stainless steel autoclave, reacted at 180°C for 6 hours, cooled to room temperature naturally, washed the product 3 times with ethanol, and dried in vacuum at 40°C for 12 hours to obtain TiO2 nanoparticles. The above dried TiO nanoparticles were dissolved in THF to obtain a milky white solution at 1 mg/mL.

(4)将上述三种组分以TiO2∶Co3O4∶PG=3∶3∶4的摩尔比混合,并搅拌10小时。在搅拌过程中,有机改性的Co3O4纳米带和TiO2纳米粒子会自发地组装在质朴石墨烯的裸露表面上,得到三元多级多维结构TiO2纳米粒子-Co3O4纳米带-质朴石墨烯纳米片复合材料。  (4) The above three components were mixed in a molar ratio of TiO 2 :Co 3 O 4 :PG=3:3:4, and stirred for 10 hours. During the stirring process, the organically modified Co 3 O 4 nanoribbons and TiO 2 nanoparticles will spontaneously assemble on the exposed surface of the pristine graphene, resulting in a ternary multi-level multidimensional structure of TiO 2 nanoparticles- Co 3 O 4 nano Ribbon-pristine graphene nanosheet composites.

本实施例的三元多级多维结构TiO2纳米粒子-Co3O4纳米带-质朴石墨烯纳米片复合材料,有可以有效结合每一种组分的突出功能:TiO2优异的循环性能和突出的安全性,Co3O4的高比容量(891mA h g-1)和质朴石墨烯良好的导电性能,从而表现出优异的电化学综合性能。其结构特征为:TiO2纳米粒子和Co3O4纳米带均匀负载并紧密结合在质朴石墨烯纳米片的裸露表面上构成多级多维结构,其中质朴石墨烯纳米片在x-y平面上为微米级二维结构,TiO2为零维纳米粒子,而Co3O4为一维纳米带,这样形成的三元复合材料,不仅具有零维、一维和二维共存的多维结构,而且同时具备纳米、微米相结合的多级 结构。这种三元多级多维复合结构可以充分发挥每一种组分的结构特性:(1)低维TiO2和Co3O4的纳米级结构,可以缩短Li+和电子的传输路径,提高复合材料的高倍率性能;(2)微米级二维质朴石墨烯纳米片作为导电剂,可以与TiO2和Co3O4形成三维立体网络,构筑快速导电的三维立体网络结构电极;(3)TiO2作为一种零结构应变材料,可以在充放电过程中提供首要的安全性;(4)质朴石墨烯纳米片作为一种基体,具有良好的柔韧性和弹性,可以缓解Co3O4在Li+嵌入/脱出过程带来的结构应力,抑制复合材料的体积变化和电极的粉化;(5)质朴石墨烯表面的零维TiO2和一维Co3O4作为隔离物,可以避免质朴石墨烯的重新堆叠,进一步增大层间距,有利于Li+的嵌入/脱出。  The ternary multilevel multidimensional structure TiO2nanoparticle - Co3O4nanobelt -pristine graphene nanosheet composite material of this embodiment has outstanding functions that can effectively combine each component: TiO2Excellent cycle performance and Outstanding safety, high specific capacity of Co 3 O 4 (891mA h g -1 ) and good electrical conductivity of pristine graphene show excellent comprehensive electrochemical performance. Its structural features are: TiO 2 nanoparticles and Co 3 O 4 nanobelts are uniformly loaded and tightly combined on the exposed surface of the pristine graphene nanosheets to form a multi-level multidimensional structure, in which the pristine graphene nanosheets are micron-sized on the xy plane Two-dimensional structure, TiO 2 is a zero-dimensional nanoparticle, and Co 3 O 4 is a one-dimensional nanoribbon. The ternary composite material formed in this way not only has a multi-dimensional structure with zero-dimensional, one-dimensional and two-dimensional coexistence, but also has nano, Micron-combined hierarchical structure. This ternary multi-level multi-dimensional composite structure can give full play to the structural characteristics of each component: (1) The nanoscale structure of low-dimensional TiO 2 and Co 3 O 4 can shorten the transport path of Li + and electrons, and improve the recombination High rate performance of the material; (2) Micron-sized two-dimensional pristine graphene nanosheets as a conductive agent can form a three-dimensional network with TiO 2 and Co 3 O 4 to build a fast conductive three-dimensional network structure electrode; (3) TiO 2 As a zero-structural-strain material, it can provide the primary safety during charging and discharging; (4) As a matrix, pristine graphene nanosheets have good flexibility and elasticity, which can relieve Co 3 O 4 in Li + Structural stress brought by the intercalation/extraction process suppresses the volume change of the composite material and the pulverization of the electrode; (5) the zero-dimensional TiO 2 and one-dimensional Co 3 O 4 on the surface of pristine graphene are used as spacers to avoid pristine graphite The re-stacking of alkenes further increases the interlayer spacing, which is beneficial to the intercalation/extraction of Li + .

实施例4  Example 4

针对纳米TiO2低比容量和低电导率方面的缺陷,通过次相高比容量金属氧化物SnO2(782mA h g-1)和高电导率质朴石墨烯组分的共掺杂,本实施例提供了一种三元多级多维结构TiO2纳米棒-SnO2纳米粒子-质朴石墨烯纳米片复合材料,利用其突出的协同效应和独特的多级多维结构,发挥出优异的电化学综合性能。  Aiming at the defects of low specific capacity and low electrical conductivity of nano TiO 2 , through the co-doping of secondary phase high specific capacity metal oxide SnO 2 (782mA h g -1 ) and pristine graphene components with high electrical conductivity, this embodiment provides A ternary multi-level multi-dimensional structure TiO 2 nanorod-SnO 2 nanoparticle-pristine graphene nanosheet composite material is developed, and its outstanding synergistic effect and unique multi-level multi-dimensional structure are used to exert excellent comprehensive electrochemical performance.

本实施例中的三元多级多维结构TiO2纳米棒-SnO2纳米粒子-质朴石墨烯纳米片复合材料为由TiO2、SnO2和高电导率质朴石墨烯三种组分以4∶2∶4的摩尔比构成的三元异质结构,其制备方法如下:  The ternary multilevel multidimensional structure TiO2 nanorod- SnO2 nanoparticle-pristine graphene nanosheet composite material in the present embodiment is by TiO2 , SnO2 and three kinds of components of high conductivity pristine graphene with 4:2 : The ternary heterostructure formed by the molar ratio of 4, its preparation method is as follows:

(1)将天然石墨粉体加入到N-甲基-2-吡咯烷酮(NMP)中,初始浓度为10mg mL-1,然后在70W功率下超声4小时。将得到的悬浮液在2000转/分钟的转速下离心30分钟,然后收集上清液并真空抽滤。将滤得的固体粉末加入到THF中并超声,得到黑色质朴石墨烯分散溶液。  (1) The natural graphite powder was added to N-methyl-2-pyrrolidone (NMP) with an initial concentration of 10 mg mL -1 , and then ultrasonicated at 70W for 4 hours. The resulting suspension was centrifuged at 2000 rpm for 30 minutes, then the supernatant was collected and vacuum filtered. The filtered solid powder was added into THF and ultrasonicated to obtain a black pristine graphene dispersion solution.

(2)0.3g Sn(Cl)4·5H2O溶于25mL去离子水中并在240瓦的功率下超声10分钟,然后转移至反应釜中,在180℃反应8小时,将产物用乙醇洗涤3次,自然冷却至室温,并在40℃真空干燥12小时,得到SnO2纳米粒子。将上述干燥后的SnO2纳米粒子溶于THF中,得到1mg/mL的SnO2溶液。  (2) Dissolve 0.3g of Sn(Cl) 4 ·5H 2 O in 25mL of deionized water and sonicate for 10 minutes at a power of 240 watts, then transfer to a reaction kettle, react at 180°C for 8 hours, and wash the product with ethanol 3 times, naturally cooled to room temperature, and dried in vacuum at 40 °C for 12 hours to obtain SnO 2 nanoparticles. Dissolve the above dried SnO nanoparticles in THF to obtain a 1 mg/mL SnO solution .

(3)将5mmol钛酸四丁酯、25mmol油胺、25mmol油酸和100mL乙醇加入到35mL聚四氟乙烯杯中并搅拌10分钟,然后将该聚四氟乙烯杯放入一130mL聚四氟乙烯内衬中,并在内衬中加入20mL(96Vol%)的乙醇溶液。将不锈钢反应釜在180℃下保温18小时。自然冷却后收集产物并用乙醇洗涤2~3次,在40℃真空干燥12小时,得到TiO2纳米棒。将上述干燥后的TiO2纳米棒溶于THF中,得到1mg/mL的乳白色溶液。  (3) Add 5mmol tetrabutyl titanate, 25mmol oleylamine, 25mmol oleic acid and 100mL ethanol to a 35mL polytetrafluoroethylene cup and stir for 10 minutes, then put the polytetrafluoroethylene cup into a 130mL polytetrafluoroethylene Vinyl liner, and add 20mL (96Vol%) ethanol solution to the liner. The stainless steel reaction kettle was kept at 180°C for 18 hours. After natural cooling, the product was collected and washed with ethanol for 2 to 3 times, and dried in vacuum at 40 °C for 12 hours to obtain TiO2 nanorods. Dissolve the above dried TiO2 nanorods in THF to obtain a milky white solution at 1 mg/mL.

(4)将上述三种组分以TiO2∶SnO2∶PG=4∶2∶4的摩尔比混合,并搅拌10小时。在搅拌过程中,有机改性的SnO2纳米粒子和TiO2纳米棒会自发地组装在质朴石墨烯的裸露表面上,得到三元多级多维结构TiO2纳米棒-SnO2纳米粒子-质朴石墨烯纳米片复合材料。  (4) The above three components were mixed in a molar ratio of TiO 2 :SnO 2 :PG=4:2:4, and stirred for 10 hours. During the stirring process, organically modified SnO2 nanoparticles and TiO2 nanorods would spontaneously assemble on the exposed surface of pristine graphene, resulting in a ternary multi-level multidimensional structure TiO2 nanorods- SnO2 nanoparticles-pristine graphite ene nanosheet composites.

本实施例的三元多级多维结构TiO2纳米棒-SnO2纳米粒子-质朴石墨烯复合材料,可以有效结合每一种组分的突出功能:TiO2优异的循环性能和突出的安全性,SnO2的高比容量(782mA h g-1)和质朴石墨烯良好的导电性能,从而表现出优异的电化学综合性能。其结构特征为:TiO2纳米棒和SnO2纳米粒子均匀负载并紧密结合在质朴石墨烯纳米片的裸露表面上构成多级多维结构,其中质朴石墨烯纳米片在x-y平面上为微米级二维结构,TiO2为一维纳米棒,而SnO2为零维纳米粒子,这样形成的三元复合材料,不仅具有零维、一维和二维共存的多维结构,而且同时具备纳米、微米相结合的多级结构。这种三元多级多维复合结构可以充分发挥每一种组分的结构特性:(1)低维SnO2和TiO2的纳米级结构,可以缩短Li+和电子的传输路径,提高复合材料的高倍率性能;(2)微米级二维质朴石墨烯纳米片作为导电剂,可以与TiO2和SnO2形成三维立体网络,构筑快速导电的三维立体网络结构电极;(3)TiO2作为一种零结构应变材料,可以在充放电过程中提供首要的安全性;(4)质朴石墨烯纳米片作为一种基体,具有良好的柔韧性和弹性,可以缓解SnO2中Li+嵌入/脱出过程带来的结构应力,抑制复合材料的体积变化和电极的粉化;(5)质朴石墨烯表面的零维SnO2和一维TiO2作为隔离物,可以避免质朴石墨烯的 重新堆叠,进一步增大层间距,有利于Li+的嵌入/脱出。  The ternary multilevel multidimensional structure TiO2 nanorod- SnO2 nanoparticle-pristine graphene composite material of this embodiment can effectively combine the outstanding functions of each component: excellent cycle performance and outstanding safety of TiO2 , The high specific capacity of SnO 2 (782mA h g -1 ) and the good conductivity of pristine graphene show excellent comprehensive electrochemical performance. Its structural features are: TiO 2 nanorods and SnO 2 nanoparticles are uniformly loaded and tightly combined on the exposed surface of the pristine graphene nanosheets to form a multi-level multidimensional structure, in which the pristine graphene nanosheets are micron-scale two-dimensional on the xy plane structure, TiO 2 is a one-dimensional nanorod, and SnO 2 is a zero-dimensional nanoparticle. The ternary composite material formed in this way not only has a multi-dimensional structure with zero-dimensional, one-dimensional and two-dimensional coexistence, but also has a combination of nanometer and micrometer. multilevel structure. This ternary multi-level multi-dimensional composite structure can give full play to the structural properties of each component: (1) The nanoscale structure of low-dimensional SnO2 and TiO2 can shorten the transmission path of Li + and electrons, and improve the High rate performance; (2) Micron-scale two-dimensional pristine graphene nanosheets as a conductive agent can form a three-dimensional network with TiO 2 and SnO 2 to build a fast conductive three-dimensional network structure electrode; (3) TiO 2 as a Zero structural strain material, which can provide the primary safety during charge and discharge; (4) pristine graphene nanosheets, as a matrix, have good flexibility and elasticity, which can ease the Li + intercalation/extraction process in SnO2 . (5) The zero-dimensional SnO 2 and one-dimensional TiO 2 on the surface of pristine graphene as spacers can avoid the re-stacking of pristine graphene and further increase the interlayer spacing, which is favorable for intercalation/extraction of Li + .

实施例5  Example 5

针对纳米TiO2低比容量和低电导率方面的缺陷,通过次相高比容量金属氧化物MnO2(1233mA h g-1)和高电导率质朴石墨烯组分的共掺杂,本实施例提供了一种三元多级多维结构TiO2纳米粒子-MnO2纳米线-质朴石墨烯纳米片复合材料,利用其突出的协同效应和独特的多级多维结构,发挥出优异的电化学综合性能。  For the defects of nano-TiO 2 low specific capacity and low electrical conductivity, through the co-doping of secondary phase high specific capacity metal oxide MnO 2 (1233mA h g -1 ) and high conductivity pristine graphene components, this embodiment provides A ternary multi-level multi-dimensional structure TiO 2 nanoparticle-MnO 2 nanowire-pristine graphene nanosheet composite material is developed, which exhibits excellent comprehensive electrochemical performance by utilizing its outstanding synergistic effect and unique multi-level multi-dimensional structure.

本实施例中的三元多级多维结构TiO2纳米粒子-MnO2纳米线-质朴石墨烯纳米片复合材料为由TiO2、MnO2和高电导率质朴石墨烯三种组分以3∶2∶5的摩尔比构成的三元异质结构,其制备方法如下:  The ternary multilevel multi-dimensional structure TiO2 nanoparticle- MnO2 nanowire-pristine graphene nanosheet composite material in the present embodiment is by TiO2 , MnO2 and three kinds of components of high conductivity pristine graphene with 3:2 : The ternary heterostructure formed by the molar ratio of 5, its preparation method is as follows:

(1)将天然石墨粉体加入到N-甲基-2-吡咯烷酮(NMP)中,初始浓度为10mg mL-1,然后在70W功率下超声4小时。将得到的悬浮液在2000转/分钟的转速下离心30分钟,然后收集上清液并真空抽滤。将滤得的固体粉末加入到THF中并超声,得到黑色质朴石墨烯分散溶液。  (1) The natural graphite powder was added to N-methyl-2-pyrrolidone (NMP) with an initial concentration of 10 mg mL -1 , and then ultrasonicated at 70W for 4 hours. The resulting suspension was centrifuged at 2000 rpm for 30 minutes, then the supernatant was collected and vacuum filtered. The filtered solid powder was added into THF and ultrasonicated to obtain a black pristine graphene dispersion solution.

(2)将0.008mol MnSO4·H2O和0.008mol(NH4)2S2O8加入到50mL去离子水中并搅拌10分钟,然后将上述混合溶液转到50mL的聚四氟乙烯内衬不锈钢高压釜中,在120℃反应6小时,自然冷却至室温,将黑色固体产物用乙醇洗涤3次,并在40℃真空干燥12小时,得到MnO2纳米线。将上述干燥后的MnO2纳米线溶于THF中,得到1mg/mL的黑色MnO2溶液。  (2) Add 0.008mol MnSO 4 ·H 2 O and 0.008mol (NH 4 ) 2 S 2 O 8 into 50mL deionized water and stir for 10 minutes, then transfer the above mixed solution to 50mL Teflon liner In a stainless steel autoclave, reacted at 120 °C for 6 hours, cooled naturally to room temperature, washed the black solid product with ethanol three times, and dried in vacuum at 40 °C for 12 hours to obtain MnO2 nanowires. The above dried MnO2 nanowires were dissolved in THF to obtain a 1 mg/mL black MnO2 solution.

(3)将0.2mL钛酸四丁酯和25mL异丙醇混合并搅拌30分钟,然后逐滴加入1mL去离子水并搅拌30分钟。然后将上述混合溶液转到50mL的聚四氟乙烯内衬不锈钢高压釜中,在180℃反应6小时,自然冷却至室温,将产物用乙醇洗涤3次,并在40℃真空干燥12小时,得到TiO2纳米粒子。将上述干燥后的TiO2纳米粒子溶于THF中,得到1mg/mL的乳白色溶液。  (3) 0.2 mL of tetrabutyl titanate and 25 mL of isopropanol were mixed and stirred for 30 minutes, then 1 mL of deionized water was added dropwise and stirred for 30 minutes. Then the above mixed solution was transferred to a 50mL polytetrafluoroethylene-lined stainless steel autoclave, reacted at 180°C for 6 hours, cooled to room temperature naturally, washed the product 3 times with ethanol, and dried in vacuum at 40°C for 12 hours to obtain TiO2 nanoparticles. The above dried TiO nanoparticles were dissolved in THF to obtain a milky white solution at 1 mg/mL.

(4)将上述三种组分以TiO2∶MnO2∶PG=3∶2∶5的摩尔比混合,并搅拌10小时。在搅拌过程中,有机改性的MnO2纳米线和TiO2纳米 粒子会自发地组装在质朴石墨烯的裸露表面上,得到三元多级多维结构TiO2纳米粒子-MnO2纳米线-质朴石墨烯纳米片复合材料。  (4) The above three components were mixed in a molar ratio of TiO 2 :MnO 2 :PG=3:2:5, and stirred for 10 hours. During the stirring process, organically modified MnO2 nanowires and TiO2 nanoparticles will spontaneously assemble on the exposed surface of pristine graphene, resulting in a ternary multi-level multidimensional structure TiO2 nanoparticles- MnO2 nanowires-pristine graphite ene nanosheet composites.

本发明的三元多级多维结构TiO2纳米粒子-MnO2纳米线-质朴石墨烯纳米片复合材料,可以有效结合每一种组分的突出功能:TiO2优异的循环性能和突出的安全性,MnO2的高比容量(1233mA h g-1)和低成本和质朴石墨烯良好的导电性能,从而表现出优异的电化学综合性能。其结构特征为:TiO2纳米粒子和MnO2纳米线均匀负载并紧密结合在质朴石墨烯纳米片的裸露表面上构成多级多维结构,其中质朴石墨烯纳米片在x-y平面上为微米级二维结构,TiO2为零维纳米粒子,而MnO2为一维纳米线,这样形成的三元复合材料,不仅具有零维、一维和二维共存的多维结构,而且同时具备纳米、微米相结合的多级结构。这种三元多级多维复合结构可以充分发挥每一种组分的结构特性:(1)低维TiO2和MnO2的纳米级结构,可以缩短Li+和电子的传输路径,提高复合材料的高倍率性能;(2)微米级二维质朴石墨烯纳米片作为导电剂,可以与TiO2和MnO2形成三维立体网络,构筑快速导电的三维立体网络结构电极;(3)TiO2作为一种零结构应变材料,可以在充放电过程中提供首要的安全性;(4)质朴石墨烯纳米片作为一种基体,具有良好的柔韧性和弹性,可以缓解MnO2中Li+嵌入/脱出过程带来的结构应力,抑制复合材料的体积变化和电极的粉化;(5)质朴石墨烯表面的零维TiO2和一维MnO2作为隔离物,可以避免质朴石墨烯的重新堆叠,进一步增大层间距,有利于Li+的嵌入/脱出。  The ternary multilevel multidimensional structure TiO2 nanoparticle- MnO2 nanowires-pristine graphene nanosheet composite material of the present invention can effectively combine the outstanding functions of each component: excellent cycle performance and outstanding safety of TiO2 , the high specific capacity of MnO 2 (1233mA h g -1 ) and the low cost and good electrical conductivity of pristine graphene, thus exhibiting excellent comprehensive electrochemical performance. Its structural features are: TiO 2 nanoparticles and MnO 2 nanowires are uniformly loaded and tightly combined on the exposed surface of the pristine graphene nanosheets to form a multi-level multidimensional structure, in which the pristine graphene nanosheets are micron-scale two-dimensional on the xy plane TiO 2 is a zero-dimensional nanoparticle, and MnO 2 is a one-dimensional nanowire. The ternary composite material formed in this way not only has a multi-dimensional structure with zero-dimensional, one-dimensional and two-dimensional coexistence, but also has a combination of nanometer and micrometer. multilevel structure. This ternary multi-level multi-dimensional composite structure can give full play to the structural characteristics of each component: (1) The nanoscale structure of low-dimensional TiO 2 and MnO 2 can shorten the transport path of Li + and electrons, and improve the High rate performance; (2) Micron-scale two-dimensional pristine graphene nanosheets as a conductive agent can form a three-dimensional network with TiO 2 and MnO 2 to build a fast conductive three-dimensional network structure electrode; (3) TiO 2 as a Zero structural strain material, which can provide the primary safety during charge and discharge; (4) As a matrix, pristine graphene nanosheets have good flexibility and elasticity, which can alleviate the Li + intercalation/extraction process in MnO2 . (5) The zero-dimensional TiO 2 and one-dimensional MnO 2 on the surface of pristine graphene are used as spacers, which can avoid the re-stacking of pristine graphene and further increase the interlayer spacing, which is favorable for intercalation/extraction of Li + .

实施例6  Example 6

针对纳米TiO2低比容量和低电导率方面的缺陷,通过次相高比容量金属氧化物Fe2O3(1007mA h g-1)和高电导率质朴石墨烯组分的共掺杂,本实施例提供了一种三元多级多维结构TiO2纳米粒子-Fe2O3纳米管-质朴石墨烯纳米片复合材料,利用其突出的协同效应和独特的多级多维结构,发挥出优异的电化学综合性能。  Aiming at the defects of low specific capacity and low electrical conductivity of nano-TiO 2 , through the co-doping of secondary phase high specific capacity metal oxide Fe 2 O 3 (1007mA h g -1 ) and pristine graphene components with high electrical conductivity, this implementation The example provides a ternary multi-level multi-dimensional structure TiO 2 nanoparticle-Fe 2 O 3 nanotube-pristine graphene nanosheet composite material, using its outstanding synergistic effect and unique multi-level multi-dimensional structure, it exerts excellent electrical Comprehensive chemical properties.

本实施例中的三元多级多维结构TiO2纳米粒子-Fe2O3纳米管- 质朴石墨烯纳米片复合材料为由TiO2、Fe2O3和高电导率质朴石墨烯三种组分以4∶2∶4的摩尔比构成的三元异质结构,其制备方法如下:  The ternary multilevel multidimensional structure TiO 2 nanoparticle- Fe 2 O 3 nanotube-pristine graphene nanosheet composite material in this example is composed of three components: TiO 2 , Fe 2 O 3 and high conductivity pristine graphene. The ternary heterostructure formed with a molar ratio of 4:2:4 can be prepared as follows:

(1)将天然石墨粉体加入到N-甲基-2-吡咯烷酮(NMP)中,初始浓度为10mg mL-1,然后在70W功率下超声4小时。将得到的悬浮液在2000转/分钟的转速下离心30分钟,然后收集上清液并真空抽滤。将滤得的固体粉末加入到THF中并超声,得到黑色质朴石墨烯分散溶液。  (1) The natural graphite powder was added to N-methyl-2-pyrrolidone (NMP) with an initial concentration of 10 mg mL -1 , and then ultrasonicated at 70W for 4 hours. The resulting suspension was centrifuged at 2000 rpm for 30 minutes, then the supernatant was collected and vacuum filtered. The filtered solid powder was added into THF and ultrasonicated to obtain a black pristine graphene dispersion solution.

(2)将3.2mL浓度为0.5mol/L的FeCl3溶液、2.88mL浓度为0.02mol/L的NH4H2PO4溶液在强烈搅拌下混合,然后加入去离子水至总体积为80mL并搅拌30分钟。然后将上述混合溶液转到100mL的聚四氟乙烯内衬不锈钢高压釜中,在220℃反应16小时,自然冷却至室温,将固体产物用乙醇和去离子水各洗涤3次,并在80℃真空干燥6小时,得到Fe2O3纳米管。将上述干燥后的Fe2O3纳米管溶于THF中,得到1mg/mL的Fe2O3溶液。  (2) Mix 3.2 mL of 0.5 mol/L FeCl 3 solution and 2.88 mL of 0.02 mol/L NH 4 H 2 PO 4 solution under vigorous stirring, then add deionized water to a total volume of 80 mL and Stir for 30 minutes. Then the above mixed solution was transferred to a 100mL polytetrafluoroethylene-lined stainless steel autoclave, reacted at 220°C for 16 hours, cooled to room temperature naturally, washed the solid product three times with ethanol and deionized water, and heated at 80°C Vacuum dried for 6 hours to obtain Fe 2 O 3 nanotubes. The above dried Fe 2 O 3 nanotubes were dissolved in THF to obtain a 1 mg/mL Fe 2 O 3 solution.

(3)将0.2mL钛酸四丁酯和25mL异丙醇混合并搅拌30分钟,然后逐滴加入1mL去离子水并搅拌30分钟。然后将上述混合溶液转到50mL的聚四氟乙烯内衬不锈钢高压釜中,在180℃反应6小时,自然冷却至室温,将产物用乙醇洗涤3次,并在40℃真空干燥12小时,得到TiO2纳米粒子。将上述干燥后的TiO2纳米粒子溶于THF中,得到1mg/mL的乳白色溶液。  (3) 0.2 mL of tetrabutyl titanate and 25 mL of isopropanol were mixed and stirred for 30 minutes, then 1 mL of deionized water was added dropwise and stirred for 30 minutes. Then the above mixed solution was transferred to a 50mL polytetrafluoroethylene-lined stainless steel autoclave, reacted at 180°C for 6 hours, cooled to room temperature naturally, washed the product 3 times with ethanol, and dried in vacuum at 40°C for 12 hours to obtain TiO2 nanoparticles. The above dried TiO nanoparticles were dissolved in THF to obtain a milky white solution at 1 mg/mL.

(4)将上述三种组分以TiO2∶Fe2O3∶PG=4∶2∶4的摩尔比混合,并搅拌10小时。在搅拌过程中,有机改性的Fe2O3纳米管和TiO2纳米粒子会自发地组装在质朴石墨烯的裸露表面上,得到三元多级多维结构TiO2纳米粒子-Fe2O3纳米管-质朴石墨烯纳米片复合材料。  (4) The above three components were mixed at a molar ratio of TiO 2 :Fe 2 O 3 :PG=4:2:4, and stirred for 10 hours. During the stirring process, the organically modified Fe 2 O 3 nanotubes and TiO 2 nanoparticles will spontaneously assemble on the exposed surface of pristine graphene, resulting in a ternary multi-level multidimensional structure of TiO 2 nanoparticles-Fe 2 O 3 nano Tube-pristine graphene nanosheet composites.

本实施例的三元多级多维结构TiO2纳米粒子-Fe2O3纳米管-质朴石墨烯纳米片复合材料,可以有效结合每一种组分的突出功能:TiO2优异的循环性能和突出的安全性,Fe2O3的高比容量(1007mA h g-1)和低成本和质朴石墨烯良好的导电性能,从而表现出优异的电化学综合性能。其结构特征为:TiO2纳米粒子和Fe2O3纳米管均匀负 载并紧密结合在质朴石墨烯纳米片的裸露表面上所构成的多级多维结构,其中质朴石墨烯纳米片在x-y平面上为微米级二维结构,TiO2为零维纳米粒子,而Fe2O3为一维纳米管,这样形成的三元复合材料,不仅具有零维、一维和二维共存的多维结构,而且同时具备纳米、微米相结合的多级结构。这种三元多级多维复合结构可以充分发挥每一种组分的结构特性:(1)低维TiO2和Fe2O3的纳米级结构,可以缩短Li+和电子的传输路径,提高复合材料的高倍率性能;(2)微米级二维质朴石墨烯纳米片作为导电剂,可以与TiO2和Fe2O3形成三维立体网络,构筑快速导电的三维立体网络结构电极;(3)TiO2作为一种零结构应变材料,可以在充放电过程中提供首要的安全性;(4)质朴石墨烯纳米片作为一种基体,具有良好的柔韧性和弹性,可以缓解Fe2O3中Li+嵌入/脱出过程带来的结构应力,抑制复合材料的体积变化和电极的粉化;(5)质朴石墨烯表面的零维TiO2和一维Fe2O3作为隔离物,可以避免质朴石墨烯的重新堆叠,进一步增大层间距,有利于Li+的嵌入/脱出。  The ternary multilevel multidimensional structure TiO 2 nanoparticles- Fe 2 O 3 nanotubes-pristine graphene nanosheet composite material in this example can effectively combine the outstanding functions of each component: TiO 2 excellent cycle performance and outstanding Safety, high specific capacity of Fe 2 O 3 (1007mA h g -1 ) and low cost and good electrical conductivity of pristine graphene, thus showing excellent comprehensive electrochemical performance. Its structural features are: TiO 2 nanoparticles and Fe 2 O 3 nanotubes are uniformly loaded and tightly combined on the exposed surface of the pristine graphene nanosheets to form a multi-level multidimensional structure, in which the pristine graphene nanosheets on the xy plane are Micron-scale two-dimensional structure, TiO 2 is zero-dimensional nanoparticles, and Fe 2 O 3 is one-dimensional nanotubes. The ternary composite material formed in this way not only has a multi-dimensional structure with zero-dimensional, one-dimensional and two-dimensional coexistence, but also has A multilevel structure combining nanometers and micrometers. This ternary multi-level multi-dimensional composite structure can give full play to the structural characteristics of each component: (1) The nanoscale structure of low-dimensional TiO 2 and Fe 2 O 3 can shorten the transmission path of Li + and electrons, and improve the composite structure. High rate performance of the material; (2) Micron-sized two-dimensional pristine graphene nanosheets as a conductive agent can form a three-dimensional network with TiO 2 and Fe 2 O 3 to build a fast conductive three-dimensional network structure electrode; (3) TiO 2 As a zero-structural strain material, it can provide the primary safety during charge and discharge; (4) As a matrix, pristine graphene nanosheets have good flexibility and elasticity, which can relieve Li in Fe 2 O 3 + The structural stress brought by the intercalation/extraction process can inhibit the volume change of the composite material and the pulverization of the electrode; (5) the zero-dimensional TiO 2 and one-dimensional Fe 2 O 3 on the surface of pristine graphene can be used as spacers to avoid pristine graphite The re-stacking of alkenes further increases the interlayer spacing, which is beneficial to the intercalation/extraction of Li + .

将上述实施例中所述的三元多级多维结构TiO2-高比容量金属氧化物-质朴石墨烯复合材料组装成纽扣电池,纽扣电池中材料比例为复合材料∶乙炔黑∶PVDF=70∶20∶10,采用Clgard2300型隔膜,对电极为金属埋片,电解液由LiPF6、碳酸乙烯脂和碳酸二乙脂组成(电解液中LiPF6浓度为1mol/L,碳酸乙烯脂与碳酸二乙脂的体积比为1∶1),在充满氢气的手套箱中装配成2025型扣式电池,充放电电压范围为2.5~1.0V。  The ternary multilevel multidimensional structure TiO2 -high specific capacity metal oxide-pristine graphene composite material described in the above examples is assembled into a button battery, and the material ratio in the button battery is composite material: acetylene black: PVDF=70: 20:10, using Clgard2300 diaphragm, the counter electrode is a metal embedded sheet, the electrolyte is composed of LiPF 6 , ethylene carbonate and diethyl carbonate (the concentration of LiPF 6 in the electrolyte is 1mol/L, ethylene carbonate and diethyl carbonate The volume ratio of fat is 1:1), and assembled into a 2025-type button battery in a glove box filled with hydrogen, and the charging and discharging voltage range is 2.5-1.0V.

图1为TiO2-Fe3O4-PG复合材料的X射线衍射图,结果表明该复合材料为TiO2、Fe3O4和PG的复合物,没有其他杂相存在;图2为TiO2-Fe3O4-PG复合材料的透射电镜图,可以看出较大的TiO2纳米棒和较小的Fe3O4纳米粒子均匀负载在平面尺寸在微米级的质朴石墨烯纳米片上;图3为TiO2-Fe3O4-PG复合材料的高分辨透射电镜图,结果表明TiO2(101)、Fe3O4(311)、PG(002)的晶面间距分别为0350~0.354nm、0.255nm、0.35nm,与文献相吻合;图4为TiO2-Fe3O4 -PG复合材料在0.5A g-1电流密度下的循环性能曲线图,可以看出该电极在相当于1C的倍率下表现出了良好的电化学性能,100次循环后放电比容量仍高于500mAh g-1。  Figure 1 is the X-ray diffraction pattern of the TiO 2 -Fe 3 O 4 -PG composite material, and the results show that the composite material is a composite of TiO 2 , Fe 3 O 4 and PG without other impurity phases; Figure 2 is the TiO 2 - The transmission electron microscope image of the Fe 3 O 4 -PG composite material, it can be seen that the larger TiO 2 nanorods and smaller Fe 3 O 4 nanoparticles are uniformly loaded on the pristine graphene nanosheets with a planar size of micron; 3 is the high-resolution transmission electron microscope image of the TiO 2 -Fe 3 O 4 -PG composite material, and the results show that the interplanar spacings of TiO 2 (101), Fe 3 O 4 (311), and PG (002) are 0350-0.354nm, respectively , 0.255nm, 0.35nm, consistent with the literature; Figure 4 is the cycle performance curve of the TiO 2 -Fe 3 O 4 -PG composite material at a current density of 0.5A g -1 , it can be seen that the electrode is equivalent to 1C It shows good electrochemical performance at a high rate, and the discharge specific capacity is still higher than 500mAh g -1 after 100 cycles.

Claims (8)

1.一种三元多级多维结构TiO2—高比容量金属氧化物—质朴石墨烯复合材料,其特征在于所述复合材料为由TiO2、次相高比容量金属氧化物和高电导率质朴石墨烯构成的三元异质结构,其中TiO2、高比容量金属氧化物和质朴石墨烯的摩尔比为2~5:1~4:3~5。1. A ternary multilevel multidimensional structure TiO 2 —high specific capacity metal oxide —pristine graphene composite material, characterized in that said composite material is made of TiO 2 , secondary phase high specific capacity metal oxide and high electrical conductivity A ternary heterostructure composed of pristine graphene, wherein the molar ratio of TiO 2 , high specific capacity metal oxide and pristine graphene is 2-5:1-4:3-5. 2.根据权利要求1所述的三元多级多维结构TiO2—高比容量金属氧化物—质朴石墨烯复合材料,其特征在于所述三元异质结构为纳米结构的TiO2和高比容量金属氧化物均匀负载并紧密结合在质朴石墨烯纳米片的裸露表面上构成多级多维结构。2. ternary multilevel multidimensional structure TiO2 -high specific capacity metal oxide-pristine graphene composite material according to claim 1, is characterized in that described ternary heterostructure is nanostructured TiO2 and high specific capacity Capacitive metal oxides are uniformly loaded and tightly combined on the exposed surface of pristine graphene nanosheets to form a multi-level and multi-dimensional structure. 3.根据权利要求2所述的三元多级多维结构TiO2—高比容量金属氧化物—质朴石墨烯复合材料,其特征在于所述质朴石墨烯纳米片在x-y平面上为微米级二维结构,TiO2为零维纳米粒子,高比容量金属氧化物为一维纳米结构。3. The ternary multilevel multidimensional structure TiO2 -high specific capacity metal oxide-pristine graphene composite material according to claim 2, characterized in that the pristine graphene nanosheets are micron-scale two-dimensional on the xy plane Structure, TiO 2 is a zero-dimensional nanoparticle, and the high specific capacity metal oxide is a one-dimensional nanostructure. 4.根据权利要求2所述的三元多级多维结构TiO2—高比容量金属氧化物—质朴石墨烯复合材料,其特征在于所述质朴石墨烯纳米片在x-y平面上为微米级二维结构,TiO2为一维纳米结构,高比容量金属氧化物为零维纳米粒子。4. The ternary multilevel multidimensional structure TiO2 -high specific capacity metal oxide-pristine graphene composite material according to claim 2, characterized in that the pristine graphene nanosheets are micron-scale two-dimensional on the xy plane Structure, TiO 2 is a one-dimensional nanostructure, and the high specific capacity metal oxide is a zero-dimensional nanoparticle. 5.根据权利要求1所述的三元多级多维结构TiO2—高比容量金属氧化物—质朴石墨烯复合材料,其特征在于所述TiO2、高比容量金属氧化物和质朴石墨烯的摩尔比为3:3:4、4:2:4、4:3:3、3:4:3、5:2:3、4:1:5、3:2:5或2:3:5。5. ternary multilevel multidimensional structure TiO according to claim 1 2 -high specific capacity metal oxide-pristine graphene composite material, is characterized in that described TiO 2 , high specific capacity metal oxide and simple graphene The molar ratio is 3:3:4, 4:2:4, 4:3:3, 3:4:3, 5:2:3, 4:1:5, 3:2:5 or 2:3:5 . 6.根据权利要求1、2、3、4或5所述的三元多级多维结构TiO2—高比容量金属氧化物—质朴石墨烯复合材料,其特征在于所述高比容量金属氧化物为Fe2O3、Fe3O4、SnO2、Co3O4或MnO26. according to claim 1, 2, 3, 4 or 5 described ternary multi-level multi-dimensional structure TiO 2 - high specific capacity metal oxide - pristine graphene composite material, it is characterized in that described high specific capacity metal oxide It is Fe 2 O 3 , Fe 3 O 4 , SnO 2 , Co 3 O 4 or MnO 2 . 7.根据权利要求3或4所述的三元多级多维结构TiO2—高比容量金属氧化物—质朴石墨烯复合材料,其特征在于所述一维纳米结构为纳米棒、纳米线、纳米管、纳米针或纳米带。7. according to claim 3 or 4 described ternary multi-level multi-dimensional structure TiO 2 -high specific capacity metal oxide-pristine graphene composite material, it is characterized in that described one-dimensional nanostructure is nanorod, nanowire, nanometer tubes, nanoneedles or nanobelts. 8.一种权利要求1-7任一权利要求所述的三元多级多维结构TiO2—高比容量金属氧化物—质朴石墨烯复合材料的制备方法,其特征在于所述制备方法步骤如下:8. A preparation method of the ternary multi-level multi-dimensional structure TiO2 -high specific capacity metal oxide-pristine graphene composite material according to any one of claims 1-7, characterized in that the steps of the preparation method are as follows : (1)将质朴石墨烯加入到四氢呋喃中,得到黑色质朴石墨烯分散溶液;(1) join simple graphene in tetrahydrofuran, obtain black simple graphene dispersion solution; (2)将TiO2加入到四氢呋喃中,得到乳白色溶液;(2) TiO2 is added in tetrahydrofuran to obtain milky white solution; (3)将高比容量金属氧化物加入到四氢呋喃中,得到金属氧化物溶液;(3) Adding high specific capacity metal oxides into tetrahydrofuran to obtain a metal oxide solution; (4)将上述三种溶液混合,并搅拌6~12小时,组装成三元多级多维结构TiO2纳米粒子—高比容量金属氧化物—质朴石墨烯纳米片复合材料。(4) The above three solutions are mixed and stirred for 6-12 hours, and assembled into a ternary multi-level multi-dimensional structure TiO 2 nanoparticle-high specific capacity metal oxide-pristine graphene nanosheet composite material.
CN201410525275.7A 2014-10-08 2014-10-08 Ternary multistage multidimensional structure composite and preparation method thereof Active CN104319377B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410525275.7A CN104319377B (en) 2014-10-08 2014-10-08 Ternary multistage multidimensional structure composite and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410525275.7A CN104319377B (en) 2014-10-08 2014-10-08 Ternary multistage multidimensional structure composite and preparation method thereof

Publications (2)

Publication Number Publication Date
CN104319377A true CN104319377A (en) 2015-01-28
CN104319377B CN104319377B (en) 2016-08-24

Family

ID=52374582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410525275.7A Active CN104319377B (en) 2014-10-08 2014-10-08 Ternary multistage multidimensional structure composite and preparation method thereof

Country Status (1)

Country Link
CN (1) CN104319377B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762354A (en) * 2016-05-17 2016-07-13 安徽师范大学 Flower-like ferric oxide nanometer material, preparation method thereof, lithium ion battery negative pole and lithium ion battery
CN106531989A (en) * 2016-11-01 2017-03-22 武汉理工大学 Ferroferric oxide@titanium dioxide nanorod array electrode on titanium substrate and preparation method of ferroferric oxide@titanium dioxide nanorod array electrode
CN108091868A (en) * 2017-12-29 2018-05-29 东南大学 A kind of multidimensional composite high-performance lithium ion battery negative material and preparation method thereof
CN109950527A (en) * 2019-04-01 2019-06-28 西京学院 Preparation and application of a TiO2-coated Co3O4 nanosphere composite
CN110046447A (en) * 2019-04-23 2019-07-23 电子科技大学 A method of forming graphene nanobelt hetero-junctions
CN111584844A (en) * 2020-05-20 2020-08-25 佛山科学技术学院 Titanium dioxide nano composite electrode material and preparation method thereof
CN112964758A (en) * 2021-01-29 2021-06-15 浙江大学 Manganese dioxide nanosheet/titanium dioxide nanowire array composite resistance type sensor and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569768A (en) * 2011-08-19 2012-07-11 吴杭春 High-specific-area carbon/metallic oxide composite electrode material of lithium battery, electrode and preparation methods for high-specific-area carbon/metallic oxide composite electrode material and electrode
CN103949234A (en) * 2014-04-23 2014-07-30 上海荣富新型材料有限公司 Preparation method of boron-doped graphene/TiO2 nanorod photocatalytic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569768A (en) * 2011-08-19 2012-07-11 吴杭春 High-specific-area carbon/metallic oxide composite electrode material of lithium battery, electrode and preparation methods for high-specific-area carbon/metallic oxide composite electrode material and electrode
CN103949234A (en) * 2014-04-23 2014-07-30 上海荣富新型材料有限公司 Preparation method of boron-doped graphene/TiO2 nanorod photocatalytic material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANPING TANG等: "Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets", 《ENERGY ENVIRON. SCI.》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762354A (en) * 2016-05-17 2016-07-13 安徽师范大学 Flower-like ferric oxide nanometer material, preparation method thereof, lithium ion battery negative pole and lithium ion battery
CN105762354B (en) * 2016-05-17 2018-04-13 安徽师范大学 A kind of flower-shaped ferric oxide nano-material and preparation method thereof, negative electrode of lithium ion battery and lithium ion battery
CN106531989A (en) * 2016-11-01 2017-03-22 武汉理工大学 Ferroferric oxide@titanium dioxide nanorod array electrode on titanium substrate and preparation method of ferroferric oxide@titanium dioxide nanorod array electrode
CN106531989B (en) * 2016-11-01 2019-05-24 武汉理工大学 Ferroso-ferric oxide@titanic oxide nanorod array electrode and preparation method thereof in titanium substrate
CN108091868A (en) * 2017-12-29 2018-05-29 东南大学 A kind of multidimensional composite high-performance lithium ion battery negative material and preparation method thereof
CN108091868B (en) * 2017-12-29 2020-05-08 东南大学 A kind of multi-dimensional composite high-performance lithium ion battery negative electrode material and preparation method thereof
CN109950527A (en) * 2019-04-01 2019-06-28 西京学院 Preparation and application of a TiO2-coated Co3O4 nanosphere composite
CN110046447A (en) * 2019-04-23 2019-07-23 电子科技大学 A method of forming graphene nanobelt hetero-junctions
CN110046447B (en) * 2019-04-23 2022-05-17 电子科技大学 Method for forming graphene nanoribbon heterojunction
CN111584844A (en) * 2020-05-20 2020-08-25 佛山科学技术学院 Titanium dioxide nano composite electrode material and preparation method thereof
CN112964758A (en) * 2021-01-29 2021-06-15 浙江大学 Manganese dioxide nanosheet/titanium dioxide nanowire array composite resistance type sensor and preparation method and application thereof

Also Published As

Publication number Publication date
CN104319377B (en) 2016-08-24

Similar Documents

Publication Publication Date Title
CN104319377A (en) Ternary multilevel multi-dimensional structure composite material and preparation method thereof
Xu et al. Synthesis of heterostructure SnO2/graphitic carbon nitride composite for high-performance electrochemical supercapacitor
Chai et al. In-situ growth of NiAl layered double hydroxides on Ni-based metal-organic framework derived hierarchical carbon as high performance material for Zn-ion batteries
CN103594693B (en) A kind of titanium dioxide/niobium titanium oxide composite material and its preparation and application
CN103950992B (en) The method of the transition metal oxide nano-slice of graphenic surface growing upright
CN107946084A (en) A kind of metal oxide/three-dimensional porous graphene composite material and its preparation method and application
CN103137950B (en) A kind of height ratio capacity lithium ion battery cathode material and its preparation method
CN104966824A (en) A kind of nitrogen-doped porous carbon sphere-cobalt oxide nanocomposite negative electrode material based on chitosan and its derivatives and its preparation method
Ahmad et al. Graphene oxide selenium nanorod composite as a stable electrode material for energy storage devices
CN102185147B (en) Nano iron phosphate hollow sphere/graphene composite material and preparation method thereof
CN105702958B (en) Preparation method and application of tin dioxide quantum dot solution and composite material thereof
CN106058181A (en) Preparation method of graphene-supported carbon-coated silicone nanoparticle composite electrode material
CN102324502A (en) A kind of preparation method of flower-shaped tin dioxide and graphene composite material
CN104795545A (en) Composite electrode material of molybdenum dioxide quantum dot embedded mesoporous carbon nanosheets, as well as preparation method and application of composite electrode material
Yang et al. Graphene-encapsulated SnO2 hollow spheres as high-performance anode materials for lithium ion batteries
CN114203982B (en) Preparation method of vanadium-based Prussian blue analogue/carbon nanotube composite material and application of vanadium-based Prussian blue analogue/carbon nanotube composite material to water-based zinc ion battery anode
CN108658119A (en) Method for preparing copper sulfide nanosheet and compound thereof by low-temperature vulcanization technology and application
CN104091922B (en) Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage sodium combination electrode and preparation method
CN105185964A (en) A Si/TiO2 composite material with multi-sphere stacked structure and its preparation method
CN108550824A (en) A kind of high-capacity battery cathode material preparation method
CN110759379B (en) A kind of preparation method and application of 0D/2D heterostructure composite negative electrode material
CN105576213B (en) A kind of multidimensional hetero nano structure lithium electricity positive electrode and preparation method thereof
CN113054170B (en) Preparation method of nickel-nickel molybdenum oxide-graphene composite material and its application in lithium ion battery
Ma et al. Three-dimensionally macroporous graphene-supported Fe 3 O 4 composite as anode material for Li-ion batteries with long cycling life and ultrahigh rate capability
CN108963237A (en) A kind of preparation method of anode material of lithium-ion battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant