CN104318007A - Modal-analysis-based ultrasonic cutting tool design method - Google Patents
Modal-analysis-based ultrasonic cutting tool design method Download PDFInfo
- Publication number
- CN104318007A CN104318007A CN201410557508.1A CN201410557508A CN104318007A CN 104318007 A CN104318007 A CN 104318007A CN 201410557508 A CN201410557508 A CN 201410557508A CN 104318007 A CN104318007 A CN 104318007A
- Authority
- CN
- China
- Prior art keywords
- tool
- ultrasonic
- modal analysis
- variable
- ultrasonic vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 35
- 238000004458 analytical method Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000002068 genetic effect Effects 0.000 claims abstract description 14
- 238000004364 calculation method Methods 0.000 claims abstract description 5
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 238000005457 optimization Methods 0.000 abstract description 12
- 238000003754 machining Methods 0.000 abstract description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
本发明公开了一种基于模态分析的超声切削刀具设计方法,用于解决现有超声切削刀具使用安全性差的技术问题。技术方案是首先确定系统的共振频率,然后确定刀具在设计时可以更改的尺寸变量,采用遗传算法优化,以经过模态分析得出的振幅最大为目标,得出刀具尺寸最优的结果。由于采用改变刀具可变参数的方法,以匹配超声振动切削系统的工作频率,使得超声加工过程中能获得最大的振幅。同时,在加工过程中,每次换刀所选择的刀具都是经过数值优化计算得到的最优刀具,不需要每次都重新定位测量选择刀具顶端的位置,因此可以在加工中心中使用自动换刀,提高了加工效率,保证加工的安全性,适用工厂大规模推广使用。
The invention discloses a method for designing an ultrasonic cutting tool based on modal analysis, which is used to solve the technical problem of poor safety in use of the existing ultrasonic cutting tool. The technical solution is to first determine the resonant frequency of the system, and then determine the dimensional variables that can be changed during the design of the tool, and use genetic algorithm optimization, aiming at the maximum amplitude obtained through modal analysis, to obtain the optimal result of the tool size. Due to the method of changing the variable parameters of the tool to match the working frequency of the ultrasonic vibration cutting system, the maximum amplitude can be obtained during ultrasonic machining. At the same time, during the machining process, the tool selected for each tool change is the optimal tool obtained through numerical optimization calculation, and there is no need to reposition and measure the position of the top of the selected tool every time, so automatic change can be used in the machining center The knife improves the processing efficiency and ensures the safety of processing, and is suitable for large-scale promotion and use in factories.
Description
技术领域technical field
本发明涉及一种超声切削刀具设计方法,特别是涉及一种基于模态分析的超声切削刀具设计方法。The invention relates to a design method of an ultrasonic cutting tool, in particular to a design method of an ultrasonic cutting tool based on modal analysis.
背景技术Background technique
文献“超声振动切削刀具设计,机械设计与制造,2012,Vol02,p242-244”公开了一种超声切削刀具设计方法。该方法以扩大刀具顶端振幅为目的,首先分析切削系统的运动状态,计算出振动波长,再确定出变幅杆的尺寸,定位刀具端点处于整个波长的四分之一波长处,以达到最大振幅。按照波动合成原理,当系统处于共振状态时,只有在逐波节点平面内,从单方向的入射波和反方向的反射波引起的质点位移大小相等方向相反,合成位移始终为零。因此,变幅赶的固定点选择在逐波节点处,由逐波节点向两端延伸振幅逐渐增大,到达刀具顶端再次出现振幅最大的波腹点,达到扩大振幅的目的。为了使每次加工时刀具都能达到最大振幅,作者设计出定位刀架,调节刀具在弹簧夹头固定的尺寸,以满足每次加工时刀具顶端都处于波长的最大振幅处,较好地解决了在超声振动切削中,设计刀具达到最大振幅的目的。该文献所述方法的实际应用性不强,每次换刀都需要重新定位测量刀具的位置,降低了加工效率;同时,如果有些刀具长度尺寸较短,而所需定位长度较长,可能会使得刀具夹紧不牢靠,在振动切削中容易使刀具脱落,发生事故。在工艺设计中,弹簧夹头夹紧刀具的长度至少应该达到整个刀具长度的三分之一以上。The document "Design of Ultrasonic Vibration Cutting Tool, Mechanical Design and Manufacturing, 2012, Vol02, p242-244" discloses a design method of ultrasonic cutting tool. The purpose of this method is to expand the amplitude of the tool tip. First, analyze the motion state of the cutting system, calculate the vibration wavelength, and then determine the size of the horn, and position the end point of the tool at a quarter of the entire wavelength to achieve the maximum amplitude. . According to the principle of wave synthesis, when the system is in the resonance state, only in the wave-by-wave node plane, the particle displacement caused by the incident wave in one direction and the reflected wave in the opposite direction is equal in size and opposite in direction, and the composite displacement is always zero. Therefore, the fixed point of the variable amplitude catch is selected at the wave-by-wave node, and the amplitude gradually increases from the wave-by-wave node to both ends, and the antinode point with the largest amplitude appears again at the top of the tool to achieve the purpose of expanding the amplitude. In order to make the tool reach the maximum amplitude during each processing, the author designed a positioning tool holder and adjusted the fixed size of the tool on the spring chuck so that the tip of the tool is at the maximum amplitude of the wavelength during each processing, which is a better solution. In order to achieve the purpose of designing the tool to achieve the maximum amplitude in ultrasonic vibration cutting. The practical applicability of the method described in this document is not strong, and the position of the measuring tool needs to be repositioned every time the tool is changed, which reduces the processing efficiency; at the same time, if some tools are short in length and the required positioning length is long, it may be difficult The clamping of the tool is not reliable, and the tool is easy to fall off during vibration cutting, resulting in accidents. In process design, the length of the tool clamped by the spring chuck should be at least one-third of the entire tool length.
发明内容Contents of the invention
为了克服现有超声切削刀具使用安全性差的不足,本发明提供一种基于模态分析的超声切削刀具设计方法。该方法首先确定系统的共振频率,然后确定刀具在设计时可以更改的尺寸变量,采用遗传算法优化,以经过模态分析得出的振幅最大为目标,得出刀具尺寸最优的结果,即可选择该尺寸的刀具作为本次加工所使用的刀具,使由刀具和超声刀柄构成的超声振动切削系统能够在共振状态下工作,从而提高超声振动切削的性能和效果,只需要换刀,无需每次加工时重新定位测量,提高了加工效率和加工时的安全系数。In order to overcome the disadvantages of poor safety in use of existing ultrasonic cutting tools, the present invention provides a design method for ultrasonic cutting tools based on modal analysis. This method firstly determines the resonant frequency of the system, and then determines the dimensional variables that can be changed during the design of the tool, and uses genetic algorithm optimization, aiming at the maximum vibration amplitude obtained through modal analysis, to obtain the optimal result of the tool size, that is, The tool of this size is selected as the tool used in this processing, so that the ultrasonic vibration cutting system composed of the tool and the ultrasonic tool holder can work in a resonance state, thereby improving the performance and effect of ultrasonic vibration cutting, only need to change the tool, no need to The measurement is repositioned each time during processing, which improves the processing efficiency and the safety factor during processing.
本发明解决其技术问题所采用的技术方案是:一种基于模态分析的超声切削刀具设计方法,其特点是采用以下步骤:The technical solution adopted by the present invention to solve the technical problem is: a method for designing an ultrasonic cutting tool based on modal analysis, which is characterized in that the following steps are adopted:
步骤一、根据超声振动切削系统的特性,在加工前进行模态分析,确定系统工作频率f0。Step 1. According to the characteristics of the ultrasonic vibration cutting system, a modal analysis is performed before machining to determine the operating frequency f 0 of the system.
步骤二、根据刀具类型和结构,在保证加工要求的前提下,确定待优化的刀具参数变量,设定初始参数值。如果加工的是切除材料,设定可变参数为三个边长和切刀的厚度;如果加工的是孔,钻头直径保持不变,设定可变参数有钻头的长度、螺旋槽的长度和刀柄的直径。Step 2. According to the type and structure of the tool, on the premise of ensuring the processing requirements, determine the parameter variable of the tool to be optimized, and set the initial parameter value. If the processing is to remove material, set the variable parameters as the length of the three sides and the thickness of the cutter; if the processing is a hole, the diameter of the drill bit remains unchanged, set the variable parameters to include the length of the drill bit, the length of the spiral groove and The diameter of the handle.
步骤三、采用遗传算法对步骤二中的可变参数进行优化运算,优化后的刀具可变参数结果供步骤四使用。Step 3, using the genetic algorithm to optimize the variable parameters in the step 2, and the optimized tool variable parameter results are used in the step 4.
步骤四、根据步骤三得出优化后的刀具可变参数,对超声振动切削系统进行模态分析,即获得所需振型的第一固有频率f和振幅,并验证目标变量a的符合程度:Step 4. According to Step 3, the optimized variable parameters of the tool are obtained, and the modal analysis is carried out on the ultrasonic vibration cutting system, that is, the first natural frequency f and amplitude of the required mode shape are obtained, and the degree of conformity of the target variable a is verified:
式中,a表示第一固有频率和超声振动切削系统的工作频率之间的差;b表示刀具尖端位移放大倍数的最大值;M表示刀具尖端位移的放大倍数。In the formula, a represents the difference between the first natural frequency and the working frequency of the ultrasonic vibration cutting system; b represents the maximum value of the magnification of the tool tip displacement; M represents the magnification of the tool tip displacement.
步骤五、经过步骤三和步骤四的反复运算操作,得出最符合设计要求的结果,输出优化后的刀具参数。Step 5. After repeated calculation operations in steps 3 and 4, the result that best meets the design requirements is obtained, and the optimized tool parameters are output.
本发明的有益效果是:该方法首先确定系统的共振频率,然后确定刀具在设计时可以更改的尺寸变量,采用遗传算法优化,以经过模态分析得出的振幅最大为目标,得出刀具尺寸最优的结果,即可选择该尺寸的刀具作为本次加工所使用的刀具,使由刀具和超声刀柄构成的超声振动切削系统能够在共振状态下工作,从而提高超声振动切削的性能和效果。由于采用改变刀具可变参数的方法,以匹配超声振动切削系统的工作频率,使得超声加工过程中能获得最大的振幅。同时,在加工过程中,每次换刀所选择的刀具都是经过数值优化计算得到的最优刀具,不需要每次都重新定位测量选择刀具顶端的位置,因此可以在加工中心中使用自动换刀,提高了加工效率,保证加工的安全性,适用工厂大规模推广使用。The beneficial effects of the present invention are: the method firstly determines the resonance frequency of the system, and then determines the size variables that can be changed during the design of the tool, uses genetic algorithm optimization, and takes the maximum amplitude obtained through modal analysis as the goal to obtain the size of the tool For the best result, the tool of this size can be selected as the tool used in this processing, so that the ultrasonic vibration cutting system composed of the tool and the ultrasonic tool holder can work in a resonance state, thereby improving the performance and effect of ultrasonic vibration cutting . Due to the method of changing the variable parameters of the tool to match the working frequency of the ultrasonic vibration cutting system, the maximum amplitude can be obtained during ultrasonic machining. At the same time, during the machining process, the tool selected for each tool change is the optimal tool obtained through numerical optimization calculation, and there is no need to reposition and measure the position of the top of the selected tool every time, so automatic change can be used in the machining center The knife improves the processing efficiency and ensures the safety of processing, and is suitable for large-scale promotion and use in factories.
下面结合附图和具体实施方式对本发明作详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
附图说明Description of drawings
图1是采用本发明方法设计的超声切削刀具示意图。Fig. 1 is a schematic diagram of an ultrasonic cutting tool designed by the method of the present invention.
图2是图1的俯视图。FIG. 2 is a top view of FIG. 1 .
具体实施方式Detailed ways
参照图1-2。本发明基于模态分析的超声切削刀具设计方法具体步骤如下:Refer to Figure 1-2. The specific steps of the ultrasonic cutting tool design method based on modal analysis of the present invention are as follows:
一.确定系统工作频率。1. Determine the operating frequency of the system.
根据切削加工要求,确定系统工作频率f0,即期望的超声振动切削系统的固有频率。一般情况下将超声振动切削系统中换能器和变幅杆作为一个整体,使用模态分析软件求得其固有频率f0,也可以使用加速度传感器测量其振动数据,得出固有频率f0。当施加的超声电源的激励频率与超声振动切削系统的固有频率一致时,系统共振,从而使得刀具顶端的振幅达到最大,提高加工效果。According to the cutting processing requirements, determine the system operating frequency f 0 , which is the expected natural frequency of the ultrasonic vibration cutting system. Generally, the transducer and the horn in the ultrasonic vibration cutting system are taken as a whole, and the natural frequency f 0 is obtained by using modal analysis software, and the natural frequency f 0 can also be obtained by measuring the vibration data with an acceleration sensor. When the excitation frequency of the applied ultrasonic power supply is consistent with the natural frequency of the ultrasonic vibration cutting system, the system resonates, so that the amplitude of the tool tip reaches the maximum and the processing effect is improved.
二.基于遗传算法的刀具结构和尺寸参数优化。2. Optimization of tool structure and size parameters based on genetic algorithm.
本发明采用基于精英策略的非支配排序遗传算法进行刀具结构和尺寸参数优化。具体过程如下。The invention adopts the non-dominated sorting genetic algorithm based on the elite strategy to optimize the tool structure and size parameters. The specific process is as follows.
1)确定刀具优化遗传算法的编码。1) Determine the coding of the tool optimization genetic algorithm.
①根据刀具的类型和结构,确定参数变量。以附图1所示超声切刀为例,设定切刀尺寸参数变量,分别为AB=l1,BC=l2,AD=l3,厚度设为h。① According to the type and structure of the tool, determine the parameter variable. Taking the ultrasonic cutter shown in Figure 1 as an example, set the parameter variables of cutter size as AB=l 1 , BC=l 2 , AD=l 3 , and set the thickness as h.
②给定参数的取值范围。通常,根据零件加工要求,确定刀具参数初始设计值,然后以所设计的刀具参数设计值为中值,确定每个参数的具体取值范围。例如,取l1∈{5±ΔL1},l2∈{25±ΔL2},l3∈{12±ΔL3},h∈{12±Δh}(单位:毫米)。②The value range of the given parameter. Usually, according to the processing requirements of the part, the initial design value of the tool parameter is determined, and then the specific value range of each parameter is determined based on the designed value of the tool parameter design value. For example, l 1 ∈{5±ΔL 1 }, l 2 ∈{25±ΔL 2 }, l 3 ∈{12±ΔL 3 }, h∈{12±ΔL } (unit: mm).
③确定编码策略。以二进制编码为基础,每个变量可以取16个值,因此每个变量为四位二进制编码。如变量l2的四位二进制编码为0000-1111,在[25-ΔL2,25+ΔL2]之间取16个值。③ Determine the coding strategy. Based on binary coding, each variable can take 16 values, so each variable is a four-bit binary code. For example, the four-bit binary code of the variable l 2 is 0000-1111, and there are 16 values between [25-ΔL 2 , 25+ΔL 2 ].
2)确定刀具优化遗传算法的适应度函数。2) Determine the fitness function of the tool optimization genetic algorithm.
以优化目标作为适应度函数,Fn=min|f-f0|。f0为期望的系统工作频率,f为刀具尺寸改变后的超声振动切削系统(超声刀柄和刀具)的实际固有频率,通过模态分析得到。Taking the optimization objective as the fitness function, F n =min|ff 0 |. f 0 is the expected system operating frequency, and f is the actual natural frequency of the ultrasonic vibration cutting system (ultrasonic tool holder and tool) after the tool size is changed, which is obtained through modal analysis.
3)确定刀具优化遗传算法的选择算子。3) Determine the selection operator of the tool optimization genetic algorithm.
计算群体中每个个体在下一代生存的期望数目Ni:Calculate the expected number N i of each individual in the population surviving in the next generation:
其中,Favg表示F的均值。Among them, F avg represents the mean value of F.
若某个个体被选中并要求参与配对和交叉,则它在下一代中的生存期望数目减去0.5;若不参与配对和交叉,则该个体的期望数目减去1.0。随着选择过程的进行,若某个个体的期望值小于零,则该个体就不会再被选中。If an individual is selected and required to participate in pairing and crossover, its expected number of survival in the next generation is reduced by 0.5; if it does not participate in pairing and crossover, the expected number of the individual is reduced by 1.0. As the selection process proceeds, if the expected value of an individual is less than zero, the individual will not be selected again.
4)确定刀具优化遗传算法的交叉算子。4) Determine the crossover operator of the tool optimization genetic algorithm.
对两个交叉点之间的基因进行交换。Swap genes between two intersections.
5)确定刀具优化遗传算法的变异算子。5) Determine the mutation operator of the tool optimization genetic algorithm.
变异算子的基本内容是对群体中的个体编码串的某些基因位置上的基因值作变动。即将所指定的变异点上的基因值更换为与原值不同的另一个基因值。如0000参数对第二位变异,则变异后的参数为0010。The basic content of the mutation operator is to change the gene values at certain gene positions of the individual code strings in the population. That is to replace the gene value at the specified mutation point with another gene value different from the original value. If the 0000 parameter is mutated to the second digit, the mutated parameter is 0010.
6)采用遗传算法进行运算。6) The genetic algorithm is used for calculation.
三.模态分析。3. Modal analysis.
通过模态分析求出由所设计刀具和超声刀柄组成的超声振动切削系统的纵向振型的第一固有频率f及刀尖振幅放大倍数M。模态分析的具体步骤为:Through the modal analysis, the first natural frequency f of the longitudinal mode of the ultrasonic vibration cutting system composed of the designed tool and the ultrasonic tool holder and the amplification factor M of the tool tip amplitude are obtained. The specific steps of modal analysis are:
①设定超声刀柄和刀具的三维模型①Set the 3D model of the ultrasonic handle and tool
②设立模态分析项和边界条件②Set up modal analysis items and boundary conditions
③划分网格③ Grid division
④求解模型,得出刀具系统的固有频率和振型④ Solve the model to obtain the natural frequency and mode shape of the tool system
⑤比较优化目标函数⑤ Compare and optimize the objective function
四.确定最优参数。4. Determine the optimal parameters.
将经过遗传算法和模态分析得到优化的刀具参数,即获得优化的刀具几何尺寸(或刀具结构)。刀具材质:硬质合金。应用范围:蜂窝复合材料以及纤维、皮革等材料的切割。The optimized tool parameters will be obtained through genetic algorithm and modal analysis, that is, the optimized tool geometry (or tool structure) will be obtained. Tool material: Carbide. Application range: cutting of honeycomb composite materials, fibers, leather and other materials.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410557508.1A CN104318007A (en) | 2014-10-20 | 2014-10-20 | Modal-analysis-based ultrasonic cutting tool design method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410557508.1A CN104318007A (en) | 2014-10-20 | 2014-10-20 | Modal-analysis-based ultrasonic cutting tool design method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104318007A true CN104318007A (en) | 2015-01-28 |
Family
ID=52373238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410557508.1A Pending CN104318007A (en) | 2014-10-20 | 2014-10-20 | Modal-analysis-based ultrasonic cutting tool design method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104318007A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108319803A (en) * | 2018-04-09 | 2018-07-24 | 大连交通大学 | A kind of multi-objective optimization design of power method of supersonic cutting tool |
US20230111219A1 (en) * | 2021-10-11 | 2023-04-13 | Slice, Inc. | System and method for providing a cutting member |
CN116372205A (en) * | 2023-06-05 | 2023-07-04 | 成都飞机工业(集团)有限责任公司 | Two-stage ultrasonic straight blade knife and processing method |
CN117252435A (en) * | 2023-11-17 | 2023-12-19 | 江苏麦维智能科技有限公司 | A factory production safety monitoring and early warning method and system based on industrial Internet |
CN117574741A (en) * | 2024-01-17 | 2024-02-20 | 西安稀有金属材料研究院有限公司 | Method for adjusting ultrasonic bone knife frequency by secondary structure under finite element analysis |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102063540A (en) * | 2010-12-30 | 2011-05-18 | 西安交通大学 | Method for optimally designing machine tool body structure |
CN102689229A (en) * | 2012-05-04 | 2012-09-26 | 华中科技大学 | Method for acquiring tool tip point frequency response function based on response coupling |
CN102930137A (en) * | 2012-09-29 | 2013-02-13 | 华侨大学 | Optimal design method for stiffened plate structure |
CN103106307A (en) * | 2013-02-02 | 2013-05-15 | 深圳市大族激光科技股份有限公司 | Transverse beam design method of laser cutting machine |
-
2014
- 2014-10-20 CN CN201410557508.1A patent/CN104318007A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102063540A (en) * | 2010-12-30 | 2011-05-18 | 西安交通大学 | Method for optimally designing machine tool body structure |
CN102689229A (en) * | 2012-05-04 | 2012-09-26 | 华中科技大学 | Method for acquiring tool tip point frequency response function based on response coupling |
CN102930137A (en) * | 2012-09-29 | 2013-02-13 | 华侨大学 | Optimal design method for stiffened plate structure |
CN103106307A (en) * | 2013-02-02 | 2013-05-15 | 深圳市大族激光科技股份有限公司 | Transverse beam design method of laser cutting machine |
Non-Patent Citations (3)
Title |
---|
周胜利,等: "超声切割刀动力学分析和结构优化设计", 《中国机械工程》 * |
沈莹镔: "尖形切割刀超声波声学系统研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
胡小平,等: "圆锥形变幅杆的设计及有限元分析", 《机电工程》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108319803A (en) * | 2018-04-09 | 2018-07-24 | 大连交通大学 | A kind of multi-objective optimization design of power method of supersonic cutting tool |
CN108319803B (en) * | 2018-04-09 | 2021-11-23 | 大连交通大学 | Multi-objective optimization design method of ultrasonic cutting tool |
US20230111219A1 (en) * | 2021-10-11 | 2023-04-13 | Slice, Inc. | System and method for providing a cutting member |
CN116372205A (en) * | 2023-06-05 | 2023-07-04 | 成都飞机工业(集团)有限责任公司 | Two-stage ultrasonic straight blade knife and processing method |
CN116372205B (en) * | 2023-06-05 | 2023-09-29 | 成都飞机工业(集团)有限责任公司 | Two-stage ultrasonic straight blade knife and processing method |
CN117252435A (en) * | 2023-11-17 | 2023-12-19 | 江苏麦维智能科技有限公司 | A factory production safety monitoring and early warning method and system based on industrial Internet |
CN117252435B (en) * | 2023-11-17 | 2024-01-30 | 江苏麦维智能科技有限公司 | A factory production safety monitoring and early warning method and system based on industrial Internet |
CN117574741A (en) * | 2024-01-17 | 2024-02-20 | 西安稀有金属材料研究院有限公司 | Method for adjusting ultrasonic bone knife frequency by secondary structure under finite element analysis |
CN117574741B (en) * | 2024-01-17 | 2024-04-30 | 西安稀有金属材料研究院有限公司 | Method for adjusting ultrasonic bone knife frequency by secondary structure under finite element analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104318007A (en) | Modal-analysis-based ultrasonic cutting tool design method | |
CN103198186B (en) | Aircraft structural part cutting parameter optimization method based on characteristics | |
TWI583483B (en) | Process-orientation design method for machine tool structure | |
CN101493686A (en) | Cutting tool mode parameter uncertain curve five-shaft numerical control process parameter optimizing method | |
Patel et al. | Analysis of a hybrid ultrasonic horn profile using finite element analysis | |
CN104318022A (en) | Method for predicting workpiece surface roughness and increasing cutting efficiency | |
CN108920844A (en) | A kind of rose cutter geometric Parameters Optimization method based on associative simulation | |
Ahmad et al. | Research on design and FE simulations of novel ultrasonic circular saw blade (UCSB) cutting tools for rotary ultrasonic machining of Nomex honeycomb composites | |
CN104573199A (en) | Topological optimization method for constraining and damping blades of aeroengine | |
CN114274366A (en) | A method for creating microtexture of ultrasonic-assisted cutting surface based on digital twin | |
CN108416087B (en) | Prediction method of damage depth in milling of carbon fiber composites | |
CN106182153A (en) | Ultrasonic micron precision processing and forming device | |
CN103722621B (en) | Low-noise circular saw web and preparation method thereof | |
CN103631197A (en) | Non-developable ruled surface blade side milling cutter axis vector programming method | |
CN102581701B (en) | Milling cutter equivalent model establishing method for rapidly obtaining frequency response characteristics | |
Ahmad et al. | Harmonic excitation response of standard ultrasonic horn designs for machining Nomex honeycomb core composite | |
CN206966068U (en) | A kind of high-power multistage step ultrasonic transformer | |
CN102672249B (en) | Method for predicting generation of residual tensile stress based on milling temperature and corresponding optimal control method | |
CN105631072A (en) | Design method of tool for rough machining of aluminum alloys | |
Behera et al. | Finite element analysis of ultrasonic stepped horn | |
CN203221231U (en) | Solid carbide single-blade gun drill | |
Li et al. | A Systematic Review of Modeling and Simulation for Precision Diamond Wire Sawing of Monocrystalline Silicon | |
Rani et al. | Design and simulation of a large tubular horn for ultrasonic plastic welding | |
CN110052903A (en) | Design method of longitudinal-torsion-radial composite space body elliptical vibration ultrasonic grinding device | |
CN109590494B (en) | Design method of ultrasonic buckling lathe tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150128 |