CN104317321A - Coking furnace hearth pressure control method based on state-space predictive functional control optimization - Google Patents

Coking furnace hearth pressure control method based on state-space predictive functional control optimization Download PDF

Info

Publication number
CN104317321A
CN104317321A CN201410492271.3A CN201410492271A CN104317321A CN 104317321 A CN104317321 A CN 104317321A CN 201410492271 A CN201410492271 A CN 201410492271A CN 104317321 A CN104317321 A CN 104317321A
Authority
CN
China
Prior art keywords
mrow
mtd
msup
mtr
mtable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410492271.3A
Other languages
Chinese (zh)
Inventor
薛安克
邹琴
张日东
王建中
刘俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201410492271.3A priority Critical patent/CN104317321A/en
Publication of CN104317321A publication Critical patent/CN104317321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

The invention discloses a coking furnace hearth pressure control method based on state-space predictive functional control optimization. In industrial control, traditional PID control cannot achieve a satisfactory control effect. In the invention, first, a state-space model of a coking furnace pressure object is established based on real-time input and output data of the coking furnace pressure object, and then, an extended non-minimized state-space model is established based on the state process and output error. On the basis of the model, the parameters of a PID controller are optimized by the method of predictive functional control, and PID control on a controlled object is realized. The coking furnace hearth pressure control method of the invention has both good control performance of ENMSSPFC and the simple form of PID control.

Description

Coking furnace hearth pressure control method based on state space prediction function control optimization
Technical Field
The invention belongs to the technical field of automation, and relates to a Proportional Integral Derivative (PID) control method for the hearth pressure of a coking furnace based on extended non-minimized state space prediction function control (ENMSSPFC) optimization.
Background
In practical industrial control, due to the limitation of factors such as cost and hardware, some advanced control methods are applied to a certain extent, but cannot replace the traditional PID control. The pressure control of the hearth of the coking furnace is a process with large time lag and nonlinearity, and the traditional PID control cannot achieve a satisfactory control effect. The control performance of the control based on the extended non-minimized state space prediction function in the coking furnace pressure control is better than that of PID control, and if the control performance of ENMSSPFC can be given to PID control, the simple form of the control structure can be ensured, and better control performance can be obtained.
Disclosure of Invention
The invention aims to provide a coking furnace hearth pressure PID control method based on ENMSSPFC optimization by means of data acquisition, model establishment, prediction mechanism, optimization and the like aiming at the defects of the existing PID control so as to obtain good control performance in the actual process. The method combines the ENMSSPFC and PID control to obtain the ENMSSPFC optimized PID control method. The method has the good control performance of ENMSSPFC, and simultaneously has a simple form of PID control.
The method comprises the following steps:
step 1, establishing an extended non-minimized state space model of a controlled object, which comprises the following specific steps:
1.1, establishing a model by using a least square method by acquiring real-time input and output data of a controlled object, wherein the form is as follows:
yL(k)=ΨTθ,θ=[S1,-L1,S2,-L2,...,Sn,-Ln]T
Ψ=[u(k-1),y(k-1),...,u(k-n),y(k-n)]T
wherein, yL(k) An output value representing a prediction model at time k, y (k) an output value representing an actual process at time k, u (k) a control quantity at time k, n is an order of input and output variables corresponding to the actual process, L1,L2,...,Ln,S1,S2,...,SnT is the transposed symbol of the matrix for the coefficients that need to be identified.
Acquiring N groups of sample data by using the acquired real-time process data, wherein the form is as follows:
Y=[y(1),y(2),...,y(j),...,y(N)]T
<math> <mrow> <mi>&Phi;</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>&Psi;</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mo>,</mo> <msubsup> <mi>&Psi;</mi> <mn>2</mn> <mi>T</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>&Psi;</mi> <mi>j</mi> <mi>T</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>&Psi;</mi> <mi>N</mi> <mi>T</mi> </msubsup> <mo>]</mo> </mrow> <mi>T</mi> </msup> </mrow> </math>
therein, ΨjY (j) represents the input data and output values of the j-th group acquired, and N represents the total number of samples.
The identification result is:
<math> <mrow> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>&Phi;</mi> <mi>T</mi> </msup> <mi>&Phi;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>&Phi;</mi> <mi>T</mi> </msup> <mi>Y</mi> </mrow> </math>
1.2, converting the model obtained in the step 1.1 into a differential model form:
Δy(k+1)+L1Δy(k)+L2Δy(k-1)+...+LnΔy(k-n+1)
=S1Δu(k)+S2Δu(k-1)+...+SnΔu(k-n+1)
where Δ is the difference operator.
1.3, selecting the non-minimized state space variables as shown in the following:
Δxm(k)T=[Δy(k),Δy(k-1),...,Δy(k-n+1),Δu(k-1),Δu(k-2),Δu(k-n+1)]
and further converting the model in the step 1.2 into a state space model, wherein the form of the state space model is as follows:
Δxm(k+1)=AmΔxm(k)+BmΔu(k)
Δy(k+1)=CmΔxm(k+1)
wherein
A m = - L 1 - L 2 . . . - L n - 1 - L n S 2 . . . S n - 1 S n 1 0 . . . 0 0 0 . . . 0 0 0 1 . . . 0 0 0 . . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0 1 . . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . . . 0 0 0 . . . 1 0 ,
B m = S 1 0 . . . 0 1 0 . . . 0 T ,
C m = 1 0 0 . . . 0 0 0 0 ,
Δxm(k) The dimension m is 2 n-1.
1.4, converting the state space model obtained in the step 1.3 into an extended non-minimized state space model containing state variables and output errors, wherein the form is as follows:
z(k+1)=Az(k)+BΔu(k)+CΔr(k+1)
wherein
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>A</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mi>m</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mi>m</mi> </msub> <msub> <mi>A</mi> <mi>m</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>B</mi> <mi>m</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mi>m</mi> </msub> <msub> <mi>B</mi> <mi>m</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>C</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&Delta;x</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>e</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
e(k)=y(k)-r(k)
r (k) is the desired output value at time k, e (k) is the difference between the actual output value and the desired output value at time k, and 0 is a zero matrix of dimension m.
Step 2, designing a PID controller of a controlled object, and the specific steps are as follows:
2.1, calculating a predicted output value of the k time to the k + P time, wherein the form is as follows:
z(k+P)=APz(k)+ψΔu(k)+θΔR
wherein,
<math> <mrow> <mi>&theta;</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>A</mi> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>C</mi> </mtd> <mtd> <msup> <mi>A</mi> <mrow> <mi>P</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mi>C</mi> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mi>C</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>&psi;</mi> <mo>=</mo> <msup> <mi>A</mi> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>B</mi> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>&Delta;R</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&Delta;r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mi>&Delta;r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mi>&Delta;r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>P</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math>
r(k+i)=αiy(k)+(1-αi)c(k),i=1,2,...,P,
p is the prediction time domain, APDenotes the multiplication of P matrices a, α is the softening factor of the reference trajectory, and c (k) is the set value at time k.
2.2, selecting an objective function J (k) of the controlled object, wherein the form is as follows:
minJ(k)=z(k+P)ΤQz(k+P)
where Q is a (2n-1) × (2n-1) weight matrix and min represents the minimum.
2.3, solving the parameters of the PID controller according to the objective function in the step 2.2, wherein the specific method comprises the following steps: firstly, the controlled quantity u (k) is transformed:
u(k)=u(k-1)+Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k)+Kd(k)(e1(k)-2e1(k-1)+e1(k-2))
e1(k)=c(k)-y(k)
wherein, Kp(k)、Ki(k)、Kd(k) Proportional, differential and integral parameters of the PID controller at the time k, respectively, e1(k) Is the error between the set value and the actual output value at time k.
The control quantity u (k) can then be reduced to the form of a matrix:
u(k)=u(k-1)+w(k)ΤE(k)
w(k)=[w1(k),w2(k),w3(k)]Τ
E(k)=[e1(k),e1(k-1),e1(k-2)]Τ
w1(k)=Kp(k)+Ki(k)+Kd(k)
w2(k)=-Kp(k)-2Kd(k)
w3(k)=Kd(k)
by combining the matrix form of the controlled variable u (k) and the objective function in step 2.2, it is possible to obtain:
<math> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msup> <mi>&psi;</mi> <mi>T</mi> </msup> <mi>Q</mi> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>P</mi> </msup> <mi>z</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&theta;&Delta;R</mi> <mo>)</mo> </mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>&psi;</mi> <mi>T</mi> </msup> <mi>Q&psi;E</mi> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
further, it is possible to obtain:
Kp(k)=-w2(k)-2Kd(k)
Ki(k)=w1(k)-KP(k)-Kd(k)
Kd(k)=w3(k)
2.4obtaining the parameter K of the PID controllerp(k)、Ki(k)、Kd(k) Then, a control amount: u (K) ═ u (K-1) + Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k)+Kd(k)(e1(k)-2e1(k-1)+e1(k-2)), and then applied to the controlled object.
2.5, circularly solving the new parameter K of the PID controller according to the steps from 2.1 to 2.4 at the moment of K + lp(k+l)、Ki(k+l)、Kd(k+l),l=1,2,3,...。
The method comprises the steps of firstly establishing a state space model of the coking furnace pressure object based on real-time input and output data of the coking furnace pressure object, and then establishing an expanded non-minimized state space model by combining a state process and an output error. On the basis of the model, parameters of the PID controller are optimized according to a predictive function control method, and finally PID control is realized on a controlled object, so that the defects of the traditional control method are effectively overcome, and the control performance of the system can be effectively improved.
Detailed Description
The invention is further explained below by taking the coking furnace pressure process control as an example, wherein the adjusting means is to adjust the opening of the flue damper in the coking furnace pressure control process.
The method for controlling the hearth pressure of the coking furnace by controlling and optimizing the state space prediction function comprises the following specific steps:
step 1, establishing an extended non-minimized state space model of a controlled object, which comprises the following specific steps:
1.1, establishing a model by acquiring real-time input and output data of a controlled object by using a least square method, wherein the form is as follows:
yL(k)=ΨTθ,θ=[S1,-L1,S2,-L2,...,Sn,-Ln]T
Ψ=[u(k-1),y(k-1),...,u(k-n),y(k-n)]T
wherein, yL(k) Representing the output value of the prediction model at the time k, y (k) representing the output value of the furnace pressure object in the pressure process at the time k, u (k) representing the control quantity at the time k, n being the order of the input and output variables of the corresponding pressure process, L1,L2,...,Ln,S1,S2,...,SnT is the transposed symbol of the matrix for the coefficients that need to be identified.
Acquiring N groups of sample data by using the acquired real-time process data, wherein the form is as follows:
Y=[y(1),y(2),...,y(j),...,y(N)]T
<math> <mrow> <mi>&Phi;</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>&Psi;</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mo>,</mo> <msubsup> <mi>&Psi;</mi> <mn>2</mn> <mi>T</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>&Psi;</mi> <mi>j</mi> <mi>T</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>&Psi;</mi> <mi>N</mi> <mi>T</mi> </msubsup> <mo>]</mo> </mrow> <mi>T</mi> </msup> </mrow> </math>
therein, ΨjY (j) represents the input data and output values of the j-th group acquired, and N represents the total number of samples.
The identification result is:
<math> <mrow> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>&Phi;</mi> <mi>T</mi> </msup> <mi>&Phi;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>&Phi;</mi> <mi>T</mi> </msup> <mi>Y</mi> </mrow> </math>
1.2, converting the model of the coking furnace pressure control process obtained in the step 1.1 into a differential model form:
Δy(k+1)+L1Δy(k)+L2Δy(k-1)+...+LnΔy(k-n+1)
=S1Δu(k)+S2Δu(k-1)+...+SnΔu(k-n+1)
where Δ is the difference operator.
1.3, selecting the non-minimized state space variables as shown in the following:
Δxm(k)T=[Δy(k),Δy(k-1),...,Δy(k-n+1),Δu(k-1),Δu(k-2),Δu(k-n+1)],
and further converting the model in the step 1.2 into a state space model, wherein the form of the state space model is as follows:
Δxm(k+1)=AmΔxm(k)+BmΔu(k)
Δy(k+1)=CmΔxm(k+1)
wherein,
B m = S 1 0 . . . 0 1 0 . . . 0 T
C m = 1 0 0 . . . 0 0 0 0
A m = - L 1 - L 2 . . . - L n - 1 - L n S 2 . . . S n - 1 S n 1 0 . . . 0 0 0 . . . 0 0 0 1 . . . 0 0 0 . . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0 1 . . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . . . 0 0 0 . . . 1 0
Δxm(k) the dimension m is 2 n-1.
1.4, converting the state space model obtained in the step 1.3 into an extended non-minimized state space model containing state variables and output errors, wherein the form is as follows:
z(k+1)=Az(k)+BΔu(k)+CΔr(k+1)
wherein,
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>A</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mi>m</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mi>m</mi> </msub> <msub> <mi>A</mi> <mi>m</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>B</mi> <mi>m</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mi>m</mi> </msub> <msub> <mi>B</mi> <mi>m</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>C</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&Delta;x</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>e</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
e(k)=y(k)-r(k)
r (k) is the desired pressure at time k, e (k) is the difference between the actual and desired pressures for the furnace at time k, and 0 is a zero matrix with dimension m.
And 2, designing a PID controller of the coking furnace pressure process, and specifically comprising the following steps:
2.1, calculating the predicted output value of the hearth pressure of the coking furnace at the k moment and the k + P moment, wherein the form is as follows:
z(k+P)=APz(k)+ψΔu(k)+θΔR
wherein,
<math> <mrow> <mi>&theta;</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>A</mi> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>C</mi> </mtd> <mtd> <msup> <mi>A</mi> <mrow> <mi>P</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mi>C</mi> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mi>C</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>&psi;</mi> <mo>=</mo> <msup> <mi>A</mi> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>B</mi> </mrow> </math>
<math> <mrow> <mi>&Delta;R</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&Delta;r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mi>&Delta;r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mi>&Delta;r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>P</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math>
r(k+i)=αiy(k)+(1-αi)c(k),i=1,2,...,P
p is the prediction time domain, APDenotes the multiplication of the P matrices a, α being the softening factor of the reference trajectory, c (k) being the set value of the pressure course at time k.
2.2, selecting an objective function J (k) of the controlled object, wherein the form is as follows:
minJ(k)=z(k+P)ΤQz(k+P)
where Q is a (2n-1) × (2n-1) weight matrix and min represents the minimum.
2.3, solving the parameters of the PID controller according to the objective function in the step 2.2, wherein the specific method comprises the following steps: firstly, converting the flue damper opening degree control quantity u (k) in the coking furnace pressure process:
u(k)=u(k-1)+Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k)+Kd(k)(e1(k)-2e1(k-1)+e1(k-2))
e1(k)=c(k)-y(k)
wherein, Kp(k)、Ki(k)、Kd(k) Proportional, differential and integral parameters of the PID controller at the time k, respectively, e1(k) Is the error between the set value and the actual output value of the furnace pressure control process at the moment k.
The control quantity u (k) can then be reduced to the form of a matrix:
u(k)=u(k-1)+w(k)ΤE(k)
w(k)=[w1(k),w2(k),w3(k)]Τ
E(k)=[e1(k),e1(k-1),e1(k-2)]Τ
w1(k)=Kp(k)+Ki(k)+Kd(k)
w2(k)=-Kp(k)-2Kd(k)
w3(k)=Kd(k)
by combining the matrix form of the controlled variable u (k) and the objective function in step 2.2, it is possible to obtain:
<math> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msup> <mi>&psi;</mi> <mi>T</mi> </msup> <mi>Q</mi> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>P</mi> </msup> <mi>z</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&theta;&Delta;R</mi> <mo>)</mo> </mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>&psi;</mi> <mi>T</mi> </msup> <mi>Q&psi;E</mi> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
further, it is possible to obtain:
Kp(k)=-w2(k)-2Kd(k)
Ki(k)=w1(k)-KP(k)-Kd(k)
Kd(k)=w3(k)
2.4 obtaining the parameter K of the PID controllerp(k)、Ki(k)、Kd(k) Then, the controlled variable u (K) is constituted by u (K-1) + Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k)+Kd(k)(e1(k)-2e1(k-1)+e1(k-2)), and then applied to a flue damper of the coke oven pressure process.
2.5, circularly solving the new parameter K of the PID controller according to the steps from 2.1 to 2.4 at the moment of K + lp(k+l)、Ki(k+l)、Kd(k+l),l=1,2,3,...。

Claims (1)

1. The method for controlling the hearth pressure of the coking furnace by controlling and optimizing the state space prediction function is characterized by comprising the following steps of: the method comprises the following specific steps:
step 1, establishing an extended non-minimized state space model of a controlled object, which comprises the following specific steps:
1.1, establishing a model by using a least square method by acquiring real-time input and output data of a controlled object, wherein the form is as follows:
yL(k)=ΨTθ,θ=[S1,-L1,S2,-L2,...,Sn,-Ln]T
Ψ=[u(k-1),y(k-1),...,u(k-n),y(k-n)]T
wherein, yL(k) An output value representing a prediction model at time k, y (k) an output value representing an actual process at time k, u (k) a control quantity at time k, n is an order of input and output variables corresponding to the actual process, L1,L2,...,Ln,S1,S2,...,SnFor the coefficients needing to be identified, T is a transposed symbol of the matrix;
acquiring N groups of sample data by using the acquired real-time process data, wherein the form is as follows:
Y=[y(1),y(2),...,y(j),...,y(N)]T
<math> <mrow> <mi>&Phi;</mi> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>&Psi;</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mo>,</mo> <msubsup> <mi>&Psi;</mi> <mn>2</mn> <mi>T</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>&Psi;</mi> <mi>j</mi> <mi>T</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>&Psi;</mi> <mi>N</mi> <mi>T</mi> </msubsup> <mo>]</mo> </mrow> <mi>T</mi> </msup> </mrow> </math>
therein, ΨjY (j) represents the input data and output value of the j group collected, and N represents the total number of samples;
the identification result is:
<math> <mrow> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>&Phi;</mi> <mi>T</mi> </msup> <mi>&Phi;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>&Phi;</mi> <mi>T</mi> </msup> <mi>Y</mi> </mrow> </math>
1.2, converting the model obtained in the step 1.1 into a differential model form:
Δy(k+1)+L1Δy(k)+L2Δy(k-1)+...+LnΔy(k-n+1)
=S1Δu(k)+S2Δu(k-1)+...+SnΔu(k-n+1)
where Δ is the difference operator;
1.3, selecting the non-minimized state space variables as shown in the following:
Δxm(k)T=[Δy(k),Δy(k-1),...,Δy(k-n+1),Δu(k-1),Δu(k-2),Δu(k-n+1)]
and further converting the model in the step 1.2 into a state space model, wherein the form of the state space model is as follows:
Δxm(k+1)=AmΔxm(k)+BmΔu(k)
Δy(k+1)=CmΔxm(k+1)
wherein
A m = - L 1 - L 2 . . . - L n - 1 - L n S 2 . . . S n - 1 S n 1 0 . . . 0 0 0 . . . 0 0 0 1 . . . 0 0 0 . . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 0 . . . 0 0 0 0 . . . 0 0 0 . . . 0 0 0 0 . . . 0 0 1 . . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . . . 0 0 0 . . . 1 0 ,
B m = S 1 0 . . . 0 1 0 . . . 0 T ,
C m = 1 0 0 . . . 0 0 0 0 ,
Δxm(k) The dimension m is 2 n-1;
1.4, converting the state space model obtained in the step 1.3 into an extended non-minimized state space model containing state variables and output errors, wherein the form is as follows:
z(k+1)=Az(k)+BΔu(k)+CΔr(k+1)
wherein
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>A</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mi>m</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mi>m</mi> </msub> <msub> <mi>A</mi> <mi>m</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>B</mi> <mi>m</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mi>m</mi> </msub> <msub> <mi>B</mi> <mi>m</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>C</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&Delta;x</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>e</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> </math>
e(k)=y(k)-r(k)
r (k) is the desired output value at time k, e (k) is the difference between the actual output value and the desired output value at time k, 0 is a zero matrix of dimension m;
step 2, designing a PID controller of a controlled object, and the specific steps are as follows:
2.1, calculating a predicted output value of the k time to the k + P time, wherein the form is as follows:
z(k+P)=APz(k)+ψΔu(k)+θΔR
wherein,
<math> <mrow> <mi>&theta;</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>A</mi> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>C</mi> </mtd> <mtd> <msup> <mi>A</mi> <mrow> <mi>P</mi> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mi>C</mi> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mi>C</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>&psi;</mi> <mo>=</mo> <msup> <mi>A</mi> <mrow> <mi>P</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>B</mi> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>&Delta;R</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&Delta;r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mi>&Delta;r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> </mtd> <mtd> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> <mtd> <mi>&Delta;r</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mi>P</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math>
r(k+i)=αiy(k)+(1-αi)c(k),i=1,2,...,P,
p is the prediction time domain, APRepresents multiplication of P matrixes A, alpha is a softening factor of a reference track, and c (k) is a set value at the moment k;
2.2, selecting an objective function J (k) of the controlled object, wherein the form is as follows:
minJ(k)=z(k+P)ΤQz(k+P)
wherein Q is a (2n-1) × (2n-1) weight matrix, and min represents the minimum value;
2.3, solving the parameters of the PID controller according to the objective function in the step 2.2, wherein the specific method comprises the following steps:
firstly, the controlled quantity u (k) is transformed:
u(k)=u(k-1)+Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k)+Kd(k)(e1(k)-2e1(k-1)+e1(k-2))
e1(k)=c(k)-y(k)
wherein, Kp(k)、Ki(k)、Kd(k) Proportional, differential and integral parameters of the PID controller at the time k, respectively, e1(k) Is the error between the set value at time k and the actual output value;
the control quantity u (k) can then be reduced to the form of a matrix:
u(k)=u(k-1)+w(k)ΤE(k)
w(k)=[w1(k),w2(k),w3(k)]Τ
E(k)=[e1(k),e1(k-1),e1(k-2)]Τ
w1(k)=Kp(k)+Ki(k)+Kd(k)
w2(k)=-Kp(k)-2Kd(k)
w3(k)=Kd(k)
by combining the matrix form of the controlled variable u (k) and the objective function in step 2.2, it is possible to obtain:
<math> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msup> <mi>&psi;</mi> <mi>T</mi> </msup> <mi>Q</mi> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mi>P</mi> </msup> <mi>z</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&theta;&Delta;R</mi> <mo>)</mo> </mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>&psi;</mi> <mi>T</mi> </msup> <mi>Q&psi;E</mi> <msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>E</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
further, it is possible to obtain:
Kp(k)=-w2(k)-2Kd(k)
Ki(k)=w1(k)-KP(k)-Kd(k)
Kd(k)=w3(k)
2.4 obtaining the parameter K of the PID controllerp(k)、Ki(k)、Kd(k) Then, a control amount: u (K) ═ u (K-1) + Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k)+Kd(k)(e1(k)-2e1(k-1)+e1(k-2)), and then acting on the controlled object;
2.5, circularly solving the new parameter K of the PID controller according to the steps from 2.1 to 2.4 at the moment of K + lp(k+l)、Ki(k+l)、Kd(k+l),l=1,2,3,...。
CN201410492271.3A 2014-09-23 2014-09-23 Coking furnace hearth pressure control method based on state-space predictive functional control optimization Pending CN104317321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410492271.3A CN104317321A (en) 2014-09-23 2014-09-23 Coking furnace hearth pressure control method based on state-space predictive functional control optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410492271.3A CN104317321A (en) 2014-09-23 2014-09-23 Coking furnace hearth pressure control method based on state-space predictive functional control optimization

Publications (1)

Publication Number Publication Date
CN104317321A true CN104317321A (en) 2015-01-28

Family

ID=52372563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410492271.3A Pending CN104317321A (en) 2014-09-23 2014-09-23 Coking furnace hearth pressure control method based on state-space predictive functional control optimization

Country Status (1)

Country Link
CN (1) CN104317321A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105159095A (en) * 2015-10-10 2015-12-16 杭州电子科技大学 Multivariable process distillation column model prediction control optimization PID control method
CN105159097A (en) * 2015-10-10 2015-12-16 杭州电子科技大学 Multivariable prediction control PID control method for oil-refining heating furnace pressure
CN105182755A (en) * 2015-10-08 2015-12-23 杭州电子科技大学 Fractional order PFC method of industrial heating furnace system
CN106054667A (en) * 2016-05-30 2016-10-26 杭州电子科技大学 Coking furnace pressure system stable switching controller design method
CN110069015A (en) * 2019-05-22 2019-07-30 杭州电子科技大学 A kind of method of Distributed Predictive function control under non-minimumization state-space model
CN112286052A (en) * 2020-09-24 2021-01-29 辽宁石油化工大学 Method for solving industrial control optimal tracking control by using linear system data

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003205A (en) * 1998-06-12 2000-01-07 Yamatake Corp State quantity controller
EP1321836A1 (en) * 2001-11-30 2003-06-25 Omron Corporation Controller, temperature controller and heat processor using same
CN101709863A (en) * 2009-12-18 2010-05-19 杭州电子科技大学 Hybrid control method for furnace pressure system of coal-fired boiler
CN103064294A (en) * 2013-01-18 2013-04-24 杭州电子科技大学 Chemical process decoupling non-minimal realization expansion state space quadric form control method
CN103389746A (en) * 2013-07-19 2013-11-13 杭州电子科技大学 Prediction function control optimized control method for furnace pressure of waste plastic oil refining cracking furnace
CN103529702A (en) * 2013-09-18 2014-01-22 杭州电子科技大学 Forecasting function fault-tolerant control method for batch process
CN103605284A (en) * 2013-11-14 2014-02-26 杭州电子科技大学 Dynamic matrix control optimization-based waste plastic cracking furnace pressure controlling method
CN103760773A (en) * 2014-01-22 2014-04-30 杭州电子科技大学 Batch process PI-PD control method for state space model prediction control optimization

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003205A (en) * 1998-06-12 2000-01-07 Yamatake Corp State quantity controller
EP1321836A1 (en) * 2001-11-30 2003-06-25 Omron Corporation Controller, temperature controller and heat processor using same
CN101709863A (en) * 2009-12-18 2010-05-19 杭州电子科技大学 Hybrid control method for furnace pressure system of coal-fired boiler
CN103064294A (en) * 2013-01-18 2013-04-24 杭州电子科技大学 Chemical process decoupling non-minimal realization expansion state space quadric form control method
CN103389746A (en) * 2013-07-19 2013-11-13 杭州电子科技大学 Prediction function control optimized control method for furnace pressure of waste plastic oil refining cracking furnace
CN103529702A (en) * 2013-09-18 2014-01-22 杭州电子科技大学 Forecasting function fault-tolerant control method for batch process
CN103605284A (en) * 2013-11-14 2014-02-26 杭州电子科技大学 Dynamic matrix control optimization-based waste plastic cracking furnace pressure controlling method
CN103760773A (en) * 2014-01-22 2014-04-30 杭州电子科技大学 Batch process PI-PD control method for state space model prediction control optimization

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
RIDONG ZHANG,ET AL.: "New PID Controller Design Using Extended Nonminimal State Space Model Based Predictive Functional Control Structure", 《INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH》 *
张日东 等: "PFC-PID控制在加热炉炉膛压力控制中的应用", 《华东理工大学学报(自然科学版)》 *
戴浔 等: "基于非最小状态空间模型的控制器设计及仿真", 《系统工程与电子技术》 *
霍爱清 等: "增广非最小化状态空间法的稳定平台预测控制研究", 《计算机工程与应用》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105182755A (en) * 2015-10-08 2015-12-23 杭州电子科技大学 Fractional order PFC method of industrial heating furnace system
CN105159095A (en) * 2015-10-10 2015-12-16 杭州电子科技大学 Multivariable process distillation column model prediction control optimization PID control method
CN105159097A (en) * 2015-10-10 2015-12-16 杭州电子科技大学 Multivariable prediction control PID control method for oil-refining heating furnace pressure
CN106054667A (en) * 2016-05-30 2016-10-26 杭州电子科技大学 Coking furnace pressure system stable switching controller design method
CN110069015A (en) * 2019-05-22 2019-07-30 杭州电子科技大学 A kind of method of Distributed Predictive function control under non-minimumization state-space model
CN110069015B (en) * 2019-05-22 2021-12-28 杭州电子科技大学 Distributed prediction function control method under non-minimized state space model
CN112286052A (en) * 2020-09-24 2021-01-29 辽宁石油化工大学 Method for solving industrial control optimal tracking control by using linear system data

Similar Documents

Publication Publication Date Title
CN104317321A (en) Coking furnace hearth pressure control method based on state-space predictive functional control optimization
CN103699009B (en) The Linear-Quadratic Problem fault tolerant control method of batch process
CN105182755B (en) A kind of fractional order predictive functional control algorithm of industry heating furnace system
CA2472338C (en) Method for removal of pid dynamics from mpc models
CN103389746B (en) The waste plastic oil-refining pyrolysis furnace hearth pressure control method that Predictive function control is optimized
CN105892296B (en) A kind of fractional order dynamic matrix control method of industry heating furnace system
CN107544255B (en) State compensation model control method for batch injection molding process
CN104317194A (en) Temperature control method for non-minimal state space model predictive control optimization
CN103529702A (en) Forecasting function fault-tolerant control method for batch process
CN103345150B (en) The waste plastic oil-refining pyrolysis furnace fire box temperature control method that Predictive function control is optimized
CN106483853A (en) The fractional order distributed dynamic matrix majorization method of Heat Loss in Oil Refining Heating Furnace furnace pressure
CN106338915A (en) Extended state space predictive function control based integral object control method
CN103616815B (en) The waste plastic oil-refining pyrolyzer fire box temperature control method that dynamic matrix control is optimized
Khalilipour et al. Nonsquare multivariable non-minimal state space-proportional integral plus (NMSS-PIP) control for atmospheric crude oil distillation column
CN102520616B (en) Partial decoupling unminimized model prediction function control method in oil refining industrial process
CN104216287A (en) Multi-model adaptive control method and system of non-minimum phase nonlinear system
CN106325074A (en) Method for intelligently setting PID controller parameters based on cuckoo algorithm
CN107065541A (en) A kind of system ambiguous network optimization PID PFC control methods of coking furnace furnace pressure
CN103605284B (en) The cracking waste plastics stove hearth pressure control method that dynamic matrix control is optimized
CN110737198B (en) Large-scale coal-fired power plant CO based on BP neural network 2 Capture system prediction control method
CN105652666B (en) Large-scale drop press upper beam prediction of speed control method based on BP neural network
CN103760773A (en) Batch process PI-PD control method for state space model prediction control optimization
CN104102130B (en) The batch process Infinite horizon linear quadratic fault tolerant control method of state-space model
CN105159097A (en) Multivariable prediction control PID control method for oil-refining heating furnace pressure
CN101887260A (en) Industrial process optimal control system and method for adaptive synchronization policy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150128

RJ01 Rejection of invention patent application after publication