CN104315652A - Air conditioning control system and method - Google Patents
Air conditioning control system and method Download PDFInfo
- Publication number
- CN104315652A CN104315652A CN201410525003.7A CN201410525003A CN104315652A CN 104315652 A CN104315652 A CN 104315652A CN 201410525003 A CN201410525003 A CN 201410525003A CN 104315652 A CN104315652 A CN 104315652A
- Authority
- CN
- China
- Prior art keywords
- air
- controller
- temperature
- environmental data
- humidity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004378 air conditioning Methods 0.000 title claims abstract description 32
- 230000007613 environmental effect Effects 0.000 claims abstract description 55
- 238000004364 calculation method Methods 0.000 claims description 13
- 238000012546 transfer Methods 0.000 claims description 7
- 230000004060 metabolic process Effects 0.000 claims 2
- 235000019633 pungent taste Nutrition 0.000 claims 2
- 230000000284 resting effect Effects 0.000 claims 2
- 230000002618 waking effect Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 230000037323 metabolic rate Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 230000035807 sensation Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 206010016326 Feeling cold Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/20—Humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Signal Processing (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本发明公开了一种空调控制系统和方法,属于电器控制领域。所述空调控制系统包括:一个或多个控制器,用于采集环境数据,并根据控制指令控制空调,环境数据包括实际温度和实际湿度,控制器独立于空调设置,每个控制器用于控制一个空调;服务器,用于接收控制器发送的环境数据,根据环境数据和热舒适方程生成控制指令,并将控制指令发送给控制器。本发明通过一个或多个控制器采集环境数据,并根据控制指令控制空调,环境数据包括实际温度和实际湿度,服务器接收控制器发送的环境数据,根据环境数据和热舒适方程生成控制指令,并将控制指令发送给控制器,可以对多个空调进行集中控制,避免了对控制对象和控制范围的限制,而且无须用户操作,体验好。
The invention discloses an air conditioner control system and method, belonging to the field of electric appliance control. The air-conditioning control system includes: one or more controllers for collecting environmental data and controlling the air-conditioning according to control instructions. The environmental data includes actual temperature and actual humidity. The controllers are independent of the air-conditioning settings, and each controller is used to control a Air conditioner; server, used to receive the environmental data sent by the controller, generate control instructions according to the environmental data and thermal comfort equation, and send the control instructions to the controller. The present invention collects environmental data through one or more controllers, and controls the air conditioner according to control instructions. The environmental data includes actual temperature and actual humidity. The server receives the environmental data sent by the controller, generates control instructions according to the environmental data and thermal comfort equation, and Sending control instructions to the controller can centrally control multiple air conditioners, avoiding restrictions on control objects and control ranges, and requires no user operation, providing a good experience.
Description
技术领域technical field
本发明涉及电器控制领域,特别涉及一种空调控制系统和方法。The invention relates to the field of electric appliance control, in particular to an air conditioner control system and method.
背景技术Background technique
随着社会的不断进步和发展,人们对设备的智能化要求也越来越高。空调作为人们的常用设备,目前还是用户使用与空调配套的遥控器进行控制的,控制对象单一,控制范围有限,用户体验差。With the continuous progress and development of society, people's requirements for intelligent equipment are getting higher and higher. As a common equipment for people, the air conditioner is currently controlled by the user using the remote control matched with the air conditioner. The control object is single, the control range is limited, and the user experience is poor.
发明内容Contents of the invention
为了解决现有技术控制对象单一,控制范围有限,用户体验差的问题,本发明实施例提供了一种空调控制系统和方法。所述技术方案如下:In order to solve the problems of single control object, limited control range and poor user experience in the prior art, embodiments of the present invention provide an air conditioner control system and method. Described technical scheme is as follows:
一方面,本发明实施例提供了一种空调控制系统,所述空调控制系统包括:On the one hand, an embodiment of the present invention provides an air conditioning control system, the air conditioning control system comprising:
一个或多个控制器,用于采集环境数据,并根据控制指令控制空调,所述环境数据包括实际温度和实际湿度,所述控制器独立于所述空调设置,每个所述控制器用于控制一个所述空调;One or more controllers are used to collect environmental data and control the air conditioner according to control instructions, the environmental data includes actual temperature and actual humidity, the controllers are independent of the air conditioner settings, each of the controllers is used to control a said air conditioner;
服务器,用于接收所述控制器发送的环境数据,根据所述环境数据和热舒适方程生成所述控制指令,并将所述控制指令发送给所述控制器。The server is configured to receive the environmental data sent by the controller, generate the control instruction according to the environmental data and a thermal comfort equation, and send the control instruction to the controller.
在本发明一种可能的实现方式中,所述服务器包括:In a possible implementation manner of the present invention, the server includes:
第一计算模块,用于采用人工免疫算法对所述热舒适方程进行计算,确定若干组目标温度和目标湿度;The first calculation module is used to calculate the thermal comfort equation by using the artificial immune algorithm to determine several sets of target temperatures and target humidity;
第二计算模块,用于结合所述实际温度和实际湿度,分别计算达到所述若干组目标温度和目标湿度的耗电量;The second calculation module is used to combine the actual temperature and actual humidity to calculate the power consumption to reach the several groups of target temperatures and target humidity respectively;
生成模块,用于将耗电量最小的一组目标温度和目标湿度构成所述控制指令。The generating module is used to form the control instruction with a set of target temperature and target humidity with minimum power consumption.
可选地,所述第一计算模块用于,Optionally, the first calculation module is used for,
根据设定的基准值和约束条件,确定若干组待计算的温度和湿度;Determine several groups of temperature and humidity to be calculated according to the set reference value and constraint conditions;
分别将所述若干组待计算的温度和湿度代入如下简化后的热舒适方程,计算热感觉平均投票指数SPMV:Substitute the several groups of temperature and humidity to be calculated into the following simplified thermal comfort equation to calculate the thermal sensation average voting index S PMV :
SPMV=(0.303*e-0.036*M+0.028)*{M-W-3.05*10-3*[5733-6.99*(M-W)-Pa]-0.42*[(M-W)-58.15]-1.7*10-5*M*(5867-Pa)-0.0014*M*(34-ta)-3.96*10-8*fcl[(tcl+273)4-(tr+273)4]-fcl*hc*(tcl-ta)};S PMV =(0.303*e -0.036*M +0.028)*{MW-3.05*10 -3 *[5733-6.99*(MW)-P a ]-0.42*[(MW)-58.15]-1.7*10 -5 *M*(5867-P a )-0.0014*M*(34-t a )-3.96*10 -8 *f cl [(t cl +273) 4 -(t r +273) 4 ]-f cl *h c *(t cl -t a )};
其中,M为人体新陈代谢率,M=65,W为人体所做的机械功,W=0,ta为空气温度,tr为平均辐射温度,tcl为衣服外表面温度,ta=tr=tcl,Pa为相对湿度,fcl为服装面积系数,hc为对流传热系数,夏季时,fcl=1.125,hc=12.1Ua 1/2;冬季时,fcl=1.25,hc=12.1Ua 1/2,Ua为空调送风量,Ua=0.2m/s;Among them, M is the metabolic rate of the human body, M=65, W is the mechanical work done by the human body, W=0, t a is the air temperature, t r is the average radiation temperature, t cl is the outer surface temperature of the clothes, t a =t r = t cl , P a is the relative humidity, f cl is the clothing area coefficient, h c is the convective heat transfer coefficient, in summer, f cl = 1.125, h c = 12.1U a 1/2 ; in winter, f cl = 1.25, h c =12.1U a 1/2 , U a is the air supply volume of the air conditioner, U a =0.2m/s;
若计算结果满足-0.5≤SPMV≤0.5,则将待计算的温度和湿度分别确定为目标温度和目标湿度。If the calculation result satisfies -0.5≤S PMV≤0.5 , the temperature and humidity to be calculated are respectively determined as the target temperature and target humidity.
在本发明另一种可能的实现方式中,所述空调控制系统还包括:In another possible implementation manner of the present invention, the air conditioning control system further includes:
无线接入节点,用于将至少一个所述控制器从休眠状态唤醒;获取至少一个所述控制器采集的环境数据并将所述环境数据发送给所述服务器。The wireless access node is configured to wake up at least one of the controllers from a dormant state; acquire environmental data collected by at least one of the controllers and send the environmental data to the server.
在本发明又一种可能的实现方式中,所述服务器还用于,In yet another possible implementation manner of the present invention, the server is further configured to:
接收用户输入的针对多个特定时刻分别设置的多个空调运行时间段、目标温度和目标湿度;Receive multiple air conditioner operating time periods, target temperature and target humidity respectively set for multiple specific moments input by the user;
按照所述空调运行时间段、目标温度和目标湿度,控制空调开启和关闭。According to the air conditioner running time period, target temperature and target humidity, the air conditioner is controlled to be turned on and off.
另一方面,本发明实施例提供了一种空调控制方法,所述空调控制方法包括:On the other hand, an embodiment of the present invention provides an air conditioner control method, the air conditioner control method comprising:
控制器采集环境数据并发送给服务器,所述环境数据包括实际温度和实际湿度,所述控制器独立于空调设置,每个所述控制器用于控制一个所述空调;The controller collects environmental data and sends it to the server, the environmental data includes actual temperature and actual humidity, the controllers are set independently of the air conditioners, and each of the controllers is used to control one air conditioner;
服务器根据所述环境数据和热舒适方程生成控制指令并将所述控制指令发送给所述控制器;The server generates a control command according to the environmental data and thermal comfort equation and sends the control command to the controller;
所述控制器根据所述控制指令控制所述空调。The controller controls the air conditioner according to the control instruction.
在本发明一种可能的实现方式中,所述服务器根据所述环境数据和热舒适方程生成控制指令并将所述控制指令发送给控制器,包括:In a possible implementation manner of the present invention, the server generates a control instruction according to the environmental data and a thermal comfort equation and sends the control instruction to the controller, including:
采用人工免疫算法对所述热舒适方程进行计算,确定若干组目标温度和目标湿度;The artificial immune algorithm is used to calculate the thermal comfort equation, and determine several groups of target temperatures and target humidity;
结合所述实际温度和实际湿度,分别计算达到所述若干组目标温度和目标湿度的耗电量;Combining the actual temperature and actual humidity, calculate the power consumption to reach the several groups of target temperatures and target humidity respectively;
将耗电量最小的一组目标温度和目标湿度构成所述控制指令。A set of target temperature and target humidity with minimum power consumption constitutes the control instruction.
可选地,所述服务器采用人工免疫算法对所述热舒适方程进行计算,确定若干组目标温度和目标湿度,包括:Optionally, the server uses an artificial immune algorithm to calculate the thermal comfort equation to determine several sets of target temperature and target humidity, including:
根据设定的基准值和约束条件,确定若干组待计算的温度和湿度;Determine several groups of temperature and humidity to be calculated according to the set reference value and constraint conditions;
分别将所述若干组待计算的温度和湿度代入如下简化后的热舒适方程,计算热感觉平均投票指数SPMV:Substitute the several groups of temperature and humidity to be calculated into the following simplified thermal comfort equation to calculate the thermal sensation average voting index S PMV :
SPMV=(0.303*e-0.036*M+0.028)*{M-W-3.05*10-3*[5733-6.99*(M-W)-Pa]-0.42*[(M-W)-58.15]-1.7*10-5*M*(5867-Pa)-0.0014*M*(34-ta)-3.96*10-8*fcl[(tcl+273)4-(tr+273)4]-fcl*hc*(tcl-ta)};S PMV =(0.303*e -0.036*M +0.028)*{MW-3.05*10 -3 *[5733-6.99*(MW)-P a ]-0.42*[(MW)-58.15]-1.7*10 -5 *M*(5867-P a )-0.0014*M*(34-t a )-3.96*10 -8 *f cl [(t cl +273) 4 -(t r +273) 4 ]-f cl *h c *(t cl -t a )};
其中,M为人体新陈代谢率,M=65,W为人体所做的机械功,W=0,ta为空气温度,tr为平均辐射温度,tcl为衣服外表面温度,ta=tr=tcl,Pa为相对湿度,fcl为服装面积系数,hc为对流传热系数,夏季时,fcl=1.125,hc=12.1Ua 1/2;冬季时,fcl=1.25,hc=12.1Ua 1/2,Ua为空调送风量,Ua=0.2m/s;Among them, M is the metabolic rate of the human body, M=65, W is the mechanical work done by the human body, W=0, t a is the air temperature, t r is the average radiation temperature, t cl is the outer surface temperature of the clothes, t a =t r = t cl , P a is the relative humidity, f cl is the clothing area coefficient, h c is the convective heat transfer coefficient, in summer, f cl = 1.125, h c = 12.1U a 1/2 ; in winter, f cl = 1.25, h c =12.1U a 1/2 , U a is the air supply volume of the air conditioner, U a =0.2m/s;
若计算结果满足-0.5≤SPMV≤0.5,则将待计算的温度和湿度分别确定为目标温度和目标湿度。If the calculation result satisfies -0.5≤S PMV≤0.5 , the temperature and humidity to be calculated are respectively determined as the target temperature and target humidity.
在本发明另一种可能的实现方式中,所述控制器采集环境数据并发送给服务器,包括:In another possible implementation of the present invention, the controller collects environmental data and sends it to the server, including:
无线接入节点将至少一个所述控制器从休眠状态唤醒;The wireless access node wakes at least one of said controllers from a sleep state;
无线接入节点获取至少一个所述控制器采集的环境数据并将所述环境数据发送给所述服务器。The wireless access node acquires at least one environment data collected by the controller and sends the environment data to the server.
在本发明又一种可能的实现方式中,所述空调控制方法还包括:In yet another possible implementation manner of the present invention, the air conditioner control method further includes:
所述服务器接收用户输入的针对多个特定时刻分别设置的多个空调运行时间段、目标温度和目标湿度;The server receives a plurality of air-conditioning operation time periods, target temperature and target humidity respectively set for a plurality of specific moments input by the user;
所述服务器按照所述空调运行时间段、目标温度和目标湿度,控制空调开启和关闭。The server controls the air conditioner to be turned on and off according to the air conditioner operating time period, target temperature and target humidity.
本发明实施例提供的技术方案带来的有益效果是:The beneficial effects brought by the technical solution provided by the embodiments of the present invention are:
通过一个或多个控制器采集环境数据,并根据控制指令控制空调,环境数据包括实际温度和实际湿度,服务器接收控制器发送的环境数据,根据环境数据和热舒适方程生成控制指令,并将控制指令发送给控制器,可以对多个空调进行集中控制,避免了对控制对象和控制范围的限制,而且无须用户操作,用户体验好。另外,控制器独立于空调设置,每个控制器控制一个空调,既可以获知空调周围的环境情况并进行相应控制,又不需要对空调进行改造,安装灵活方便,对安装位置没什么局限。Collect environmental data through one or more controllers, and control the air conditioner according to control instructions. The environmental data includes actual temperature and actual humidity. The server receives the environmental data sent by the controller, generates control instructions according to the environmental data and thermal comfort equation, and sends the control The instruction is sent to the controller, which can centrally control multiple air conditioners, avoiding the limitation of the control object and control range, and does not require user operation, and the user experience is good. In addition, the controller is independent of the air conditioner settings. Each controller controls an air conditioner, which can not only know the environment around the air conditioner and control it accordingly, but also does not need to modify the air conditioner. The installation is flexible and convenient, and there is no limitation on the installation location.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.
图1是本发明实施例一提供的一种空调控制系统的结构示意图;FIG. 1 is a schematic structural diagram of an air-conditioning control system provided in Embodiment 1 of the present invention;
图2是本发明实施例一提供的控制器的结构示意图;FIG. 2 is a schematic structural diagram of a controller provided in Embodiment 1 of the present invention;
图3是本发明实施例一提供的红外线发射器的电路图;Fig. 3 is a circuit diagram of an infrared transmitter provided by Embodiment 1 of the present invention;
图4是本发明实施例二提供的一种空调控制方法的流程交互图。Fig. 4 is a flowchart interaction diagram of an air conditioner control method provided in Embodiment 2 of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the implementation manner of the present invention will be further described in detail below in conjunction with the accompanying drawings.
实施例一Embodiment one
本发明实施例提供了一种空调控制系统,参见图1,该空调控制系统包括:An embodiment of the present invention provides an air-conditioning control system, as shown in FIG. 1 , the air-conditioning control system includes:
一个或多个控制器1,用于采集环境数据,并根据控制指令控制空调2,环境数据包括实际温度和实际湿度,控制器1独立于空调2设置,每个控制器1用于控制一个空调2;One or more controllers 1 are used to collect environmental data and control the air conditioner 2 according to control instructions. The environmental data includes actual temperature and actual humidity. The controller 1 is set independently of the air conditioner 2. Each controller 1 is used to control an air conditioner 2;
服务器3,用于接收控制器1发送的环境数据,根据环境数据和热舒适方程生成控制指令,并将控制指令发送给控制器1。The server 3 is used to receive the environmental data sent by the controller 1 , generate control instructions according to the environmental data and the thermal comfort equation, and send the control instructions to the controller 1 .
在实际应用中,该空调控制系统主要应用于宾馆、商务酒店、办公楼、宿舍楼、设备机房等分体空调大量使用的场所。In practical application, the air conditioning control system is mainly used in hotels, business hotels, office buildings, dormitory buildings, equipment rooms and other places where split air conditioners are widely used.
控制器1的个数与空调2的个数相同,当该空调控制系统应用于上述分体空调大量使用的场所时,控制器1的个数与该场所的空调2的个数相同,有多个空调2,就有相应个数的控制器1。The number of controllers 1 is the same as the number of air conditioners 2. When the air conditioning control system is applied to the place where the above-mentioned split air conditioners are widely used, the number of controllers 1 is the same as the number of air conditioners 2 in the place. Each air conditioner 2 has a corresponding number of controllers 1.
控制器1与空调2之间的距离一般小于设定长度(如5m(米)),可以比较真实地采集到空调2所对应的环境信息。The distance between the controller 1 and the air conditioner 2 is generally less than a set length (such as 5m (meters)), so that the environmental information corresponding to the air conditioner 2 can be collected more realistically.
在本实施例的一种实现方式中,服务器3可以包括:In an implementation of this embodiment, the server 3 may include:
第一计算模块,用于采用人工免疫算法对热舒适方程进行计算,确定若干组目标温度和目标湿度;The first calculation module is used to calculate the thermal comfort equation by using the artificial immune algorithm to determine several sets of target temperatures and target humidity;
第二计算模块,用于结合实际温度和实际湿度,分别计算达到若干组目标温度和目标湿度的耗电量;The second calculation module is used to calculate the power consumption for reaching several groups of target temperatures and target humidity in combination with actual temperature and actual humidity;
生成模块,用于将耗电量最小的一组目标温度和目标湿度构成控制指令。The generation module is used to form a group of target temperature and target humidity with minimum power consumption into a control instruction.
可选地,第一计算模块可以用于,Optionally, the first calculation module can be used for,
根据设定的基准值和约束条件,确定若干组待计算的温度和湿度;Determine several groups of temperature and humidity to be calculated according to the set reference value and constraint conditions;
分别将若干组待计算的温度和湿度代入如下简化后的热舒适方程,计算热感觉平均投票指数SPMV:Substitute several groups of temperature and humidity to be calculated into the following simplified thermal comfort equation to calculate the thermal sensation average voting index S PMV :
SPMV=(0.303*e-0.036*M+0.028)*{M-W-3.05*10-3*[5733-6.99*(M-W)-Pa]-0.42*[(M-W)-58.15]-1.7*10-5*M*(5867-Pa)-0.0014*M*(34-ta)-3.96*10-8*fcl[(tcl+273)4-(tr+273)4]-fcl*hc*(tcl-ta)};S PMV =(0.303*e -0.036*M +0.028)*{MW-3.05*10 -3 *[5733-6.99*(MW)-P a ]-0.42*[(MW)-58.15]-1.7*10 -5 *M*(5867-P a )-0.0014*M*(34-t a )-3.96*10 -8 *f cl [(t cl +273) 4 -(t r +273) 4 ]-f cl *h c *(t cl -t a )};
其中,M为人体新陈代谢率,M=65,W为人体所做的机械功,W=0,ta为空气温度,tr为平均辐射温度,tcl为衣服外表面温度,ta=tr=tcl,Pa为相对湿度,fcl为服装面积系数,hc为对流传热系数,夏季时,fcl=1.125,hc=12.1Ua 1/2;冬季时,fcl=1.25,hc=12.1Ua 1/2,Ua为空调送风量,Ua=0.2m/s;Among them, M is the metabolic rate of the human body, M=65, W is the mechanical work done by the human body, W=0, t a is the air temperature, t r is the average radiation temperature, t cl is the outer surface temperature of the clothes, t a =t r = t cl , P a is the relative humidity, f cl is the clothing area coefficient, h c is the convective heat transfer coefficient, in summer, f cl = 1.125, h c = 12.1U a 1/2 ; in winter, f cl = 1.25, h c =12.1U a 1/2 , U a is the air supply volume of the air conditioner, U a =0.2m/s;
若计算结果满足-0.5≤SPMV≤0.5,则将待计算的温度和湿度分别确定为目标温度和目标湿度。If the calculation result satisfies -0.5≤S PMV≤0.5 , the temperature and humidity to be calculated are respectively determined as the target temperature and target humidity.
具体地,群体更新采用遗传算法的交叉算子和变异算子,按交叉概率pc=1.0,变异概率pm=0.1进行群体的更新。以ISO7730给出的热舒适推荐值范围-0.5≤SPMV≤0.5,作为求解过程中的较优抗体解的判断标准,并将较优抗体建立记忆集合保留。设置终止进化代数为100代。Specifically, the group update adopts the crossover operator and the mutation operator of the genetic algorithm, and the group is updated according to the crossover probability pc=1.0 and the mutation probability pm=0.1. The thermal comfort recommended value range given by ISO7730 -0.5≤S PMV ≤0.5 is used as the criterion for judging the optimal antibody solution in the solution process, and the memory set of the optimal antibody is established and retained. Set the termination evolution generation number to 100 generations.
在本实施例的另一种实现方式中,服务器3还可以用于,In another implementation of this embodiment, the server 3 may also be used to:
接收用户输入的针对多个特定时刻分别设置的多个空调运行时间段、目标温度和目标湿度;Receive multiple air conditioner operating time periods, target temperature and target humidity respectively set for multiple specific moments input by the user;
按照空调运行时间段、目标温度和目标湿度,控制空调开启和关闭。According to the operating time period of the air conditioner, the target temperature and the target humidity, the air conditioner is controlled to be turned on and off.
在本实施例的又一种实现方式中,该空调控制系统还可以包括:In yet another implementation of this embodiment, the air conditioning control system may further include:
无线接入节点4,用于将一个或多个控制器1接入服务器2所在的网络;A wireless access node 4, configured to connect one or more controllers 1 to the network where the server 2 is located;
网关转发器5,用于确保无线接入节点4与服务器2之间的通信。The gateway repeater 5 is used to ensure the communication between the wireless access node 4 and the server 2 .
具体地,控制器1与无线接入节点4无线连接,无线接入节点4直接与服务器1连接,或者通过网关转发器5与服务器1连接。Specifically, the controller 1 is wirelessly connected to the wireless access node 4 , and the wireless access node 4 is directly connected to the server 1 or connected to the server 1 through a gateway transponder 5 .
在实际中,也可以没有网关转发器5。网关转发器5主要是在无线接入节点4与服务器3之间存在信号盲区时扩展信号范围,将无线接入节点4与服务器3连通,保证整个控制范围内信号的全覆盖,并且网关转发器5安装方便。In practice, there may also be no gateway transponder 5 . The gateway transponder 5 mainly expands the signal range when there is a signal blind zone between the wireless access node 4 and the server 3, and connects the wireless access node 4 with the server 3 to ensure full coverage of signals within the entire control range, and the gateway transponder 5 Easy to install.
更具体地,控制器1与无线接入节点4之间采用基于SimpliciT1协议的无线连接。More specifically, a wireless connection based on the SimpliciT1 protocol is used between the controller 1 and the wireless access node 4 .
可选地,无线接入节点4可以用于,Optionally, the wireless access node 4 may be used for,
将至少一个控制器1从休眠状态唤醒;wake up at least one controller 1 from a sleep state;
获取至少一个控制器1采集的环境数据并将环境数据发送给服务器3;Obtain the environmental data collected by at least one controller 1 and send the environmental data to the server 3;
将服务器3根据环境数据生成的控制指令发送给控制器1。Send the control instruction generated by the server 3 according to the environment data to the controller 1 .
在实际应用中,无线接入节点4会持续监听有没有新的控制器1加入或者有没有新的数据包需要转发。当有新的控制器1加入(控制器1初始接入无线接入节点4)时,无线接入节点4调用接口初始化函数对控制器1进行初始化。如果有新的数据包转发给服务器3,无线接入节点4直接将数据包发送给服务器3。当有新的数据包转发给控制器1,由于为了省电,控制器1一般会处于休眠状态,因此无线接入节点4先将控制器1从休眠状态唤醒,再将数据包发送给控制器1。In practical applications, the wireless access node 4 will continuously monitor whether there is a new controller 1 joining or whether there is a new data packet to be forwarded. When a new controller 1 joins (the controller 1 initially accesses the wireless access node 4), the wireless access node 4 calls the interface initialization function to initialize the controller 1. If there is a new data packet forwarded to the server 3, the wireless access node 4 sends the data packet to the server 3 directly. When a new data packet is forwarded to the controller 1, the controller 1 is generally in a dormant state in order to save power, so the wireless access node 4 first wakes up the controller 1 from the dormant state, and then sends the data packet to the controller 1.
具体地,在控制器1进行初始化之后,控制器1向无线接入节点4发送入网标记(join token)。无线接入节点4在接收到join token之后,向控制器1发送连接标记(Link token)。控制器1在接收到Link token之后,调用SMPL_Link函数向无线接入节点4发送Link请求。无线接入节点4在接收到Link请求之后,向控制器1发送Link响应。控制器1在接收到Link响应之后,调用SMPL_Send函数向无线接入节点4发送环境数据。无线接入节点4在接收到环境数据之后,向服务器3转发环境数据。同时,此时控制器1也可以接收无线接入节点4转发的服务器3发送的指令、采集实际温度和实际湿度、向空调2发送控制指令等。控制器1在向空调2发送控制指令之后,进入休眠状态。Specifically, after the controller 1 performs initialization, the controller 1 sends a network joining token (join token) to the wireless access node 4. After receiving the join token, the wireless access node 4 sends a connection token (Link token) to the controller 1. After receiving the Link token, the controller 1 calls the SMPL_Link function to send a Link request to the wireless access node 4. After receiving the Link request, the wireless access node 4 sends a Link response to the controller 1 . After receiving the Link response, the controller 1 calls the SMPL_Send function to send the environment data to the wireless access node 4 . After receiving the environment data, the wireless access node 4 forwards the environment data to the server 3 . At the same time, at this time, the controller 1 can also receive the instruction sent by the server 3 forwarded by the wireless access node 4, collect the actual temperature and actual humidity, and send control instructions to the air conditioner 2, etc. After the controller 1 sends a control command to the air conditioner 2, it enters into a dormant state.
在具体实现中,参见图2,该控制器1可以包括:中央处理器11、温湿度传感器12、红外线发射器13、无线通信模块14、存储器15、以及电池16,中央处理器11分别与温湿度传感器12、红外线发射器13、无线通信模块14、存储器15、电池16电连接,红外线发射器13与空调2基于红外连接,无线通信模块14与无线接入节点4无线连接。In a specific implementation, referring to FIG. 2, the controller 1 may include: a central processing unit 11, a temperature and humidity sensor 12, an infrared emitter 13, a wireless communication module 14, a memory 15, and a battery 16, and the central processing unit 11 communicates with the temperature and humidity sensor respectively. Humidity sensor 12, infrared emitter 13, wireless communication module 14, memory 15, battery 16 are electrically connected, infrared emitter 13 is connected with air conditioner 2 based on infrared, wireless communication module 14 is wirelessly connected with wireless access node 4.
具体地,中央处理器11可以为CC1110芯片,CC1110芯片内嵌了加强型8051内核单片机。加强型8051内核单片机内嵌32KB(千字节)的在系统可编程闪存(Flash Memory)、4KB的静态随机存储器(Static Random Access Memory,简称SRAM)、8~14位的8通道模数(Analog Digital,简称A/D)转换器、1个16位定时器和3个8位定时器、2个通用异步收发传输器(UniversalAsynchronous Receiver/Transmitter,简称UART)/串行外设接口(Serial PeripheralInterface,简称SPI)、实时时钟(Real-Time Clock,简称RTC)和21个通用输入输出端口(input/output的缩写,简称I/O)。Specifically, the central processing unit 11 may be a CC1110 chip, and the CC1110 chip is embedded with an enhanced 8051 core single-chip microcomputer. Enhanced 8051-core MCU embedded with 32KB (kilobytes) of in-system programmable flash memory (Flash Memory), 4KB of Static Random Access Memory (SRAM for short), 8-14 bits of 8-channel modulus (Analog Digital, referred to as A/D) converter, 1 16-bit timer and 3 8-bit timers, 2 Universal Asynchronous Receiver/Transmitter (UART for short)/Serial Peripheral Interface, SPI for short), real-time clock (Real-Time Clock, RTC for short) and 21 general-purpose input and output ports (abbreviation for input/output, I/O for short).
另外,由于CC1110芯片包含了CC1110射频(Radio Frequency,RF)收发器,CC1110 RF收发器工作在433MHz(兆赫兹)、8683MHz、9153MHz频段上,通信距离达到120m,最大速度达到500KB/s(千字节每秒),可以满足控制器1主要部署在办公大楼内部各处,需要对墙体具有一定的穿越性能的要求,因此当中央处理器11为CC1110芯片时,无需另外配置无线通信模块14。In addition, since the CC1110 chip includes the CC1110 radio frequency (Radio Frequency, RF) transceiver, the CC1110 RF transceiver works in the 433MHz (megahertz), 8683MHz, and 9153MHz frequency bands, with a communication distance of 120m and a maximum speed of 500KB/s (kilobytes). knots per second), which can meet the requirement that the controller 1 is mainly deployed in various places inside the office building and needs to have a certain penetration performance on the wall. Therefore, when the central processing unit 11 is a CC1110 chip, there is no need to additionally configure the wireless communication module 14.
具体地,温湿度传感器12可以为DHT11,DHT11的输出端与单片机的P1.1口连接。温湿度传感器12采集的实际温度和实际湿度一共40bit(比特)的数据可以一次性传输给单片机,并且数据采用了校验码校验,有效保证了数据传输的准确性。Specifically, the temperature and humidity sensor 12 may be a DHT11, and the output terminal of the DHT11 is connected to the P1.1 port of the single-chip microcomputer. A total of 40 bits of actual temperature and actual humidity data collected by the temperature and humidity sensor 12 can be transmitted to the single-chip microcomputer at one time, and the data is verified by a check code, which effectively ensures the accuracy of data transmission.
在本实施例的又一种实现方式中,控制器1还可以用于,In yet another implementation of this embodiment, the controller 1 can also be used to:
接收遥控器发送的控制信号;Receive the control signal sent by the remote control;
检测控制信号中高电平与低电平之间的宽度比;detecting the width ratio between the high level and the low level in the control signal;
将宽度比与用户输入的指令内容对应。Correspond the width ratio to the instruction content input by the user.
此时,该控制器1还可以包括:控制指令输入按钮17和一体化红外接收头18,控制指令输入按钮17和一体化红外接收头18分别与中央处理器11电连接。At this time, the controller 1 may further include: a control command input button 17 and an integrated infrared receiving head 18 , and the control command input button 17 and the integrated infrared receiving head 18 are respectively electrically connected to the central processing unit 11 .
在具体实现中,由于各空调生产厂家对遥控器的收发信号的编码方式没有统一的标准,但都是调制在38KHz的载波上传输的,可以在初次接入某空调生产厂家的空调时,先人为使用遥控器发出控制信号并按下对应的控制指令输入按钮17,接着单片机控制一体化红外接收头18接收并解调控制信号得到二进制码流,然后一体化红外接收头18将二进制码流输入单片机的中断脚(INT),单片机通过内部的定时器与计数器测量二进制码流的高电平和低电平的宽度得到编码,并将编码与控制指令输入按钮17对应的指令内容对应,学习到这个空调厂家采用的编码方式。In the specific implementation, since each air conditioner manufacturer does not have a unified standard for the coding method of the sending and receiving signals of the remote control, but they are all modulated on the 38KHz carrier wave for transmission, you can first access the air conditioner of a certain air conditioner manufacturer. Humans use the remote controller to send control signals and press the corresponding control command input button 17, then the single-chip microcomputer controls the integrated infrared receiving head 18 to receive and demodulate the control signal to obtain a binary code stream, and then the integrated infrared receiving head 18 converts the binary code stream Input the interrupt pin (INT) of the single-chip microcomputer, the single-chip microcomputer measures the width of the high level and low level of the binary code stream through the internal timer and counter to obtain the code, and corresponds the code to the command content corresponding to the control command input button 17, and learns The coding method used by the air conditioner manufacturer.
在学习到空调厂家采用的编码方式之后,单片机可以将这个编码方式存储在存储器15中,便于后续对采用该编码方式的空调进行控制;也可以将这个编码方式通过无线接入节点4发送给服务器3,服务器3将这个编码方式与用户输入的空调生产厂家的信息进行对应,便于后续其它控制器1对采用该编码方式的空调2进行控制。After learning the coding method adopted by the air conditioner manufacturer, the single-chip microcomputer can store this coding method in the memory 15, so as to facilitate the subsequent control of the air conditioner that adopts the coding method; this coding method can also be sent to the server through the wireless access node 4 3. The server 3 corresponds the encoding method with the information of the air conditioner manufacturer input by the user, so that other controllers 1 can subsequently control the air conditioner 2 using the encoding method.
当然,为了节省存储器15的存储空间,存储器15中可以只存储最后一次输入的编码方式。Of course, in order to save the storage space of the memory 15, the memory 15 may only store the encoding mode input last time.
同时为了节省成本,不需要每个控制器1都包括控制指令输入按钮17和一体化红外接收头18,可以只为服务器3不知道编码方式的空调2配置包括控制指令输入按钮17和一体化红外接收头18的控制器1。At the same time, in order to save costs, it is not necessary for each controller 1 to include a control command input button 17 and an integrated infrared receiver 18. It can only be configured for an air conditioner 2 whose server 3 does not know the encoding method to include a control command input button 17 and an integrated infrared receiver. The controller 1 of the receiving head 18 .
在实际应用中,存储器15中还存储有默认的目标温度和目标湿度。当控制器1与无线接入节点4和/或无线接入节点4与服务器3之间的连接断开时,单片机可以根据默认的目标温度和目标湿度、以及实际温度和实际湿度,采用学习到的或者之前从服务器3获取到的编码方式向空调2发送控制指令,调节空调2的温度和/或湿度,保证了在网络出现故障时,控制器1还可以自动对空调2进行控制。In practical applications, default target temperature and target humidity are also stored in the memory 15 . When the connection between the controller 1 and the wireless access node 4 and/or the wireless access node 4 and the server 3 is disconnected, the single-chip microcomputer can adopt the learned method according to the default target temperature and target humidity, as well as the actual temperature and actual humidity The encoding method obtained or obtained from the server 3 sends control instructions to the air conditioner 2 to adjust the temperature and/or humidity of the air conditioner 2, ensuring that the controller 1 can also automatically control the air conditioner 2 when the network fails.
另外,存储器35中也可以存储有最后一次接收到的控制指令,在控制器1从休眠状态唤醒之后,控制器1可以读取从存储器35中最后一次接收到的控制指令,当环境数据与最后一次接收到的控制指令不同时,可以再次向空调2发送一次这个最后一次接收到的控制指令。In addition, the last received control instruction may also be stored in the memory 35. After the controller 1 wakes up from the dormant state, the controller 1 may read the last received control instruction from the memory 35. When the environmental data and the last When the control instruction received once is different, the last received control instruction may be sent to the air conditioner 2 again.
具体地,存储器15可以包括8位锁存器74HC573和W2425732K掉电存储器。同时为节省存储空间,采用多变量共存技术,将数据根据长度按字节存储,如布尔型变量使用位方式,则多个布尔型变量使用一个字节存储。为提高数据的访问效率,采用周期性读取的技术,在每个任务周期内采用一次读取的方式,使用直接内存存取(Direct Memory Access,简称DMA)通道读出存储空间所有字节数据。Specifically, the memory 15 may include an 8-bit latch 74HC573 and a W2425732K power-down memory. At the same time, in order to save storage space, multi-variable coexistence technology is adopted to store data in bytes according to the length. If the Boolean variable uses the bit mode, multiple Boolean variables are stored in one byte. In order to improve the access efficiency of data, the technology of periodic reading is adopted, and the way of reading once in each task cycle is adopted, and all bytes of data in the storage space are read out by using the Direct Memory Access (DMA) channel .
具体地,电池16可以为5V(伏)可充电电池。Specifically, the battery 16 may be a 5V (volt) rechargeable battery.
在本实施例中,参见图3,红外线发射器13可以包括:电源VCC、第一电阻R1、三极管Q1、第二电阻R2、以及红外发射管IRE。其中,电源VCC、第一电阻R1、三级管Q1的集电极依次串联,三极管Q1的基极、第二电阻R2、单片机的I/O口(如P2.6口)依次串联,三极管Q1的发射集与红外发射管IRE的正极连接,红外发射管IRE的负极接地。In this embodiment, referring to FIG. 3 , the infrared emitter 13 may include: a power supply VCC, a first resistor R1 , a transistor Q1 , a second resistor R2 , and an infrared emitting diode IRE. Among them, the power supply VCC, the first resistor R1, and the collector of the triode Q1 are connected in series in sequence, the base of the triode Q1, the second resistor R2, and the I/O port of the microcontroller (such as P2.6 port) are connected in series in sequence, and the transistor Q1 The emission set is connected with the positive electrode of the infrared emission tube IRE, and the negative electrode of the infrared emission tube IRE is grounded.
电源VCC输出38KHz的载波到三极管Q1的集电极,三极管Q1的基极接收单片机输出的控制指令(二进制码流)。当控制指令为高电平时,三极管Q1导通,红外发射管IRE对外发送38KHz的红外线;当控制指令为低电平时,三极管Q1关闭,红外发射管IRE不对外发送38KHz的红外线。The power supply VCC outputs a 38KHz carrier wave to the collector of the transistor Q1, and the base of the transistor Q1 receives the control command (binary code stream) output by the microcontroller. When the control command is at a high level, the transistor Q1 is turned on, and the infrared emitting tube IRE sends out 38KHz infrared rays; when the control command is at a low level, the transistor Q1 is turned off, and the infrared emitting tube IRE does not send out 38KHz infrared rays.
具体地,三极管Q1可以选用8550。Specifically, the triode Q1 can be 8550.
优选地,为了提高红外发射管IRE的发射功率,增大红外发射管IRE的发射距离,将第一电阻R1的阻值设定在几欧姆到几十欧姆(如4.7欧姆)。实验证明,将第一电阻R1的阻值设定为几百欧姆甚至上千欧姆时,红外发射管IRE可以工作,但发射距离较短。Preferably, in order to increase the emission power of the infrared emission tube IRE and increase the emission distance of the infrared emission tube IRE, the resistance value of the first resistor R1 is set at several ohms to tens of ohms (such as 4.7 ohms). Experiments have proved that when the resistance value of the first resistor R1 is set to hundreds of ohms or even thousands of ohms, the infrared emission tube IRE can work, but the emission distance is relatively short.
可选地,该控制器1还可以包括:显示屏19,显示屏19与中央处理器11电连接。Optionally, the controller 1 may further include: a display screen 19 electrically connected to the central processing unit 11 .
具体地,显示屏19可以选择128*32图形液晶显示模块。显示屏19平时可以关闭以节省电能。Specifically, the display screen 19 can select a 128*32 graphic liquid crystal display module. The display screen 19 can be turned off at ordinary times to save electric energy.
可选地,该控制器1还可以包括:按键组10,按键组10中的按键分别与中央处理器11电连接,按键组10中的按键与遥控器上的按键一一对应,便于人为对空调进行控制。Optionally, the controller 1 may also include: a button group 10, the buttons in the button group 10 are respectively electrically connected to the central processing unit 11, and the buttons in the button group 10 are in one-to-one correspondence with the buttons on the remote controller, which is convenient for manual adjustment. Air conditioning is controlled.
本发明实施例通过一个或多个控制器采集环境数据,并根据控制指令控制空调,环境数据包括实际温度和实际湿度,服务器接收控制器发送的环境数据,根据环境数据和热舒适方程生成控制指令,并将控制指令发送给控制器,可以对多个空调进行集中控制,避免了对控制对象和控制范围的限制,而且无须用户操作,用户体验好。另外,控制器独立于空调设置,每个控制器控制一个空调,既可以获知空调周围的环境情况并进行相应控制,又不需要对空调进行改造,安装灵活方便,对安装位置没什么局限。The embodiment of the present invention collects environmental data through one or more controllers, and controls the air conditioner according to control instructions. The environmental data includes actual temperature and actual humidity. The server receives the environmental data sent by the controllers, and generates control instructions according to the environmental data and the thermal comfort equation. , and send the control command to the controller, which can centrally control multiple air conditioners, avoiding the limitation of the control object and control range, and no user operation is required, and the user experience is good. In addition, the controller is independent of the air conditioner settings. Each controller controls an air conditioner, which can not only know the environment around the air conditioner and control it accordingly, but also does not need to modify the air conditioner. The installation is flexible and convenient, and there is no limitation on the installation location.
实施例二Embodiment two
本发明实施例提供了一种空调控制方法,参见图4,该空调控制方法包括:An embodiment of the present invention provides an air conditioner control method, as shown in FIG. 4 , the air conditioner control method includes:
步骤201:控制器采集环境数据并发送给服务器。Step 201: The controller collects environmental data and sends it to the server.
在本实施例中,环境数据包括实际温度和实际湿度,控制器独立于空调设置,每个控制器用于控制一个空调。In this embodiment, the environmental data includes actual temperature and actual humidity, the controllers are set independently from the air conditioners, and each controller is used to control one air conditioner.
在本实施例的一种实现方式中,该步骤201可以包括:In an implementation manner of this embodiment, this step 201 may include:
无线接入节点将至少一个控制器从休眠状态唤醒;The wireless access node wakes up at least one controller from a sleep state;
无线接入节点获取至少一个控制器采集的环境数据并将环境数据发送给服务器。The wireless access node obtains the environment data collected by at least one controller and sends the environment data to the server.
在实际应用中,无线接入节点将至少一个控制器从休眠状态唤醒可以根据服务器发送给至少一个控制器的控制指令,将至少一个控制器从休眠状态唤醒,也可以每隔设定的时间自动将控制器唤醒。In practical applications, the wireless access node wakes up at least one controller from the sleep state according to the control instruction sent by the server to the at least one controller, and wakes up the at least one controller from the sleep state, or automatically every set time Wake up the controller.
步骤202:服务器根据环境数据和热舒适方程生成控制指令并将控制指令发送给控制器。Step 202: the server generates a control instruction according to the environmental data and the thermal comfort equation, and sends the control instruction to the controller.
在本实施例的一种实现方式中,该步骤202可以包括:In an implementation manner of this embodiment, step 202 may include:
采用人工免疫算法对热舒适方程进行计算,确定若干组目标温度和目标湿度;Use the artificial immune algorithm to calculate the thermal comfort equation, and determine several groups of target temperature and target humidity;
结合实际温度和实际湿度,分别计算达到若干组目标温度和目标湿度的耗电量;Combining the actual temperature and actual humidity, calculate the power consumption to reach several groups of target temperature and target humidity respectively;
将耗电量最小的一组目标温度和目标湿度构成控制指令。A set of target temperature and target humidity with minimum power consumption constitutes a control command.
可选地,服务器采用人工免疫算法对热舒适方程进行计算,确定若干组目标温度和目标湿度,可以包括:Optionally, the server uses an artificial immune algorithm to calculate the thermal comfort equation to determine several sets of target temperature and target humidity, which may include:
根据设定的基准值和约束条件,确定若干组待计算的温度和湿度;Determine several groups of temperature and humidity to be calculated according to the set reference value and constraint conditions;
分别将若干组待计算的温度和湿度代入如下简化后的热舒适方程,计算热感觉平均投票指数SPMV:Substitute several groups of temperature and humidity to be calculated into the following simplified thermal comfort equation to calculate the thermal sensation average voting index S PMV :
SPMV=(0.303*e-0.036*M+0.028)*{M-W-3.05*10-3*[5733-6.99*(M-W)-Pa]-0.42*[(M-W)-58.15]-1.7*10-5*M*(5867-Pa)-0.0014*M*(34-ta)-3.96*10-8*fcl[(tcl+273)4-(tr+273)4]-fcl*hc*(tcl-ta)};S PMV =(0.303*e -0.036*M +0.028)*{MW-3.05*10 -3 *[5733-6.99*(MW)-P a ]-0.42*[(MW)-58.15]-1.7*10 -5 *M*(5867-P a )-0.0014*M*(34-t a )-3.96*10 -8 *f cl [(t cl +273) 4 -(t r +273) 4 ]-f cl *h c *(t cl -t a )};
其中,M为人体新陈代谢率,M=65,W为人体所做的机械功,W=0,ta为空气温度,tr为平均辐射温度,tcl为衣服外表面温度,ta=tr=tcl,Pa为相对湿度,fcl为服装面积系数,hc为对流传热系数,夏季时,fcl=1.125,hc=12.1Ua 1/2;冬季时,fcl=1.25,hc=12.1Ua 1/2,Ua为空调送风量,Ua=0.2m/s;Among them, M is the metabolic rate of the human body, M=65, W is the mechanical work done by the human body, W=0, t a is the air temperature, t r is the average radiation temperature, t cl is the outer surface temperature of the clothes, t a =t r = t cl , P a is the relative humidity, f cl is the clothing area coefficient, h c is the convective heat transfer coefficient, in summer, f cl = 1.125, h c = 12.1U a 1/2 ; in winter, f cl = 1.25, h c =12.1U a 1/2 , U a is the air supply volume of the air conditioner, U a =0.2m/s;
若计算结果满足-0.5≤SPMV≤0.5,则将待计算的温度和湿度分别确定为目标温度和目标湿度。If the calculation result satisfies -0.5≤S PMV≤0.5 , the temperature and humidity to be calculated are respectively determined as the target temperature and target humidity.
具体地,群体更新采用遗传算法的交叉算子和变异算子,按交叉概率pc=1.0,变异概率pm=0.1进行群体的更新。以ISO7730给出的热舒适推荐值范围-0.5≤SPMV≤0.5,作为求解过程中的较优抗体解的判断标准,并将较优抗体建立记忆集合保留。设置终止进化代数为100代。Specifically, the group update adopts the crossover operator and the mutation operator of the genetic algorithm, and the group is updated according to the crossover probability pc=1.0 and the mutation probability pm=0.1. The thermal comfort recommended value range given by ISO7730 -0.5≤S PMV ≤0.5 is used as the criterion for judging the optimal antibody solution in the solution process, and the memory set of the optimal antibody is established and retained. Set the termination evolution generation number to 100 generations.
在具体实现中,服务器采用人工免疫算法计算若干组目标温度和目标湿度,可以采用热舒适方程计算。热舒适方程如下:In a specific implementation, the server uses an artificial immune algorithm to calculate several groups of target temperature and target humidity, which can be calculated using a thermal comfort equation. The thermal comfort equation is as follows:
SPMV=(0.303*e-0.036*M+0.028)*{M-W-3.05*10-3*[5733-6.99*(M-W)-Pa]-0.42*[(M-W)-58.15]-1.7*10-5*M*(5867-Pa)-0.0014*M*(34-ta)-3.96*10-8*fcl[(tcl+273)4-(tr+273)4]-fcl*hc*(tcl-ta)};S PMV =(0.303*e -0.036*M +0.028)*{MW-3.05*10 -3 *[5733-6.99*(MW)-P a ]-0.42*[(MW)-58.15]-1.7*10 -5 *M*(5867-P a )-0.0014*M*(34-t a )-3.96*10 -8 *f cl [(t cl +273) 4 -(t r +273) 4 ]-f cl *h c *(t cl -t a )};
其中,SPMV为热感觉平均投票指数,M为人体新陈代谢率,W为人体所做的机械功,ta为空气温度,tr为平均辐射温度,Pa为相对湿度,fcl为服装面积系数,tcl为衣服外表面温度,hc为对流传热系数。Among them, S PMV is the average voting index of thermal sensation, M is the metabolic rate of the human body, W is the mechanical work done by the human body, t a is the air temperature, t r is the average radiation temperature, P a is the relative humidity, and f cl is the clothing area coefficient, t cl is the outer surface temperature of the clothes, and h c is the convective heat transfer coefficient.
由于热舒适方程包含的因素很多,为了减少计算量、提高处理效率、便于实施控制,对热舒适方程进行了简化。由于空调一般放置在室内,人员也是在室内工作,因此M=65,W=0,ta=tr=tcl。夏季时,fcl=1.125,hc=12.1Ua 1/2;冬季时,fcl=1.25,hc=12.1Ua 1/2,Ua为空调送风量,本实施例中为定值(如0.2m/s)。所以,简化后的热舒适方程只与空气温度ta和相对湿度Pa有关。Since the thermal comfort equation contains many factors, the thermal comfort equation is simplified in order to reduce the amount of calculation, improve the processing efficiency, and facilitate the implementation of control. Since the air conditioner is generally placed indoors and the personnel also work indoors, M=65, W=0, t a =t r =t cl . In summer, f cl = 1.125, h c = 12.1U a 1/2 ; in winter, f cl = 1.25, h c = 12.1U a 1/2 , U a is the air supply volume of the air conditioner, which is constant in this embodiment value (eg 0.2m/s). Therefore, the simplified thermal comfort equation is only related to air temperature t a and relative humidity P a .
由于SPMV与人的感觉之间满足如下表一所示的关系:Since the relationship between S PMV and people's feelings is satisfied as shown in Table 1 below:
表一Table I
因此,需要求出使SPMV的绝对值最小的空气温度ta和相对湿度Pa。Therefore, it is necessary to obtain the air temperature t a and the relative humidity P a that minimize the absolute value of S PMV .
采用人工免疫算法计算若干组目标温度和目标湿度时,先按照通用的参考基准值(如ta=26℃,Pa=50%)在约束条件内设定一系列与参考基准值接近的目标温度和目标湿度,然后将这一系列目标温度和目标湿度分别代入热舒适方程计算SPMV,保留满足-0.5≤SPMV≤0.5的目标温度和目标湿度。其中,约束条件为:夏季时,20≤ta≤32,30%≤Pa≤90%;冬季时,20≤ta≤32,5%≤Pa≤65%。When using the artificial immune algorithm to calculate several groups of target temperature and target humidity, first set a series of targets close to the reference value within the constraint conditions according to the general reference value (such as t a = 26°C, P a = 50%) temperature and target humidity, and then substitute this series of target temperature and target humidity into the thermal comfort equation to calculate S PMV , and keep the target temperature and target humidity satisfying -0.5≤S PMV ≤0.5. Wherein, the constraints are: in summer, 20≤t a ≤32, 30%≤P a ≤90%; in winter, 20≤t a ≤32, 5%≤P a ≤65%.
步骤203:控制器根据控制指令控制空调。Step 203: the controller controls the air conditioner according to the control instruction.
在具体实现中,控制器与服务器之间的数据传输都是通过无线接入节点转发的。在数据发送过程中,数据中携带有控制器和/或无线接入节点的地址信息,从而可以将数据准确发送。In a specific implementation, the data transmission between the controller and the server is forwarded through the wireless access node. During the data sending process, the data carries the address information of the controller and/or the wireless access node, so that the data can be sent accurately.
在本实施例的又一种实现方式中,该空调控制方法还可以包括:In yet another implementation manner of this embodiment, the air conditioner control method may further include:
控制器接收遥控器发送的控制信号;The controller receives the control signal sent by the remote controller;
控制器检测控制信号中高电平与低电平之间的宽度比;The controller detects the width ratio between the high level and the low level in the control signal;
控制器将宽度比与用户输入的指令内容对应。The controller corresponds the width ratio to the instruction content input by the user.
在本实施例的又一种实现方式中,该方法还可以包括:In yet another implementation of this embodiment, the method may also include:
服务器接收用户输入的针对多个特定时刻分别设置的多个空调运行时间段、目标温度和目标湿度;The server receives multiple air conditioner operating time periods, target temperature and target humidity respectively set for multiple specific moments input by the user;
服务器按照空调运行时间、目标温度和目标湿度,控制空调开启和关闭。The server controls the air conditioner to be turned on and off according to the air conditioner running time, target temperature and target humidity.
在该种实现方式中,可以实现对空调的多时段控制。例如,在上课或上班之前一个小时开启空调,使用户进入空调房时空调房已经达到目标温度和目标湿度。在下课或下班之前一个小时关闭空调,使用户离开空调房时空调房已经达到与正常情况相同。尤其对于商务酒店大量适用分体空调的场合,采用多时段控制更能提高用户的舒适体验,也有利于节能减排。In this implementation manner, multi-period control of the air conditioner can be realized. For example, the air conditioner is turned on one hour before going to class or going to work, so that the air-conditioned room has reached the target temperature and target humidity when the user enters the air-conditioned room. Turn off the air-conditioner one hour before get out of class or get off work, so that the air-conditioned room has reached the same level as the normal situation when the user leaves the air-conditioned room. Especially for business hotels where a large number of split air conditioners are used, the use of multi-time control can improve the comfort experience of users and is also conducive to energy saving and emission reduction.
在本实施例的又一种实现方式中,该方法还可以包括:In yet another implementation of this embodiment, the method may also include:
服务器获取空调的运行时间;The server obtains the running time of the air conditioner;
当空调的运行时间达到设定时间时,服务器控制空调关闭。When the running time of the air conditioner reaches the set time, the server controls the air conditioner to turn off.
在该种实现方式中,可以促使用户妥善安排工作时间,提高工作效率,缩短空调使用时间,节约能源。In this implementation manner, the user can be prompted to properly arrange working time, improve work efficiency, shorten the use time of the air conditioner, and save energy.
本发明实施例通过一个或多个控制器采集环境数据,并根据控制指令控制空调,环境数据包括实际温度和实际湿度,服务器接收控制器发送的环境数据,根据环境数据和热舒适方程生成控制指令,并将控制指令发送给控制器,可以对多个空调进行集中控制,避免了对控制对象和控制范围的限制,而且无须用户操作,用户体验好。另外,控制器独立于空调设置,每个控制器控制一个空调,既可以获知空调周围的环境情况并进行相应控制,又不需要对空调进行改造,安装灵活方便,对安装位置没什么局限。The embodiment of the present invention collects environmental data through one or more controllers, and controls the air conditioner according to control instructions. The environmental data includes actual temperature and actual humidity. The server receives the environmental data sent by the controllers, and generates control instructions according to the environmental data and the thermal comfort equation. , and send the control command to the controller, which can centrally control multiple air conditioners, avoiding the limitation of the control object and control range, and no user operation is required, and the user experience is good. In addition, the controller is independent of the air conditioner settings. Each controller controls an air conditioner, which can not only know the environment around the air conditioner and control it accordingly, but also does not need to modify the air conditioner. The installation is flexible and convenient, and there is no limitation on the installation location.
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps for implementing the above embodiments can be completed by hardware, and can also be completed by instructing related hardware through a program. The program can be stored in a computer-readable storage medium. The above-mentioned The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, and the like.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410525003.7A CN104315652A (en) | 2014-09-30 | 2014-09-30 | Air conditioning control system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410525003.7A CN104315652A (en) | 2014-09-30 | 2014-09-30 | Air conditioning control system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104315652A true CN104315652A (en) | 2015-01-28 |
Family
ID=52370923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410525003.7A Pending CN104315652A (en) | 2014-09-30 | 2014-09-30 | Air conditioning control system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104315652A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105180376A (en) * | 2015-10-14 | 2015-12-23 | 刘丰 | Intelligent control system based on ZigBee technique for air conditioners |
CN105222272A (en) * | 2015-09-17 | 2016-01-06 | 广东美的制冷设备有限公司 | A kind of pleasant climate method, controller and air-conditioning system |
CN105333579A (en) * | 2015-11-26 | 2016-02-17 | 国网黑龙江省电力有限公司信息通信公司 | Modular air conditioner calling control system for machine room |
CN105352131A (en) * | 2015-11-27 | 2016-02-24 | 国网北京市电力公司 | Air conditioner controlling method and device |
CN108333940A (en) * | 2018-02-12 | 2018-07-27 | 北京建筑大学 | A kind of method and device of optimization Assign Controller parameter |
CN112032971A (en) * | 2020-09-14 | 2020-12-04 | 重庆大学 | An indoor thermal environment regulation method based on heart rate monitoring |
CN113124549A (en) * | 2021-04-28 | 2021-07-16 | 深圳市大景智能控制有限公司 | Hotel guest room intelligent control system with temperature sensing function |
CN116165926A (en) * | 2022-12-07 | 2023-05-26 | 青岛海信日立空调系统有限公司 | Household appliance product |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001208401A (en) * | 1993-06-01 | 2001-08-03 | Hitachi Ltd | Air conditioner |
CN1389675A (en) * | 2002-07-18 | 2003-01-08 | 上海交通大学 | Heat-comfortable fuzzily controlled air conditioner |
CN101140450A (en) * | 2006-09-08 | 2008-03-12 | 香港中文大学精密工程研究所 | Energy-saving thermal comfort controller and control method |
CN102215257A (en) * | 2011-05-31 | 2011-10-12 | 佘培嘉 | Intelligent network central air conditioning system |
CN103471207A (en) * | 2013-09-29 | 2013-12-25 | 宜春市脉恩多能科技有限公司 | Air conditioner comfort control method |
-
2014
- 2014-09-30 CN CN201410525003.7A patent/CN104315652A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001208401A (en) * | 1993-06-01 | 2001-08-03 | Hitachi Ltd | Air conditioner |
CN1389675A (en) * | 2002-07-18 | 2003-01-08 | 上海交通大学 | Heat-comfortable fuzzily controlled air conditioner |
CN101140450A (en) * | 2006-09-08 | 2008-03-12 | 香港中文大学精密工程研究所 | Energy-saving thermal comfort controller and control method |
CN102215257A (en) * | 2011-05-31 | 2011-10-12 | 佘培嘉 | Intelligent network central air conditioning system |
CN103471207A (en) * | 2013-09-29 | 2013-12-25 | 宜春市脉恩多能科技有限公司 | Air conditioner comfort control method |
Non-Patent Citations (1)
Title |
---|
陆益民等: "人工免疫算法在室内热舒适模型优化中的应用", 《哈尔滨工业大学学报》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105222272A (en) * | 2015-09-17 | 2016-01-06 | 广东美的制冷设备有限公司 | A kind of pleasant climate method, controller and air-conditioning system |
CN105222272B (en) * | 2015-09-17 | 2018-07-20 | 广东美的制冷设备有限公司 | A kind of pleasant climate method, controller and air-conditioning system |
CN105180376A (en) * | 2015-10-14 | 2015-12-23 | 刘丰 | Intelligent control system based on ZigBee technique for air conditioners |
CN105333579A (en) * | 2015-11-26 | 2016-02-17 | 国网黑龙江省电力有限公司信息通信公司 | Modular air conditioner calling control system for machine room |
CN105352131A (en) * | 2015-11-27 | 2016-02-24 | 国网北京市电力公司 | Air conditioner controlling method and device |
CN105352131B (en) * | 2015-11-27 | 2019-01-08 | 国网北京市电力公司 | Air conditioning control method and device |
CN108333940A (en) * | 2018-02-12 | 2018-07-27 | 北京建筑大学 | A kind of method and device of optimization Assign Controller parameter |
CN108333940B (en) * | 2018-02-12 | 2021-08-06 | 北京建筑大学 | A method and device for optimizing specified controller parameters |
CN112032971A (en) * | 2020-09-14 | 2020-12-04 | 重庆大学 | An indoor thermal environment regulation method based on heart rate monitoring |
CN113124549A (en) * | 2021-04-28 | 2021-07-16 | 深圳市大景智能控制有限公司 | Hotel guest room intelligent control system with temperature sensing function |
CN116165926A (en) * | 2022-12-07 | 2023-05-26 | 青岛海信日立空调系统有限公司 | Household appliance product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104315652A (en) | Air conditioning control system and method | |
CN105115097A (en) | Variable blast volume air-conditioning end intelligence control system and method based on wireless sensor network | |
CN107062539A (en) | Humidity control method and device for air conditioner | |
CN102865647A (en) | Cloud air conditioner with cloud adaption function based on cloud computing technology and cloud adaption method thereof | |
CN105115101A (en) | Method and device for automatically controlling temperature of air conditioner for sleeping at night | |
CN109101065B (en) | Intelligent household temperature and humidity environment intelligent adjusting system | |
CN103134137A (en) | Air conditioner and control method and device thereof | |
CN106909080A (en) | A kind of method and mobile terminal based on mobile terminal control apparatus equipment | |
CN204717960U (en) | The control system of air-conditioner | |
CN105068522A (en) | Intelligent household electrical appliance instruction system and household electrical appliance control method | |
CN106322689A (en) | Novel air conditioner remote controller | |
CN202521789U (en) | Intelligent fresh air exchange system based on wireless technology | |
CN113418286A (en) | Self-adaptive thermal sensing robot and air conditioner temperature adjusting method | |
CN204757263U (en) | Wireless air conditioner controller, air conditioner and air conditioner wireless control system | |
CN106940927A (en) | A kind of domestic air conditioning long-distance intelligent networked control systems | |
CN110986303A (en) | Cold and hot governing system of central air conditioning | |
WO2023082625A1 (en) | Schedule-based control method and apparatus for air conditioning device, and air conditioning device | |
CN110173851A (en) | Air-conditioner control method, device, server and storage medium | |
CN205403057U (en) | Intelligence house air conditioning control device based on cc2530 | |
CN202902540U (en) | Indoor intelligent temperature control system | |
CN103940026A (en) | Air conditioning system, air conditioner, control method of the air conditioning system and the air conditioner and natural air sampler | |
CN105716207A (en) | External temperature-sensing central air conditioner based on Internet of Things technology | |
CN204421190U (en) | Intelligent domestic heating installation energy-saving controller | |
CN204478401U (en) | Based on the air-conditioner control system of WIFI | |
CN205372918U (en) | Controller of intelligent air -conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150128 |
|
RJ01 | Rejection of invention patent application after publication |