CN104310449A - Method for preparing layered double hydroxide nanorod - Google Patents
Method for preparing layered double hydroxide nanorod Download PDFInfo
- Publication number
- CN104310449A CN104310449A CN201410543801.2A CN201410543801A CN104310449A CN 104310449 A CN104310449 A CN 104310449A CN 201410543801 A CN201410543801 A CN 201410543801A CN 104310449 A CN104310449 A CN 104310449A
- Authority
- CN
- China
- Prior art keywords
- double hydroxide
- layered double
- powder
- solution
- urea
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 title claims abstract description 30
- 239000002073 nanorod Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000000843 powder Substances 0.000 claims abstract description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- 150000003839 salts Chemical class 0.000 claims abstract description 21
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000004202 carbamide Substances 0.000 claims abstract description 19
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000008367 deionised water Substances 0.000 claims abstract description 16
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000012266 salt solution Substances 0.000 claims abstract description 14
- 239000000243 solution Substances 0.000 claims abstract description 14
- 239000011259 mixed solution Substances 0.000 claims abstract description 11
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 9
- 239000002244 precipitate Substances 0.000 claims abstract description 8
- 239000000725 suspension Substances 0.000 claims abstract description 8
- 238000002360 preparation method Methods 0.000 claims abstract description 7
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 7
- -1 polytetrafluoroethylene Polymers 0.000 claims description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 4
- 229910021645 metal ion Inorganic materials 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 150000002739 metals Chemical class 0.000 abstract description 3
- 238000005303 weighing Methods 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract 1
- 238000000967 suction filtration Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- 229910016870 Fe(NO3)3-9H2O Inorganic materials 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002525 ultrasonication Methods 0.000 description 2
- 229910019427 Mg(NO3)2-6H2O Inorganic materials 0.000 description 1
- 229910018378 Mn(NO3)2-6H2O Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000002074 nanoribbon Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/009—Compounds containing iron, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
一种层状双氢氧化物纳米棒的制备方法,分别称取二价和三价金属可溶性盐,二价和三价金属可溶性盐的摩尔比为1-3∶1,将二价和三价金属的可溶性盐溶解于去离子水中配成盐溶液,再称取尿素,尿素与三价金属的可溶性盐的摩尔比为7∶1-9∶1,将尿素溶于盐溶液中形成混合溶液,将混合溶液置于反应釜中反应,形成悬浊液,再冷却、洗涤、沉淀、抽滤、干燥得六边形状层状双氢氧化物粉末,将双氢氧化物粉末溶于醇液中,超声处理,用硝酸调醇溶液pH,继续超声处理后抽滤、干燥得粉末,将上述的粉末溶于甲酰胺中超声后即得到层状双氢氧化物纳米棒。本发明在没有模板条件下合成了长径比较大的层状双氢氧化物纳米棒,工艺简单,操作方便、结构易控。
A preparation method of layered double hydroxide nanorods, respectively weighing divalent and trivalent metal soluble salts, the molar ratio of divalent and trivalent metal soluble salts is 1-3:1, divalent and trivalent Soluble metal salts are dissolved in deionized water to form a salt solution, and then urea is weighed. The molar ratio of urea to soluble salts of trivalent metals is 7:1-9:1, and urea is dissolved in the salt solution to form a mixed solution. Put the mixed solution in a reaction kettle to react to form a suspension, then cool, wash, precipitate, suction filter, and dry to obtain a hexagonal layered double hydroxide powder, dissolve the double hydroxide powder in the alcohol solution, Ultrasonic treatment, using nitric acid to adjust the pH of the alcohol solution, continuing the ultrasonic treatment, suction filtration, and drying to obtain a powder, dissolving the above powder in formamide and ultrasonically obtaining a layered double hydroxide nanorod. The invention synthesizes layered double hydroxide nanorods with relatively large length and diameter under the condition of no template, and has simple process, convenient operation and easy structure control.
Description
技术领域 technical field
本发明属于化工领域,尤其涉及一种层状双氢氧化物,具体来说是一种层状双氢氧化物纳米棒的制备方法。 The invention belongs to the field of chemical industry, and in particular relates to a layered double hydroxide, specifically a method for preparing a layered double hydroxide nanorod.
背景技术 Background technique
层状双氢氧化物(Layered Double Hydroxides,简写为LDH) 是一种典型的阴离子型层状化合物又称为类水滑石层状材料,其通式为[M2+ 1−xM3+ x (OH) 2][An−] x/n·mH2O,这种材料是由相互平行的层板组成,位于层板上的二价金属阳离子M2+可以在一定的比例范围内被离子半径相近的三价金属阳离子M3+同晶取代,使得层板带永久正电荷;层间具有可交换的阴离子以维持电荷平衡。通过离子交换可在层间嵌入不同的基团,制备许多功能材料,在吸附、催化、医药、电化学、光化学、农药和军工材料等领域展现出了广阔的应用前景。因而近年来LDH材料的制备研究得到了广泛的关注。 Layered Double Hydroxides (LDH for short) is a typical anionic layered compound, also known as a hydrotalcite-like layered material, and its general formula is [M 2+ 1−x M 3+ x (OH) 2 ][A n− ] x/n ·mH 2 O, this material is composed of layers parallel to each other, and the divalent metal cations M 2+ located on the layers can be The isomorphic substitution of trivalent metal cations M 3+ with similar ionic radii makes the laminates permanently positively charged; there are exchangeable anions between the layers to maintain charge balance. Through ion exchange, different groups can be embedded between layers to prepare many functional materials, which have shown broad application prospects in the fields of adsorption, catalysis, medicine, electrochemistry, photochemistry, pesticides and military materials. Therefore, the research on the preparation of LDH materials has received extensive attention in recent years.
一维纳米材料主要有纳米线,纳米棒,纳米带、纳米管等由于其不仅具有通常纳米材料所具有的表面效应、量子尺寸效应和小尺寸效应等还具有其独特的热稳定性、机械性能、光学性能等使其具有广泛应用前景。很多学者利用模板法合成了诸如纤维状、线状((a)李博. 阴离子型层状材料水滑石的制备与晶体形貌控制研究[D].[硕士学位论文].北京:北京化工大学,2008.(b) Hongyu Wu, Qingze Jiao, Yun Zhao, Silu Huang, Xuefei Li, Hongbo Liu, Mingji Zhou.J. Materials Character zation,61 ( 2010) 227 – 232.)等不同形貌的层状氢氧化物,但其存在如除去模板时结构容易坍塌等问题。鲜有合成层状双氢氧化物纳米棒的报道。 One-dimensional nanomaterials mainly include nanowires, nanorods, nanoribbons, nanotubes, etc., because they not only have the surface effect, quantum size effect and small size effect of ordinary nanomaterials, but also have their unique thermal stability and mechanical properties. , optical properties and so on make it have a wide range of application prospects. Many scholars have used the template method to synthesize such as fibrous and linear ((a) Li Bo. Preparation and Crystal Morphology Control of Anionic Layered Material Hydrotalcite [D]. [Master's Dissertation]. Beijing: Beijing University of Chemical Technology , 2008. (b) Hongyu Wu, Qingze Jiao, Yun Zhao, Silu Huang, Xuefei Li, Hongbo Liu, Mingji Zhou.J. Materials Character zation, 61 (2010) 227 – 232.) and other layered hydroxides with different shapes, but there are problems such as the structure is easy to collapse when the template is removed. Few reports have been reported on the synthesis of layered double hydroxide nanorods.
发明内容 Contents of the invention
针对现有技术中存在的上述缺陷,本发明所要解决的技术问题是提供一种层状双氢氧化物纳米棒的制备方法,所述的这种层状双氢氧化物纳米棒的制备方法要解决现有技术中的层状双氢氧化物纳米棒制备过程中除去模板时结构容易坍塌等技术问题。 Aiming at the above-mentioned defects existing in the prior art, the technical problem to be solved by the present invention is to provide a preparation method of layered double hydroxide nanorods, the preparation method of this layered double hydroxide nanorods requires The invention solves technical problems such as the structure is easy to collapse when the template is removed in the preparation process of the layered double hydroxide nanorod in the prior art.
本发明一种层状双氢氧化物纳米棒的制备方法,分别称取二价金属的可溶性盐和三价金属可溶性盐,所述的二价金属的可溶性盐和三价金属可溶性盐的摩尔比为1-3:1,将二价金属的可溶性盐和三价金属的可溶性盐溶解于去离子水中配成盐溶液,再称取尿素,所述的尿素与三价金属的可溶性盐的摩尔比为7:1-9:1,将尿素溶于所述的盐溶液中形成混合溶液,将混合溶液置于聚四氟乙烯反应釜中,在120-140℃ 下反应8-15小时,形成悬浊液,冷却后,用去离子水洗涤沉淀,然后抽滤干燥得六边形状层状双氢氧化物粉末,将六边形状层状双氢氧化物粉末溶于醇液中,超声处理0.5-3小时,然后用硝酸调醇溶液pH至1.5-3.5,继续超声处理0.5-3小时后抽滤、干燥得粉末,将上述的粉末溶于甲酰胺中超声0.5-3小时后即得到层状双氢氧化物纳米棒。 A method for preparing layered double hydroxide nanorods of the present invention, respectively weighing the soluble salt of divalent metal and the soluble salt of trivalent metal, the molar ratio of the soluble salt of divalent metal and the soluble salt of trivalent metal 1-3:1, dissolve the soluble salt of divalent metal and the soluble salt of trivalent metal in deionized water to form a salt solution, then weigh urea, the molar ratio of urea to the soluble salt of trivalent metal 7:1-9:1, urea is dissolved in the salt solution to form a mixed solution, the mixed solution is placed in a polytetrafluoroethylene reactor, and reacted at 120-140°C for 8-15 hours to form a suspension The turbid liquid, after cooling, washed the precipitate with deionized water, then sucked and dried to obtain the hexagonal layered double hydroxide powder, dissolved the hexagonal layered double hydroxide powder in the alcohol solution, and ultrasonicated for 0.5- After 3 hours, adjust the pH of the alcohol solution with nitric acid to 1.5-3.5, continue ultrasonic treatment for 0.5-3 hours, filter and dry to obtain a powder, dissolve the above powder in formamide and obtain a layered bismuth after ultrasonic treatment for 0.5-3 hours. Hydroxide nanorods.
进一步的,所述的硝酸溶液的pH为1~3。 Further, the pH of the nitric acid solution is 1-3.
进一步的,所述的醇液为甲醇、或者乙醇、或者异丙醇、或者丙三醇。 Further, the alcohol liquid is methanol, or ethanol, or isopropanol, or glycerol.
进一步的,所述的二价离子为Mg2+、或者Zn2+、或者Mn2+。 Further, the divalent ions are Mg 2+ , or Zn 2+ , or Mn 2+ .
进一步的,所述的三价金属离子为Al3+、或者Fe3+为中的一种或者两种的组合。 Further, the trivalent metal ion is one of Al 3+ or Fe 3+ or a combination of the two.
进一步的,所述的二价金属的可溶性盐和三价金属的可溶性盐溶解于去离子水中后形成的盐溶液的浓度为0.05~0.15mol/L 。 Further, the concentration of the salt solution formed after dissolving the soluble salts of divalent metals and trivalent metals in deionized water is 0.05-0.15 mol/L.
本发明和已有技术相比,其技术进步是显著的。本发明的优点在于没有模板条件下合成了纵横比较大的层状双氢氧化物纳米棒,并且该发明具有工艺简单,操作方便、结构易控等优点。 Compared with the prior art, the technical progress of the present invention is remarkable. The invention has the advantages of synthesizing layered double hydroxide nanorods with large aspect ratio without a template, and the invention has the advantages of simple process, convenient operation, easy structure control and the like.
附图说明 Description of drawings
图1为通过本发明的方法制备得到的层状双氢氧化物纳米棒的TEM图。 Figure 1 is a TEM image of layered double hydroxide nanorods prepared by the method of the present invention.
具体实施方式 Detailed ways
实施例1: Example 1:
(1) 设定Mg/(Al+Fe)摩尔比为2,Al/Fe摩尔比为3,尿素/(Al+Fe)的摩尔比(R)为7,按一定比例称量原料Mg(NO3)2·6H2O、Al(NO3)3·9 H2O、Fe(NO3)3·9 H2O溶于去离子水配成0.1mol/L盐溶液,同时根据R值称取相应质量的尿素溶于该盐溶液。将上述混合溶液加入聚四氟乙烯反应釜中,设定反应温度为120℃反应时间为12h,形成悬浊液。待冷却后,用去离子水洗涤沉淀,在80℃下干燥抽滤干燥得六边形状层状双氢氧化物粉末A。 (1) Set the molar ratio of Mg/(Al+Fe) to 2, the molar ratio of Al/Fe to 3, and the molar ratio (R) of urea/(Al+Fe) to 7, and weigh the raw material Mg (NO 3 ) 2 6H 2 O, Al(NO 3 ) 3 9 H 2 O, Fe(NO 3 ) 3 9 H 2 O were dissolved in deionized water to make a 0.1mol/L salt solution, and weighed according to the R value Take the corresponding quality of urea and dissolve it in the saline solution. The above mixed solution was added into a polytetrafluoroethylene reactor, and the reaction temperature was set at 120° C. and the reaction time was 12 hours to form a suspension. After cooling, the precipitate was washed with deionized water, dried at 80° C. and suction-filtered to obtain a hexagonal layered double hydroxide powder A.
(2) 将适量粉末A溶于无水乙醇中超声处理后用pH=2的硝酸溶液调醇液至pH=2,继续超声后抽滤、干燥得粉末B。 (2) Dissolve an appropriate amount of powder A in absolute ethanol and sonicate it, then use nitric acid solution with pH=2 to adjust the alcohol to pH=2, continue to sonicate, filter and dry to get powder B.
(3) 将一定量粉末B溶于甲酰胺中超声处理即得到花状纳米棒。纳米棒长约500nm,直径约100nm。 (3) Dissolve a certain amount of powder B in formamide and sonicate to obtain flower-like nanorods. The nanorods are about 500nm long and about 100nm in diameter.
实施例2: Example 2:
(1) 设定Zn/(Al+Fe)摩尔比为2,Al/Fe摩尔比为3,尿素/(Al+Fe)的摩尔比(R)为9,按一定比例称量原料Zn(NO3)2·6H2O、Al(NO3)3·9 H2O、Fe(NO3)3·9 H2O溶于去离子水配成0.1mol/L盐溶液,同时根据R值称取相应质量的尿素溶于该盐溶液。将上述混合溶液加入聚四氟乙烯反应釜中,设定反应温度为140℃反应时间为12h,形成悬浊液。待冷却后,用去离子水洗涤沉淀,在80℃下干燥抽滤干燥得六边形状层状双氢氧化物粉末A。 (1) Set the molar ratio of Zn/(Al+Fe) to 2, the molar ratio of Al/Fe to 3, and the molar ratio (R) of urea/(Al+Fe) to 9, and weigh the raw material Zn (NO 3 ) 2 6H 2 O, Al(NO 3 ) 3 9 H 2 O, Fe(NO 3 ) 3 9 H 2 O were dissolved in deionized water to make a 0.1mol/L salt solution, and weighed according to the R value Take the corresponding quality of urea and dissolve it in the saline solution. The above mixed solution was added into a polytetrafluoroethylene reactor, and the reaction temperature was set at 140° C. and the reaction time was 12 hours to form a suspension. After cooling, the precipitate was washed with deionized water, dried at 80° C. and suction-filtered to obtain a hexagonal layered double hydroxide powder A.
(2) 将适量粉末A溶于无水乙醇中超声处理后用pH=1.5的硝酸溶液调醇液至pH=2,继续超声后抽滤、干燥得粉末B。 (2) Dissolve an appropriate amount of powder A in absolute ethanol and sonicate it, then use nitric acid solution of pH=1.5 to adjust the alcohol to pH=2, continue to sonicate, filter and dry to obtain powder B.
(3) 将一定量粉末B溶于甲酰胺中超声处理即得到花状纳米棒。纳米棒长约400nm,直径约50nm。 (3) Dissolve a certain amount of powder B in formamide and sonicate to obtain flower-like nanorods. The nanorods are about 400nm long and about 50nm in diameter.
实施例3: Example 3:
(1) 设定Mn/(Al+Fe)摩尔比为3,Al/Fe摩尔比为3,尿素/(Al+Fe)的摩尔比(R)为8,按一定比例称量原料Mn(NO3)2·6H2O、Al(NO3)3·9 H2O、Fe(NO3)3·9 H2O溶于去离子水配成0.1mol/L盐溶液,同时根据R值称取相应质量的尿素溶于该盐溶液。将上述混合溶液加入聚四氟乙烯反应釜中,设定反应温度为140℃反应时间为12h,形成悬浊液。待冷却后,用去离子水洗涤沉淀,在80℃下干燥抽滤干燥得六边形状层状双氢氧化物粉末A。 (1) Set the molar ratio of Mn/(Al+Fe) to 3, the molar ratio of Al/Fe to 3, and the molar ratio (R) of urea/(Al+Fe) to 8, and weigh the raw material Mn (NO 3 ) 2 6H 2 O, Al(NO 3 ) 3 9 H 2 O, Fe(NO 3 ) 3 9 H 2 O were dissolved in deionized water to make a 0.1mol/L salt solution, and weighed according to the R value Take the corresponding quality of urea and dissolve it in the saline solution. The above mixed solution was added into a polytetrafluoroethylene reactor, and the reaction temperature was set at 140° C. and the reaction time was 12 hours to form a suspension. After cooling, the precipitate was washed with deionized water, dried at 80° C. and suction-filtered to obtain a hexagonal layered double hydroxide powder A.
(2) 将适量粉末A溶于丙三醇中超声处理后用pH=1的硝酸溶液调醇液至pH=2,继续超声后抽滤、干燥得粉末B。 (2) Dissolve an appropriate amount of powder A in glycerol and sonicate it, then adjust the alcohol to pH=2 with nitric acid solution at pH=1, continue to sonicate, filter and dry to obtain powder B.
(3) 将一定量粉末B溶于甲酰胺中超声处理即得到花状纳米棒。纳米棒长约550nm,宽约120nm. (3) Dissolve a certain amount of powder B in formamide and sonicate to obtain flower-like nanorods. The nanorods are about 550nm long and 120nm wide.
实施例4: Example 4:
(1) 设定Mg/Al摩尔比为2, 尿素/Al的摩尔比(R)为7,按一定比例称量原料Mg(NO3)2·6H2O、Al(NO3)3·9 H2O溶于去离子水配成0.1mol/L盐溶液,同时根据R值称取相应质量的尿素溶于该盐溶液。将上述混合溶液加入聚四氟乙烯反应釜中,设定反应温度为140℃反应时间为12h,形成悬浊液。待冷却后,用去离子水洗涤沉淀,在80℃下干燥抽滤干燥得六边形状层状双氢氧化物粉末A。 (1) Set the molar ratio of Mg/Al to 2, the molar ratio (R) of urea/Al to 7, and weigh the raw materials Mg(NO 3 ) 2 ·6H 2 O, Al(NO 3 ) 3 ·9 according to a certain proportion Dissolve H 2 O in deionized water to form a 0.1 mol/L salt solution, and at the same time weigh the corresponding mass of urea according to the R value and dissolve it in the salt solution. The above mixed solution was added into a polytetrafluoroethylene reactor, and the reaction temperature was set at 140° C. and the reaction time was 12 hours to form a suspension. After cooling, the precipitate was washed with deionized water, dried at 80° C. and suction-filtered to obtain a hexagonal layered double hydroxide powder A.
(2) 将适量粉末A溶于无水乙醇中超声处理后用pH=1.5的硝酸溶液调醇液至pH=3,继续超声后抽滤、干燥得粉末B。 (2) Dissolve an appropriate amount of powder A in anhydrous ethanol, and then use nitric acid solution of pH=1.5 to adjust the alcohol to pH=3, continue ultrasonication, filter and dry to obtain powder B.
(3) 将一定量粉末B溶于甲酰胺中超声处理即得到花状纳米棒。纳米棒长约350nm,宽约50nm。 (3) Dissolve a certain amount of powder B in formamide and sonicate to obtain flower-like nanorods. The nanorods are about 350nm long and 50nm wide.
实施例5: Example 5:
(1) 设定Zn/Al摩尔比为3, 尿素/Al的摩尔比(R)为8,按一定比例称量原料Mg(NO3)2·6H2O、Al(NO3)3·9 H2O溶于去离子水配成0.1mol/L盐溶液,同时根据R值称取相应质量的尿素溶于该盐溶液。将上述混合溶液加入聚四氟乙烯反应釜中,设定反应温度为120℃反应时间为12h,形成悬浊液。待冷却后,用去离子水洗涤沉淀,在80℃下干燥抽滤干燥得六边形状层状双氢氧化物粉末A。 (1) Set the molar ratio of Zn/Al to 3, the molar ratio (R) of urea/Al to 8, and weigh the raw materials Mg(NO 3 ) 2 ·6H 2 O, Al(NO 3 ) 3 ·9 according to a certain proportion Dissolve H 2 O in deionized water to form a 0.1 mol/L salt solution, and at the same time weigh the corresponding mass of urea according to the R value and dissolve it in the salt solution. The above mixed solution was added into a polytetrafluoroethylene reactor, and the reaction temperature was set at 120° C. and the reaction time was 12 hours to form a suspension. After cooling, the precipitate was washed with deionized water, dried at 80° C. and suction-filtered to obtain a hexagonal layered double hydroxide powder A.
(2) 将适量粉末A溶于无水乙醇中超声处理后用pH=3的硝酸溶液调醇液至pH=2.5,继 续超声后抽滤、干燥得粉末B。 (2) Dissolve an appropriate amount of powder A in absolute ethanol for ultrasonic treatment, then adjust the alcohol with pH=3 nitric acid solution to pH=2.5, continue ultrasonication, filter and dry to obtain powder B.
(3) 将一定量粉末B溶于甲酰胺中超声处理即得到花状纳米棒。纳米棒长约500nm,宽约150nm。 (3) Dissolve a certain amount of powder B in formamide and sonicate to obtain flower-like nanorods. The nanorods are about 500nm long and 150nm wide.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410543801.2A CN104310449B (en) | 2014-10-15 | 2014-10-15 | A kind of preparation method of laminated double hydroxide nanometer rod |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410543801.2A CN104310449B (en) | 2014-10-15 | 2014-10-15 | A kind of preparation method of laminated double hydroxide nanometer rod |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104310449A true CN104310449A (en) | 2015-01-28 |
CN104310449B CN104310449B (en) | 2016-07-06 |
Family
ID=52365803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410543801.2A Expired - Fee Related CN104310449B (en) | 2014-10-15 | 2014-10-15 | A kind of preparation method of laminated double hydroxide nanometer rod |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104310449B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109414686A (en) * | 2016-03-17 | 2019-03-01 | 沙特阿拉伯石油公司 | High aspect ratio layered double-hydroxide material and preparation method |
CN109641761A (en) * | 2016-06-17 | 2019-04-16 | Scg化学有限公司 | Layered double-hydroxide |
CN115155507A (en) * | 2022-07-07 | 2022-10-11 | 浙江大学 | Magnesium oxycarbonate loaded green embroidery nanocomposite material, preparation method and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101318687A (en) * | 2008-06-06 | 2008-12-10 | 北京化工大学 | A kind of preparation method of micron-sized fluffy layered double metal hydroxide |
WO2012150460A1 (en) * | 2011-05-04 | 2012-11-08 | Isis Innovation Limited | Method for the preparation of layered double hydroxides |
CN103274437A (en) * | 2013-06-21 | 2013-09-04 | 北京化工大学 | Three-dimensional flower-like layered double hydroxide and preparation method thereof |
JP2013212937A (en) * | 2012-03-30 | 2013-10-17 | Kao Corp | Method for producing layered double hydroxide |
CN103552988A (en) * | 2013-09-30 | 2014-02-05 | 东南大学 | Layered double hydroxide based composite material with fiber hierarchical structure and preparation method thereof |
CN103964391A (en) * | 2013-01-28 | 2014-08-06 | 北京化工大学 | Flaky structure layered composite hydroxide and preparation method thereof |
-
2014
- 2014-10-15 CN CN201410543801.2A patent/CN104310449B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101318687A (en) * | 2008-06-06 | 2008-12-10 | 北京化工大学 | A kind of preparation method of micron-sized fluffy layered double metal hydroxide |
WO2012150460A1 (en) * | 2011-05-04 | 2012-11-08 | Isis Innovation Limited | Method for the preparation of layered double hydroxides |
JP2013212937A (en) * | 2012-03-30 | 2013-10-17 | Kao Corp | Method for producing layered double hydroxide |
CN103964391A (en) * | 2013-01-28 | 2014-08-06 | 北京化工大学 | Flaky structure layered composite hydroxide and preparation method thereof |
CN103274437A (en) * | 2013-06-21 | 2013-09-04 | 北京化工大学 | Three-dimensional flower-like layered double hydroxide and preparation method thereof |
CN103552988A (en) * | 2013-09-30 | 2014-02-05 | 东南大学 | Layered double hydroxide based composite material with fiber hierarchical structure and preparation method thereof |
Non-Patent Citations (4)
Title |
---|
A. V. RADHA等: "Suppression of the Reversible Thermal Behavior of the Layered Double Hydroxide (LDH) of Mg with Al: Stabilization of Nanoparticulate Oxides", 《LANGMUIR》 * |
HONGYU WU等: "Synthesis of Zn/Co/Fe-layered double hydroxide nanowires with controllable morphology in a water-in-oil microemulsion", 《MATERIALS CHARACTERIZATION》 * |
PENG DING等: "Inorganic template directed assembly of dendritic LDH nanostructures and their properties of morphological preservation and facile exfoliation", 《MATERIALS LETTERS》 * |
孙灵娜等: "Mg-Al层状双氢氧化物和MgAl2O4微纳结构制备", 《深圳大学学报理工版》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109414686A (en) * | 2016-03-17 | 2019-03-01 | 沙特阿拉伯石油公司 | High aspect ratio layered double-hydroxide material and preparation method |
CN109414686B (en) * | 2016-03-17 | 2021-09-28 | 沙特阿拉伯石油公司 | High aspect ratio layered double hydroxide materials and methods of making the same |
CN109641761A (en) * | 2016-06-17 | 2019-04-16 | Scg化学有限公司 | Layered double-hydroxide |
CN115155507A (en) * | 2022-07-07 | 2022-10-11 | 浙江大学 | Magnesium oxycarbonate loaded green embroidery nanocomposite material, preparation method and application thereof |
CN115155507B (en) * | 2022-07-07 | 2023-07-07 | 浙江大学 | Magnesium oxide-loaded green embroidery nanocomposite, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104310449B (en) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015196866A1 (en) | Method for preparing cuprous oxide | |
CN105778906B (en) | Come from the metallic element original position doping fluorescent carbon point synthetic method of chitosan biological matter | |
CN101717108B (en) | Industrial preparation method of rare earth hydrate and oxide nano-rod | |
CN108083316B (en) | A kind of preparation method of nanometer rare earth oxide powder | |
CN107673382A (en) | A kind of preparation method of water soluble hydroxy aluminum oxide nanoparticle | |
CN102502853A (en) | Method for preparing nanometer manganese dioxide by microwave reflux method | |
CN102259929A (en) | Method for preparing porous nano or submicron rod-like manganese oxide | |
CN103449534A (en) | Method for preparing magnetic nanoparticle by using ionic liquid as template agent | |
CN104310449B (en) | A kind of preparation method of laminated double hydroxide nanometer rod | |
Xing et al. | Highly uniform Gd (OH) 3 and Gd2O3: Eu3+ hexagram-like microcrystals: glucose-assisted hydrothermal synthesis, growth mechanism and luminescence property | |
CN104401955B (en) | A kind of preparation method of BSA/Zn3(PO4)3 hybrid nano flower | |
CN105646185A (en) | Calcium metal-organic coordination polymer and preparation method thereof | |
CN106467315B (en) | One pot of precipitation method prepares Ce0.8Sm0.2O1.9‑La1‑xSrxFe1‑yCoyO3‑δThe method of superfine powder | |
CN103739020B (en) | Method for preparing porous nano ferroferric oxide | |
CN103172107B (en) | Preparation method of head-to-head growing zinc oxide micron structure and product of zinc oxide micro structure | |
CN102992376A (en) | Preparation method of sheet-shaped nano-grade cerium oxide | |
CN103241761B (en) | A kind of simple method for preparing of three-dimensional flower-shaped micro-nano copper oxide | |
CN102923757B (en) | Method for preparing ZnO Nano-rods | |
CN102923669B (en) | Benzoic acid-intercalated laminated transition metal hydroxide one-dimensional nano material with reversible transition structure and preparation method thereof | |
CN101700912B (en) | Preparation method of filamentous nano manganese dioxide | |
CN100420629C (en) | 4A zeolite molecular sieve and preparation method thereof | |
CN106517315B (en) | 1-dimention nano composite metal oxide gas-sensing material and preparation method thereof | |
CN105293461B (en) | A kind of preparation method of Oil soluble hydroxy apatite nanometer sheet | |
CN103387263B (en) | Lead molybdate nano crystal material and preparation method thereof | |
CN104326467B (en) | A kind of preparation method of flower-shaped lithium manganese phosphate nano particle and product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160706 Termination date: 20181015 |