CN104294095A - 煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金及铝合金电缆 - Google Patents
煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金及铝合金电缆 Download PDFInfo
- Publication number
- CN104294095A CN104294095A CN201410469545.7A CN201410469545A CN104294095A CN 104294095 A CN104294095 A CN 104294095A CN 201410469545 A CN201410469545 A CN 201410469545A CN 104294095 A CN104294095 A CN 104294095A
- Authority
- CN
- China
- Prior art keywords
- aluminium alloy
- cable
- aluminum alloy
- core
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Conductive Materials (AREA)
- Insulated Conductors (AREA)
Abstract
本发明公开了一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金及铝合金电缆,其中,铝合金材料包括的组分及各组分的重量百分比如下:Fe:0.2-1.1%;Mg:0.01-0.4%;Cu:0.01-0.4%;Zr:0.001-0.2%;Si:0-0.1%;B:0-0.2%;微量元素:0.001-0.3%;余量为Al和杂质;其中,所述微量元素为Ca、Ni、Ti、Zn中的至少两种。将上述铝合金材料通过熔炼、铸造、轧制工艺得到铝合金杆,再经拉制、束绞、软化而成铝合金线芯,再将导体线芯经过挤包绝缘、成缆、挤包护套或铠装制成铝合金电缆。提供一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金,具有高强度、高导电率、弯曲性能良好等特性;由该铝合金制成的铝合金电缆能满足煤矿领域中对电缆性能的要求。
Description
技术领域
本发明涉及煤矿电缆技术领域,具体涉及一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金及铝合金电缆。
背景技术
煤矿用电缆由于使用的环境复杂、工作条件恶劣、且移动频繁,使用寿命不长,瓦斯积聚的区域又十分危险,因此不仅对电缆本身安全性要求很高,而且对频繁移动场合用电缆的耐磨性、抗外界拉力性能要求很高。因此,煤矿用电缆属于电缆行业中技术含量较高的产品。
普通的电缆采用铜芯导线,随着对铜资源的过度开采,铜资源日益紧张,且濒临匮乏,因此需要使用其他材料的导线代替铜芯导线,才能满足市场的需求。金属材料中,铝具有导电效果好、质轻、价格低廉等特性,且近年来,出于环保意识的加强,强烈需要减轻重量以提高机械燃料利用率,因此,以铝芯电缆代替铜芯电缆已是大势所趋。现有技术中,已研制出铝芯电缆,然而普通铝芯电缆存在机械性能和抗腐蚀性能较差等缺陷,不具备满足煤矿用电缆频繁移动的良好的弯曲性能;且根据煤矿用电缆的恶劣环境,对电缆导体的导电率和机械强度有较高的要求,而现有普通的铝芯电缆的导电率和机械强度性能不能满足煤矿用电缆的要求。因此,开发出一种能满足煤矿业中使用要求的铝合金电缆具有十分广阔的市场前景。
发明内容
本发明的目的是克服以上缺点,提供一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金及铝合金电缆,该铝合金具有高强度、高导电率、弯曲性能良好等特性,由该铝合金制成的铝合金电缆能满足煤矿领域中对电缆性能的要求。
本发明的技术方案是:
一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金,所述铝合金包括的组分及各组分的重量百分比如下:
Fe:0.2-1.1%;
Mg:0.01-0.4%;
Cu:0.01-0.4%;
Zr:0.001-0.2%;
Si:0-0.1%;
B:0-0.2%;
微量元素:0.001-0.3%;
余量为Al和杂质;
其中,所述微量元素为Ca、Ni、Ti、Zn中的至少两种;
所述的铝合金电阻率小于等于0.028264Ω·mm2/m,断裂伸长率大于等于10%,90度疲劳弯折次数大于等于30次。
进一步地,所述铝合金还包括稀土元素,所述稀土元素的含量占铝合金成分总重量的0.1-0.3%。
进一步地,所述稀土元素包括Ce、La,所述Ce和La占稀土元素总量的至少50%。
进一步地,所述铝合金在温度120℃、压应力120MPa条件下,1-100小时的平均蠕变速度小于等于1×10-2(%/h)。
一种煤矿用铝合金电缆,所述铝合金电缆的加工工艺包括如下步骤:
a、将上述铝合金经过熔炼、铸造、轧制得到铝合金杆;
b、将步骤a得到的铝合金杆经过拉制、束绞、软化处理得到铝合金导体线芯;
c、将步骤b得到的导体线芯经过挤包绝缘、成缆、挤包护套或铠装制成铝合金电缆。
进一步地,所述铝合金导体线芯由10-2000根直径分别为0.2-0.5mm的单丝束绞制成,所述单丝由所述铝合金杆经过拉制得到。
进一步地,所述铝合金电缆适用于-40℃-90℃的矿井环境。
进一步地,所述铝合金电缆适用于额定电压8.7/10kV及以下等级的煤矿用移动类橡套软电缆。
进一步地,所述铝合金电缆在90℃长期运行情况下,载流量不低于相同截面铜电缆的80%。
进一步地,所述铝合金电缆经过9000次抗弯曲试验后不短路、不断路。
本发明提供的煤矿电缆用铝合金及铝合金电缆,具有如下优点:
1、本发明提供的煤矿用铝合金,对铝合金的元素进行优化,从而改善该铝合金的性能。本发明的合金材料中,通过加入Fe元素,可以改善合金的机械强度和拉伸性能,Fe还能明显的提高高温抗蠕变性能,以及提高合金的抗疲劳性能。在铝合金中加入少量的Mg,细化铸造组织。Cu是重要的合金元素,有一定的固溶强化效果,此外时效析出的CuAl2有着明显的时效强化效果,Cu的加入可以提高合金的强度以及高温蠕变性能,并能改善抗疲劳性能。
在合金中加入锌,形成强化相MgZn2,对合金产生明显的强化作用;MgZn2含量提高时,可明显增加抗拉强度和屈服强度。本发明方案中,在Al-Zn-Mg基础上加入铜元素,形成Al-Zn-Mg-Cu系合金,强化相MgZn2强化效果大大提高,在所有铝合金中最大。
锆和铝形成ZrAl3化合物,可阻碍再结晶过程,细化再结晶晶粒,由于锆对淬火敏感性的影响比铬和锰的小,因此宜用锆来代替铬和锰细化再结晶组织,同时,Zn的加入还可配合抑制晶粒粗化;此外,Zr还可显著改性合金的抗疲劳弯曲性能,提高电缆的使用寿命。
本发明提供的煤矿用铝合金,选择在合金中添加少量的Si,Si与Mg形成MgSi强化相提高再结晶温度和改变时效行为,使制品的再结晶晶粒得以细化,强度、韧性得以提高,塑性、耐蚀性得到改善,提高铝合金的屈服强度及延伸率,避免铝合金产品的再加工,提高生产效率,降低生产成本。本发明对Si的含量作了限定,过多的Si会导致拉伸性能降低,影响到电缆的加工性能,并且会降低导体的疲劳弯曲性能,且过多的Si还会降低电性能,而少量硅的存在,使铝硅合金具有极好的铸造性能和抗蚀性。
Ca在铝合金中固溶度极低,与铝形成CaAl4化合物,钙能强化铝合金的高温性能,与Fe等金属元素配合作用能提高铝合金的抗蠕变性能,同时微量钙有利于去除铝液中的氢;钙又是铝合金的超塑性元素,钙和硅形成CaSi,不溶于铝,由于减小了硅的固溶量,可稍微提高工业纯铝的导电性能。
Ni的加入,提高了铝合金材料的热处理温度,使铝合金的强化相得到充分扩散进基体强化相,进一步提高了强度和导电性能,是对材料抗蠕变性能的补充,提高材料力学性能和塑性加工性,可顺利地热轧和冷轧。
本发明还优选加入一定量的B,可以改善加工性能,特别是单丝微拉和束绞方面的加工性能。
Ti是铝合金中常用的添加元素,以Al-Ti或Al-Ti-B中间合金形式加入。钛与铝形成TiAl2相,成为结晶时的非自发核心,起细化铸造组织和焊缝组织的作用;Ti的加入不仅有利于最终产品铝合金线的机械性能的提高而且一定量的Ti保证了铝合金的柔韧性。
本发明提供的煤矿用铝合金,还优选添加一定量的稀土元素RE,其中Ce、La占稀土元素总含量的至少50%,稀土元素不仅可以显著提高合金的电性能,还能起到提高合金抗疲劳弯曲性能的效果,延长了电缆的使用寿命。优选Ce和La,是因为这两种元素在本发明中效果较其他稀土元素改善效果更明显。
本发明通过优化选择合金成分和合理调整合金成分的含量,制定合金配方,既可以改善合金的性能,又不会因过多的量会恶化合金的性能,特别是电性能和延伸性能。本发明提供的铝合金材料,通过合理的合金成分配比来保障合金的性能。
本发明提供的煤矿用铝合金材料,通过熔炼、铸造、固溶与时效处理、轧制工艺后,得到的铝合金的电阻率小于等于0.028264Ω·mm2/m,电导率大于等于61%IACS,断裂伸长率不低于10%,温度120℃、120MPa压应力条件下,1-100小时的平均蠕变速度小于等于1×10-2(%/h),90度疲劳弯折次数大于等于30次,且单丝直径最小可拉到0.2mm。
2、本发明提供的煤矿用铝合金电缆,由本发明提供的铝合金制成,得到的煤矿用铝合金电缆不仅具有很好的导电性能、拉伸性能、抗蠕变性能和抗疲劳性能,特别是抗弯曲性能也达到了煤矿用铜芯的技术要求;同时,煤矿用铝合金电缆由于柔韧性好,且重量较铜轻很多,因而作为煤矿用软电缆使用起来更加方便,有效的降低了煤矿用电缆的成本,提高了工作效率,具有非常好技术经济效益。本发明提供的煤矿用铝合金电缆,适用于煤矿用移动类橡套软电缆、额定电压8.7/10kV及以下煤矿用橡套软电缆,在90℃长期运行条件下,载流量不低于相同截面铜电缆的80%;且本发明提供的煤矿用铝合金电缆经9000次抗弯曲试验后不短路、不断路,其中,9000次抗弯曲试验按MT818.1规定的试验方法进行。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明中,煤矿用铝合金电缆所用的铝合金导体线芯的制备方法,包括以下步骤:
a、通过对熔融铝合金进行铸造得到铸造材料:按比例加入本发明中提到的铝合金成分,在700-800℃条件下进行熔炼工艺,然后在650-680℃条件下进行铸造,得到铸锭;
b、将步骤a得到的铸锭在460-550℃范围内固溶处理2-6h,然后在20-100℃的冷却水中快速淬火;
c、将步骤b得到的铸锭在150-250℃范围内时效处理6-10h,再升温至300-400℃,轧制成合金杆;
d、在280-300℃范围内,将步骤c轧制成的合金杆进行拉制处理,使截面积缩小至步骤c中合金杆截面积的50-60%,得到铝合金线;
e、在形成铝合金核的温度条件下,将步骤d得到的铝合金线再次进行拉制处理,使截面积缩小至步骤d中铝合金线截面积的70-100%,得到铝合金导体单丝;
f、将若干根步骤e得到的铝合金导体单丝绞合,在230-320℃条件下进行第一次热处理3-6h,然后在300-400℃条件下将再次热处理8-14h,得到铝合金导体线芯。
上述铝合金导体线芯的制备方法中,铸造步骤中,加热应当缓慢,再加入多种合金锭时,应在300℃以下装炉,以保证铸件加热均匀,在尽可能高的温度下(接近于共晶的熔点)通过较长时间的固容热处理使合金元素与第二相溶于基体,由于微量合金元素的融入,使基体成为亚饱和状态,通过固容处理可以大幅提高合金的强度和塑性,改善合金的耐腐蚀性能;在固溶后快速冷却(从铸件吊起到铸件完全浸入冷却介质中时间不宜超过15s,以使铸件淬火均匀)提高铸件的拉伸性能和柔韧性;在时效开始阶段,基体饱和度很大,铸件的硬度会大幅提高,随着时效时间的增加,基体和析出物之间的浓度达到平衡,此时析出物析出开始变慢,此时在经过较短的保温时间,可以抑制晶粒生长,从而得到较少粗精的铝合金,由此获得优良的力学性能即较高的强度,良好的塑性和韧性;步骤f中两次退火处理可以最大限度的铝合金绞线的内应力,稳定合金线的电学性能,稳定尺寸减少变形,大大提高合金线的拉伸性和弯曲性。
以下将针对本发明提供的铝合金及铝合金电缆的技术方案分别进行详细阐述:
实施例1
一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金,组分及各组分的重量百分比如下(总重量:1T):
上述铝合金材料中,添加的微量元素为Ca、Ni。
应用上述铝合金材料制备铝合金线芯的方法,具体步骤如下:
a、通过对熔融铝合金进行铸造得到铸造材料:按比例加入本发明中提到的铝合金成分,在700℃条件下进行熔炼工艺,然后在650℃条件下进行铸造,得到铸锭;
b、将步骤a得到的铸锭在500℃条件下固溶处理2h,然后在20℃的冷却水中快速淬火;
c、将步骤b得到的铸锭在250℃条件下时效处理6h,再升温至370℃,轧制成合金杆;
d、在290℃条件下,将步骤c轧制成的合金杆进行拉制处理,使截面积缩小至步骤c中合金杆截面积的55%,得到铝合金线;
e、在形成铝合金核的温度条件下,将步骤d得到的铝合金线再次进行拉制处理,使截面积缩小至步骤d中铝合金线截面积的80%,得到铝合金导体单丝;
f、将若干根步骤e得到的铝合金导体单丝绞合,在230℃条件下进行第一次热处理4h,然后在350℃条件下将再次热处理10h,得到铝合金导体线芯。其中,铝合金线芯可由10-2000根直径分别为0.2-0.5mm的铝合金导体单丝束绞制成,根据铝合金电缆的规格确定铝合金导体单丝丝的直径和数量。
其中,步骤a中,铝合金成分加入形式可以为:按比例加入按比例加入Al锭、Al-Fe锭、Al-Mg锭、Al-Cu锭、Al-Zr锭、Al-Ca锭、Al-Ni锭,或加入纯金属锭。
将上述铝合金导体线芯经过挤包绝缘、成缆、挤包护套或铠装制成煤矿用铝合金电缆。
其中,铝合金电缆包括缆芯和设置在缆芯外的外护套层,缆芯由动力主绝缘线芯、接地线芯、控制线芯绞合而成,且动力主绝缘线芯、接地线芯、控制线芯分别为铝合金导体线芯。
上述外护套层的材料优选为聚氯乙烯、交联聚乙烯、聚氯乙烯-丁腈聚合物、聚酰胺、氟化乙丙烯、氯化聚乙烯、聚丙烯中的一种,通过选择外护套层的材料,增加电缆耐磨性,使其适应于煤矿用电缆频繁移动的特点。
该电缆可用于矿井中-40℃-90℃环境下,应用范围广,特别适用于额定电压8.7/10kV及以下煤矿用移动类橡套软电缆。通过测试,在90℃长期运行载流量能达到不低于相同截面铜电缆的80%;且该煤矿用铝合金电缆9000次抗弯曲试验后不短路、不断路,本发明9000次抗弯曲试验按MT818.1规定的试验方法进行。
实施例2
一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金,组分及各组分的重量百分比如下(总重量:1T):
上述铝合金材料中,添加的微量元素为Ni、Ti;稀土元素RE包含Ce、La和Er,其中,Ce和La的含量占稀土元素总量的70%。
应用上述铝合金材料制备铝合金线芯的方法,具体步骤如下:
a、通过对熔融铝合金进行铸造得到铸造材料:按比例加入本发明中提到的铝合金成分,在800℃条件下进行熔炼工艺,然后在680℃条件下进行铸造,得到铸锭;
b、将步骤a得到的铸锭在550℃条件下固溶处理6h,然后在100℃的冷却水中快速淬火;
c、将步骤b得到的铸锭在150℃条件下时效处理10h,再升温至400℃,轧制成合金杆;
d、在300℃条件下,将步骤c轧制成的合金杆进行拉制处理,使截面积缩小至步骤c中合金杆截面积的50%,得到铝合金线;
e、在形成铝合金核的温度条件下,将步骤d得到的铝合金线再次进行拉制处理,使截面积缩小至步骤d中铝合金线截面积的100%,得到铝合金导体单丝;
f、将若干根步骤e得到的铝合金导体单丝绞合,在320℃条件下进行第一次热处理6h,然后在400℃条件下将再次热处理14h,得到铝合金导体线芯。该步骤中,因铝合金线截面积不缩小,即得到的铝合金导体单丝为步骤d中的铝合金线。其中,铝合金线芯可由10-2000根直径分别为0.2-0.5mm的铝合金导体单丝束绞制成,根据铝合金电缆的规格确定铝合金导体单丝丝的直径和数量。
其中,步骤a中,铝合金成分加入形式可以为:按比例加入合金锭,或加入纯金属锭。
将上述铝合金导体线芯经过挤包绝缘、成缆、挤包护套或铠装制成煤矿用铝合金电缆。
其中,铝合金电缆包括缆芯和设置在缆芯外的外护套层,缆芯由动力主绝缘线芯、接地线芯、控制线芯绞合而成,且动力主绝缘线芯、接地线芯、控制线芯分别为铝合金导体线芯。
上述外护套层的材料优选为聚氯乙烯、交联聚乙烯、聚氯乙烯-丁腈聚合物、聚酰胺、氟化乙丙烯、氯化聚乙烯、聚丙烯中的一种,通过选择外护套层的材料,增加电缆耐磨性,使其适应于煤矿用电缆频繁移动的特点。
该电缆可用于矿井中-40℃-90℃环境下,应用范围广,特别适用于额定电压8.7/10kV及以下煤矿用移动类橡套软电缆。通过测试,在90℃长期运行载流量能达到不低于相同截面铜电缆的80%;且该煤矿用铝合金电缆9000次抗弯曲试验后不短路、不断路,本发明9000次抗弯曲试验按MT818.1规定的试验方法进行。
实施例3
一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金,组分及各组分的重量百分比如下(总重量:1T):
上述铝合金材料中,添加的微量元素为Ca、Zn。
应用上述铝合金材料制备铝合金线芯的方法,具体步骤如下:
a、通过对熔融铝合金进行铸造得到铸造材料:按比例加入本发明中提到的铝合金成分,在740℃条件下进行熔炼工艺,然后在660℃条件下进行铸造,得到铸锭;
b、将步骤a得到的铸锭在460℃条件下固溶处理5h,然后在50℃的冷却水中快速淬火;
c、将步骤b得到的铸锭在200℃条件下时效处理8h,再升温至300℃,轧制成合金杆;
d、在300℃条件下,将步骤c轧制成的合金杆进行拉制处理,使截面积缩小至步骤c中合金杆截面积的60%,得到铝合金线;
e、在形成铝合金核的温度条件下,将步骤d得到的铝合金线再次进行拉制处理,使截面积缩小至步骤d中铝合金线截面积的70%,得到铝合金导体单丝;
f、将若干根步骤e得到的铝合金导体单丝绞合,在280℃条件下进行第一次热处理3h,然后在300℃条件下将再次热处理8h,得到铝合金导体线芯。其中,铝合金线芯可由10-2000根直径分别为0.2-0.5mm的铝合金导体单丝束绞制成,根据铝合金电缆的规格确定铝合金导体单丝丝的直径和数量。
其中,步骤a中,铝合金成分加入形式可以为:按比例加入合金锭,或加入纯金属锭。
将上述铝合金导体线芯经过挤包绝缘、成缆、挤包护套或铠装制成煤矿用铝合金电缆。
其中,铝合金电缆包括缆芯和设置在缆芯外的外护套层,缆芯由动力主绝缘线芯、接地线芯、控制线芯绞合而成,且动力主绝缘线芯、接地线芯、控制线芯分别为铝合金导体线芯。
上述外护套层的材料优选为聚氯乙烯、交联聚乙烯、聚氯乙烯-丁腈聚合物、聚酰胺、氟化乙丙烯、氯化聚乙烯、聚丙烯中的一种,通过选择外护套层的材料,增加电缆耐磨性,使其适应于煤矿用电缆频繁移动的特点。
该电缆可用于矿井中-40℃-90℃环境下,应用范围广,特别适用于额定电压8.7/10kV及以下煤矿用移动类橡套软电缆。通过测试,在90℃长期运行载流量能达到不低于相同截面铜电缆的80%;且该煤矿用铝合金电缆9000次抗弯曲试验后不短路、不断路,本发明9000次抗弯曲试验按MT818.1规定的试验方法进行。
实施例4
一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金,组分及各组分的重量百分比如下(总重量:1T):
上述铝合金材料中,添加的微量元素为Ca、Ni、Ti、Zn;稀土元素RE为Ce、La。
铝合金电缆由以下加工工艺加工制得:
a、将上述的铝合金经过熔炼、铸造、轧制得到铝合金杆;
b、将步骤a得到的铝合金杆经过拉制、束绞、软化处理得到铝合金导体线芯;
c、将步骤b得到的导体线芯经过挤包绝缘、成缆、挤包护套或铠装制成铝合金电缆。
上述铝合金导体线芯可由10-2000根直径分别为0.2-0.5mm的单丝束绞制成,且单丝由所述铝合金杆经过拉制得到。具体根据铝合金电缆的规格确定铝合金导体单丝丝的直径和数量。
其中,铝合金电缆包括缆芯和设置在缆芯外的外护套层,缆芯由动力主绝缘线芯、接地线芯、控制线芯束绞而成,且动力主绝缘线芯、接地线芯、控制线芯分别为铝合金导体线芯。线芯层之间有填心层,且动力主绝缘线芯与接地线芯、控制线芯同心成缆。
上述外护套层的材料优选为聚氯乙烯、交联聚乙烯、聚氯乙烯-丁腈聚合物、聚酰胺、氟化乙丙烯、氯化聚乙烯、聚丙烯中的一种,通过选择外护套层的材料,增加电缆耐磨性,使其适应于煤矿用电缆频繁移动的特点。
该电缆可用于矿井中-40℃-90℃环境下,应用范围广,特别适用于额定电压8.7/10kV及以下煤矿用移动类橡套软电缆。通过测试,在90℃长期运行条件下,载流量不低于相同截面铜电缆的80%;且该煤矿用铝合金电缆9000次抗弯曲试验后不短路、不断路,本发明9000次抗弯曲试验按MT818.1规定的试验方法进行。
实施例5
一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金,组分及各组分的重量百分比如下(总重量:1T):
上述铝合金材料中,添加的微量元素为Ni、Zn;稀土元素RE包含Ce、La和Pr,其中,Ce和La的含量占稀土元素总量的80%。
铝合金电缆由以下加工工艺加工制得:
a、将上述的铝合金经过熔炼、铸造、轧制得到铝合金杆;
b、将步骤a得到的铝合金杆经过拉制、束绞、软化处理得到铝合金导体线芯;
c、将步骤b得到的导体线芯经过挤包绝缘、成缆、挤包护套或铠装制成铝合金电缆。
上述铝合金导体线芯可由10-2000根直径分别为0.2-0.5mm的单丝束绞制成,且单丝由所述铝合金杆经过拉制得到。具体根据铝合金电缆的规格确定铝合金导体单丝丝的直径和数量。
其中,铝合金电缆包括缆芯和设置在缆芯外的外护套层,缆芯由动力主绝缘线芯、接地线芯、控制线芯绞合而成,且动力主绝缘线芯、接地线芯、控制线芯分别为铝合金导体线芯。
上述外护套层的材料优选为聚氯乙烯、交联聚乙烯、聚氯乙烯-丁腈聚合物、聚酰胺、氟化乙丙烯、氯化聚乙烯、聚丙烯中的一种,通过选择外护套层的材料,增加电缆耐磨性,使其适应于煤矿用电缆频繁移动的特点。
该电缆可用于矿井中-40℃-90℃环境下,应用范围广,特别适用于额定电压8.7/10kV及以下煤矿用移动类橡套软电缆。通过测试,在90℃长期运行载流量能达到不低于相同截面铜电缆的80%;且该煤矿用铝合金电缆9000次抗弯曲试验后不短路、不断路,本发明9000次抗弯曲试验按MT818.1规定的试验方法进行。
实施例6
一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金,组分及各组分的重量百分比如下(总重量:1T):
组分 | Fe | Mg | Cu | Zr | 微量元素 | Si | B | RE | Al和杂质 |
重量(Kg) | 10 | 0.3 | 0.6 | 0.3 | 0.06 | 0.02 | 0.6 | 1 | 987.12 |
重量百分比 | 1 | 0.03 | 0.06 | 0.03 | 0.006 | 0.002 | 0.06 | 0.1 | 98.712 |
(%) |
上述铝合金材料中,添加的微量元素为Ca、Ni、Ti;稀土元素RE包含Ce、La和Er,其中,Ce和La的含量占稀土元素总量的50%。
铝合金电缆由以下加工工艺加工制得:
a、将上述的铝合金经过熔炼、铸造、轧制得到铝合金杆;
b、将步骤a得到的铝合金杆经过拉制、束绞、软化处理得到铝合金导体线芯;
c、将步骤b得到的导体线芯经过挤包绝缘、成缆、挤包护套或铠装制成铝合金电缆。
上述铝合金导体线芯可由10-2000根直径分别为0.2-0.5mm的单丝束绞制成,且单丝由所述铝合金杆经过拉制得到。具体根据铝合金电缆的规格确定铝合金导体单丝丝的直径和数量。
其中,铝合金电缆包括缆芯和设置在缆芯外的外护套层,缆芯由动力主绝缘线芯、接地线芯、控制线芯绞合而成,且动力主绝缘线芯、接地线芯、控制线芯分别为铝合金导体线芯。
上述外护套层的材料优选为聚氯乙烯、交联聚乙烯、聚氯乙烯-丁腈聚合物、聚酰胺、氟化乙丙烯、氯化聚乙烯、聚丙烯中的一种,通过选择外护套层的材料,增加电缆耐磨性,使其适应于煤矿用电缆频繁移动的特点。
该电缆可用于矿井中-40℃-90℃环境下,应用范围广,特别适用于额定电压8.7/10kV及以下煤矿用移动类橡套软电缆。通过测试,在90℃长期运行载流量能达到不低于相同截面铜电缆的80%;且该煤矿用铝合金电缆9000次抗弯曲试验后不短路、不断路,本发明9000次抗弯曲试验按MT818.1规定的试验方法进行。
实施例7
一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金,组分及各组分的重量百分比如下(总重量:1T):
上述铝合金材料中,添加的微量元素为Ca、Ti、Zn;稀土元素RE包含Ce、La和Er,其中,Ce和La的含量占稀土元素总量的60%。
铝合金电缆由以下加工工艺加工制得:
a、将上述的铝合金经过熔炼、铸造、轧制得到铝合金杆;
b、将步骤a得到的铝合金杆经过拉制、束绞、软化处理得到铝合金导体线芯;
c、将步骤b得到的导体线芯经过挤包绝缘、成缆、挤包护套或铠装制成铝合金电缆。
上述铝合金导体线芯可由10-2000根直径分别为0.2-0.5mm的单丝束绞制成,且单丝由所述铝合金杆经过拉制得到。具体根据铝合金电缆的规格确定铝合金导体单丝丝的直径和数量。
其中,铝合金电缆包括缆芯和设置在缆芯外的外护套层,缆芯由动力主绝缘线芯、接地线芯、控制线芯绞合而成,且动力主绝缘线芯、接地线芯、控制线芯分别为铝合金导体线芯。
上述外护套层的材料优选为聚氯乙烯、交联聚乙烯、聚氯乙烯-丁腈聚合物、聚酰胺、氟化乙丙烯、氯化聚乙烯、聚丙烯中的一种,通过选择外护套层的材料,增加电缆耐磨性,使其适应于煤矿用电缆频繁移动的特点。
该电缆可用于矿井中-40℃-90℃环境下,应用范围广,特别适用于额定电压8.7/10kV及以下煤矿用移动类橡套软电缆。通过测试,在90℃长期运行载流量能达到不低于相同截面铜电缆的80%;且该煤矿用铝合金电缆9000次抗弯曲试验后不短路、不断路,本发明9000次抗弯曲试验按MT818.1规定的试验方法进行。
实施例8
一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金,组分及各组分的重量百分比如下(总重量:1T):
上述铝合金材料中,添加的微量元素为Ni、Ti、Zn。
铝合金电缆由以下加工工艺加工制得:
a、将上述的铝合金经过熔炼、铸造、轧制得到铝合金杆;
b、将步骤a得到的铝合金杆经过拉制、束绞、软化处理得到铝合金导体线芯;
c、将步骤b得到的导体线芯经过挤包绝缘、成缆、挤包护套或铠装制成铝合金电缆。
上述铝合金导体线芯可由10-2000根直径分别为0.2-0.5mm的单丝束绞制成,且单丝由所述铝合金杆经过拉制得到。具体根据铝合金电缆的规格确定铝合金导体单丝丝的直径和数量。
其中,铝合金电缆包括缆芯和设置在缆芯外的外护套层,缆芯由动力主绝缘线芯、接地线芯、控制线芯绞合而成,且动力主绝缘线芯、接地线芯、控制线芯分别为铝合金导体线芯。
上述外护套层的材料优选为聚氯乙烯、交联聚乙烯、聚氯乙烯-丁腈聚合物、聚酰胺、氟化乙丙烯、氯化聚乙烯、聚丙烯中的一种,通过选择外护套层的材料,增加电缆耐磨性,使其适应于煤矿用电缆频繁移动的特点。该电缆可用于矿井中-40℃-90℃环境下,应用范围广,特别适用于额定电压8.7/10kV及以下煤矿用移动类橡套软电缆。通过测试,在90℃长期运行载流量能达到不低于相同截面铜电缆的80%;且该煤矿用铝合金电缆9000次抗弯曲试验后不短路、不断路,本发明9000次抗弯曲试验按MT818.1规定的试验方法进行。
将上述实施例1-8制备而得的铝合金依据GB/T3956进行导电性和电阻率实验,根据GB/T228-2002进行断裂伸长实验,在温度120℃、120MPa压应力条件下进行蠕变实验(1-100小时),90度疲劳弯折实验,实验数据如下:
表1铝合金性能参数表
从表1的实验数据可以看出,本发明提供的铝合金的电阻率小于等于0.028264Ω·mm2/m,电导率大于等于61%IACS,断裂伸长率大于等于10%,温度120℃、120MPa压应力条件下,1~100小时的平均蠕变速度小于等于1×10-2(%/h),90度疲劳弯折次数大于等于30次。
本发明提供的铝合金材料,Fe、Cu、Ni均能改善合金的高温蠕变性能,且Ca与Fe配合同样具有改善合金的高温蠕变性能的功效;Cu、Zr、Ti能提高合金的抗疲劳弯曲性能;Ca与Si形成CaSi,不溶于铝,由于减小了硅的固溶量,可稍微提高工业纯铝的导电性能;Mg与Si作用,形成MgSi强化相,提高再结晶温度和改变时效行为,使制品的再结晶晶粒得以进一步细化,强度、韧性得以提高,塑性、耐蚀性得到改善,提高铝合金的屈服强度及延伸率,因此,在有Mg、Si元素作用下,合金的断裂伸长性能好;而在合金材料中,添加一定量的稀土元素RE后,合金的性能得到优化,电性能、抗疲劳弯曲性能等其他性能均得到改善。
同时,本发明提供的铝合金材料,因各元素配合作用,使合金的加工性能优良,在制备电缆工艺中,单丝直径最小可拉到0.2mm。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的保护范围内所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金,其特征在于,所述铝合金包括的组分及各组分的重量百分比如下:
Fe:0.2-1.1%;
Mg:0.01-0.4%;
Cu:0.01-0.4%;
Zr:0.001-0.2%;
Si:0-0.1%;
B:0-0.2%;
微量元素:0.001-0.3%;
余量为Al和杂质;
其中,所述微量元素为Ca、Ni、Ti、Zn中的至少两种;
所述的铝合金电阻率小于等于0.028264Ω·mm2/m,断裂伸长率大于等于10%,90度疲劳弯折次数大于等于30次。
2.根据权利要求1所述的铝合金,其特征在于,所述铝合金还包括稀土元素,所述稀土元素的含量占铝合金成分总重量的0.1-0.3%。
3.根据权利要求2所述的铝合金,其特征在于,所述稀土元素包括Ce、La,所述Ce和La占稀土元素总量的至少50%。
4.根据权利要求1至3中任一项所述的铝合金,其特征在于,所述铝合金在温度120℃、压应力120MPa条件下,1-100小时的平均蠕变速度小于等于1×10-2(%/h)。
5.一种煤矿用铝合金电缆,其特征在于,所述铝合金电缆的加工工艺包括如下步骤:
a、将权利要求1至4中任一项所述的铝合金经过熔炼、铸造、轧制得到铝合金杆;
b、将步骤a得到的铝合金杆经过拉制、束绞、软化处理得到铝合金导体线芯;
c、将步骤b得到的导体线芯经过挤包绝缘、成缆、挤包护套或铠装制成铝合金电缆。
6.根据权利要求5所述的煤矿用铝合金电缆,其特征在于,所述铝合金导体线芯由10-2000根直径分别为0.2-0.5mm的单丝束绞制成,所述单丝由所述铝合金杆经过拉制得到。
7.根据权利要求5所述的煤矿用铝合金电缆,其特征在于,所述铝合金电缆适用于-40℃-90℃的矿井环境。
8.根据权利要求5所述的煤矿用铝合金电缆,其特征在于,所述铝合金电缆适用于额定电压8.7/10kV及以下等级的煤矿用移动类橡套软电缆。
9.根据权利要求5所述的煤矿用铝合金电缆,其特征在于,所述铝合金电缆在90℃长期运行情况下,载流量不低于相同截面铜电缆的80%。
10.根据权利要求5所述的煤矿用铝合金电缆,其特征在于,所述铝合金电缆经过9000次抗弯曲试验后不短路、不断路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410469545.7A CN104294095A (zh) | 2014-09-15 | 2014-09-15 | 煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金及铝合金电缆 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410469545.7A CN104294095A (zh) | 2014-09-15 | 2014-09-15 | 煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金及铝合金电缆 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104294095A true CN104294095A (zh) | 2015-01-21 |
Family
ID=52314041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410469545.7A Pending CN104294095A (zh) | 2014-09-15 | 2014-09-15 | 煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金及铝合金电缆 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104294095A (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105420556A (zh) * | 2015-11-19 | 2016-03-23 | 国家电网公司 | 特高压用铝合金导线 |
CN105908022A (zh) * | 2016-06-30 | 2016-08-31 | 贵州德江韫韬科技有限责任公司 | 一种高导电率铝合金材料及其制备方法 |
CN106409381A (zh) * | 2016-11-02 | 2017-02-15 | 宁波鸿源电子科技有限公司 | 一种聚苯胺增强导电铝片 |
CN108315602A (zh) * | 2018-01-09 | 2018-07-24 | 北京有色金属研究总院 | 一种铁路用稀土铝合金电缆导体及制备方法 |
CN109097619A (zh) * | 2018-08-29 | 2018-12-28 | 安庆市泽烨新材料技术推广服务有限公司 | 电缆用Al-Cu-Mg-Zr系铝合金 |
CN109652690A (zh) * | 2018-12-27 | 2019-04-19 | 东风线缆集团股份有限公司 | 一种用于高压电力电缆桥架的铝镁合金线材及其制备方法 |
CN114606414A (zh) * | 2022-03-11 | 2022-06-10 | 北京理工大学 | 一种高导电率再生铝合金导线及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4777487B1 (ja) * | 2008-08-11 | 2011-09-21 | 住友電気工業株式会社 | アルミニウム合金線の製造方法 |
CN103695727A (zh) * | 2013-12-27 | 2014-04-02 | 安徽欣意电缆有限公司 | Al-Fe-Cu-V-Ag铝合金、其制备方法以及铝合金电缆 |
CN103757489A (zh) * | 2013-12-26 | 2014-04-30 | 安徽欣意电缆有限公司 | 一种汽车线用Al-Fe-Cu-Ti铝合金及其线束 |
-
2014
- 2014-09-15 CN CN201410469545.7A patent/CN104294095A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4777487B1 (ja) * | 2008-08-11 | 2011-09-21 | 住友電気工業株式会社 | アルミニウム合金線の製造方法 |
CN103757489A (zh) * | 2013-12-26 | 2014-04-30 | 安徽欣意电缆有限公司 | 一种汽车线用Al-Fe-Cu-Ti铝合金及其线束 |
CN103695727A (zh) * | 2013-12-27 | 2014-04-02 | 安徽欣意电缆有限公司 | Al-Fe-Cu-V-Ag铝合金、其制备方法以及铝合金电缆 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105420556A (zh) * | 2015-11-19 | 2016-03-23 | 国家电网公司 | 特高压用铝合金导线 |
CN105420556B (zh) * | 2015-11-19 | 2017-08-18 | 国家电网公司 | 特高压用铝合金导线 |
CN105908022A (zh) * | 2016-06-30 | 2016-08-31 | 贵州德江韫韬科技有限责任公司 | 一种高导电率铝合金材料及其制备方法 |
CN106409381A (zh) * | 2016-11-02 | 2017-02-15 | 宁波鸿源电子科技有限公司 | 一种聚苯胺增强导电铝片 |
CN106409381B (zh) * | 2016-11-02 | 2018-02-16 | 宁波鸿源电子科技有限公司 | 一种聚苯胺增强导电铝片 |
CN108315602A (zh) * | 2018-01-09 | 2018-07-24 | 北京有色金属研究总院 | 一种铁路用稀土铝合金电缆导体及制备方法 |
CN109097619A (zh) * | 2018-08-29 | 2018-12-28 | 安庆市泽烨新材料技术推广服务有限公司 | 电缆用Al-Cu-Mg-Zr系铝合金 |
CN109652690A (zh) * | 2018-12-27 | 2019-04-19 | 东风线缆集团股份有限公司 | 一种用于高压电力电缆桥架的铝镁合金线材及其制备方法 |
CN114606414A (zh) * | 2022-03-11 | 2022-06-10 | 北京理工大学 | 一种高导电率再生铝合金导线及其制备方法 |
CN114606414B (zh) * | 2022-03-11 | 2022-12-02 | 北京理工大学 | 一种高导电率再生铝合金导线及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104294095A (zh) | 煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金及铝合金电缆 | |
CN104294091A (zh) | 煤矿电缆用Al-Fe-Cu-Zr系铝合金及铝合金电缆 | |
CN104294093A (zh) | 煤矿电缆用Al-Fe-Cu-Mg铝合金及铝合金电缆及制备方法 | |
JP5247584B2 (ja) | Al合金及びAl合金導電線 | |
CN103757489A (zh) | 一种汽车线用Al-Fe-Cu-Ti铝合金及其线束 | |
CN104299673A (zh) | 煤矿电缆用Al-Fe-Mg-Zr铝合金及铝合金电缆及制备方法 | |
CN104294090A (zh) | 煤矿电缆用Al-Fe-Cu-Mg-Ag铝合金及铝合金电缆及制备方法 | |
CN104294120A (zh) | 煤矿电缆用Al-Fe-Cu-Ag铝合金及铝合金电缆及制备方法 | |
CN104294094A (zh) | 一种煤矿电缆用Al-Fe-Cu-Zr系铝合金及铝合金电缆 | |
CN104294089A (zh) | 一种煤矿电缆用Al-Fe-Cu-Mg-Zr系铝合金及铝合金电缆 | |
CN104299674A (zh) | 一种煤矿电缆用Al-Fe-Cu系铝合金及铝合金电缆 | |
CN104294096B (zh) | 煤矿电缆用Al‑Fe‑Cu‑Mg‑Cr系铝合金及铝合金电缆 | |
CN104299669B (zh) | 煤矿电缆用Al‑Fe‑Cu‑Mg‑Mn系铝合金及铝合金电缆 | |
CN104299670A (zh) | 一种煤矿电缆用Al-Fe-Cu-Mn系铝合金及铝合金电缆 | |
CN103757485A (zh) | 一种Al-Fe-Cu-Mg铝合金及其制造的低压电缆 | |
CN104299672A (zh) | 一种煤矿电缆用Al-Fe-Mg系铝合金及铝合金电缆 | |
CN104299675A (zh) | 一种煤矿电缆用Al-Fe-Mg-Cr系铝合金及铝合金电缆 | |
CN103725930A (zh) | 一种汽车线用Al-Fe-Cu-Mg-Be铝合金及其线束 | |
CN104294092A (zh) | 煤矿电缆用Al-Fe-Cu-Cr铝合金及铝合金电缆及制备方法 | |
CN104294114A (zh) | 一种煤矿电缆用Al-Fe-Mg-Mn系铝合金及铝合金电缆 | |
CN103757487A (zh) | 一种汽车线用Al-Fe-Mg-Ni铝合金及其线束 | |
CN104299671A (zh) | 一种煤矿电缆用Al-Fe-Mg-Zr系铝合金及铝合金电缆 | |
CN103757495A (zh) | 一种汽车线用Al-Fe-Cu-Mg-Ni铝合金及其线束 | |
CN103757492A (zh) | 一种汽车线用Al-Fe-Cu-Mg系铝合金及线束 | |
CN103757488A (zh) | 一种汽车线用Al-Fe-Mg-Ca铝合金及其线束 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination |