CN104283393B - Method for optimizing structure parameter of single-winding magnetic suspension switch reluctance machine - Google Patents
Method for optimizing structure parameter of single-winding magnetic suspension switch reluctance machine Download PDFInfo
- Publication number
- CN104283393B CN104283393B CN201410499891.XA CN201410499891A CN104283393B CN 104283393 B CN104283393 B CN 104283393B CN 201410499891 A CN201410499891 A CN 201410499891A CN 104283393 B CN104283393 B CN 104283393B
- Authority
- CN
- China
- Prior art keywords
- rotor
- switched reluctance
- torque
- structural parameters
- initial value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004804 winding Methods 0.000 title claims abstract description 52
- 239000000725 suspension Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000005457 optimization Methods 0.000 claims abstract description 34
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 18
- 238000004088 simulation Methods 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 230000002068 genetic effect Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 claims description 2
- 238000013480 data collection Methods 0.000 claims 1
- 238000005339 levitation Methods 0.000 abstract description 47
- 238000013528 artificial neural network Methods 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 3
- 238000012706 support-vector machine Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/086—Learning methods using evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N15/00—Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Power Engineering (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Physiology (AREA)
- Evolutionary Biology (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Biomedical Technology (AREA)
- Software Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Control Of Electric Motors In General (AREA)
- Synchronous Machinery (AREA)
Abstract
本发明公开了一种单绕组磁悬浮开关磁阻电机结构参数的优化方法,属于磁悬浮开关磁阻电机的技术领域,计算单绕组磁悬浮开关磁阻电机的初始结构参数;对电机模型进行有限元仿真,选取待优化结构参数,确定样本数据集;采用极限学习机算法训练样本数据集构建电机模型;以待优化参数为优化对象,以悬浮力、转矩为优化目标对电机模型进行参数优化。本发明以单隐层前馈神经网络的极限学习机进行模型辨识,无需迭代,能够快速、高精度地对电机模型进行训练,利用多目标寻优算法实现了悬浮力、转矩协同最优的参数设计。
The invention discloses a method for optimizing the structural parameters of a single-winding magnetic levitation switched reluctance motor, which belongs to the technical field of magnetic levitation switched reluctance motors. Select the structural parameters to be optimized and determine the sample data set; use the extreme learning machine algorithm to train the sample data set to construct the motor model; take the parameters to be optimized as the optimization object, and optimize the parameters of the motor model with the suspension force and torque as the optimization objectives. The invention uses the extreme learning machine of the single hidden layer feedforward neural network to perform model identification without iteration, and can train the motor model quickly and with high precision, and realizes the coordinated optimization of suspension force and torque by using a multi-objective optimization algorithm parametric design.
Description
技术领域technical field
本发明公开了一种单绕组磁悬浮开关磁阻电机结构参数的优化方法,属于磁悬浮开关磁阻电机的技术领域。The invention discloses a method for optimizing structural parameters of a single-winding magnetic suspension switched reluctance motor, belonging to the technical field of magnetic suspension switched reluctance motors.
背景技术Background technique
自20世纪末开始发展,磁悬浮开关磁阻电机受到了研究人员的广泛关注,期间,研究最多的是双绕组结构的磁悬浮开关磁阻电机,其结构与开关磁阻电机类似,区别在于将用于产生径向力的绕组和转矩绕组一起叠绕在同一定子极上,使径向力绕组不占用独立的轴向空间。由于此种电机具有无润滑、无磨损、可以实现大功率和超高速运转的优点,非常适用于航空航天、高速机床、飞轮储能等领域。然而,双绕组结构的磁悬浮开关磁阻电机中主绕组与悬浮绕组的强耦合性,使得电机在数学建模、控制算法方面更为复杂;额外的悬浮绕组加大了电机结构设计的难度;悬浮绕组的增加导致额外的功率放大器与相配套的电气子系统,增加了控制电路设计复杂度。针对双绕组结构磁悬浮电机的上述缺点,美国国家航空航天局、德国德累斯顿工业大学以及韩国庆星大学相继开展了单绕组磁悬浮开关磁阻电机的研究。单绕组磁悬浮开关磁阻电机结构与开关磁阻电机基本一致,主要的区别在于,开关磁阻电机中多个定子极上线圈串连激励,而单绕组磁悬浮开关磁阻电机中的任意一个定子极上的线圈均是独立激励,以达到电机转子悬浮、旋转的目的。Since the end of the 20th century, the magnetic levitation switched reluctance motor has received extensive attention from researchers. During this period, the magnetic levitation switched reluctance motor with double winding structure is the most researched. The radial force winding and the torque winding are stacked on the same stator pole, so that the radial force winding does not occupy an independent axial space. Because this kind of motor has the advantages of no lubrication, no wear, high power and ultra-high speed operation, it is very suitable for aerospace, high-speed machine tools, flywheel energy storage and other fields. However, the strong coupling between the main winding and the suspension winding in the magnetic levitation switched reluctance motor with double winding structure makes the mathematical modeling and control algorithm of the motor more complicated; the additional suspension winding increases the difficulty of the motor structure design; the suspension The addition of windings results in additional power amplifiers and associated electrical subsystems, increasing the complexity of the control circuit design. Aiming at the above-mentioned shortcomings of double-winding magnetic levitation motors, NASA, Dresden Technical University in Germany and Kyungsung University in South Korea have successively carried out research on single-winding magnetic levitation switched reluctance motors. The structure of the single-winding magnetic levitation switched reluctance motor is basically the same as that of the switched reluctance motor. The main difference is that the coils on multiple stator poles in the switched reluctance motor are excited in series, while any stator pole in the single-winding magnetic levitation switched reluctance motor The coils on the motor are independently excited to achieve the purpose of levitating and rotating the motor rotor.
针对磁悬浮开关磁阻电机的结构优化设计,已经被提出的方法有:采用理论分析与有限元仿真相结合的设计方法对磁悬浮开关磁阻电机结构进行优化设计,但由于参数优化需要大量的调用计算模型以获得其输出,所以计算效率低;另一方法是:利用支持向量机的学习算法训练建立磁悬浮开关磁阻电机模型,针对该电机模型再利用遗传算法以某一电机运行性能作为优化目标进行寻优,该方法解决了前者计算效率低的问题,但在无智能算法对支持向量机参数进行优化的情况下,支持向量机训练建立的电机模型精度一般,难以满足实际需求。另外,遗传算法作为一种单目标优化算法,只能实现悬浮力或者转矩的单一最大化,两者单独优化难免效果互相削弱。For the structural optimization design of the magnetic levitation switched reluctance motor, the methods that have been proposed include: using the design method combining theoretical analysis and finite element simulation to optimize the structure of the magnetic levitation switched reluctance motor, but because the parameter optimization requires a large number of call calculations model to obtain its output, so the calculation efficiency is low; another method is: use the learning algorithm training of support vector machine to establish a magnetic levitation switched reluctance motor model, and then use the genetic algorithm to optimize the performance of a certain motor for the motor model. Optimizing, this method solves the problem of low computational efficiency of the former, but in the absence of an intelligent algorithm to optimize the parameters of the support vector machine, the accuracy of the motor model established by the support vector machine training is average, and it is difficult to meet the actual needs. In addition, as a single-objective optimization algorithm, the genetic algorithm can only achieve a single maximization of the suspension force or torque, and the separate optimization of the two will inevitably weaken each other.
发明内容Contents of the invention
本发明所要解决的技术问题是针对上述背景技术的不足,提供了一种单绕组磁悬浮开关磁阻电机结构参数的优化方法。以单隐层前馈神经网络的极限学习机进行模型的数据训练,利用非支配排序遗传算法实现多目标寻优。The technical problem to be solved by the present invention is to provide a method for optimizing the structural parameters of a single-winding magnetic levitation switched reluctance motor in view of the shortcomings of the above-mentioned background technology. The data training of the model is carried out with the extreme learning machine of the single hidden layer feedforward neural network, and the multi-objective optimization is realized by using the non-dominated sorting genetic algorithm.
本发明为实现上述发明目的采用如下技术方案:The present invention adopts following technical scheme for realizing above-mentioned purpose of the invention:
一种单绕组磁悬浮开关磁阻电机结构参数的优化方法,包括如下步骤:A method for optimizing structural parameters of a single-winding magnetic levitation switched reluctance motor, comprising the following steps:
步骤1,计算单绕组磁悬浮开关磁阻电机的初始结构参数,初始结构参数包括:转子外径初始值Da0、转子内径初始值Di0、铁芯实际长度初始值la0、定子外径初始值Ds0、气隙长度初始值g0、定子极弧初始值βs0、转子极弧初始值βr0、定子轭厚初始值hcs0、转子轭厚初始值hcr0;Step 1. Calculate the initial structural parameters of the single-winding magnetic levitation switched reluctance motor. The initial structural parameters include: the initial value of the outer diameter of the rotor D a0 , the initial value of the inner diameter of the rotor D i0 , the initial value of the actual length of the iron core l a0 , and the initial value of the outer diameter of the stator D s0 , initial value of air gap length g 0 , initial value of stator pole arc β s0 , initial value of rotor pole arc β r0 , initial value of stator yoke thickness h cs0 , initial value of rotor yoke thickness h cr0 ;
步骤2,对电机模型进行有限元仿真,选取待优化结构参数,确定样本数据集;Step 2, perform finite element simulation on the motor model, select the structural parameters to be optimized, and determine the sample data set;
步骤3,采用极限学习机算法训练样本数据集构建电机模型,Step 3, use the extreme learning machine algorithm to train the sample data set to build the motor model,
所述极限学习机算法:以隐含层节点数小于训练样本数为原则,以定步长搜索的方式确定隐含层节点数,选择Sigmoid或者RBF作为激励函数,以待优化参数为极限学习机的输入数据,以与待优化参数数值对应的悬浮力以及转矩为极限学习机的输出数据开始训练样本数据集;The extreme learning machine algorithm: based on the principle that the number of hidden layer nodes is less than the number of training samples, the number of hidden layer nodes is determined by a fixed-step search, Sigmoid or RBF is selected as the activation function, and the parameter to be optimized is the extreme learning machine The input data, and the suspension force and torque corresponding to the value of the parameters to be optimized are used as the output data of the extreme learning machine to start training the sample data set;
步骤4,以待优化参数为优化对象,以悬浮力、转矩为优化目标对电机模型进行参数优化。Step 4, taking the parameters to be optimized as the optimization object, and optimizing the parameters of the motor model with the levitation force and torque as the optimization objectives.
进一步的,步骤2按照如下方法进行有限元仿真:Further, step 2 performs finite element simulation according to the following method:
步骤2-1,以步骤1计算得到的初始结构参数建立单绕组磁悬浮开关磁阻电机的有限元模型,对有限元模型仿真得到转矩电流分量im:以初始结构参数建立在Ansoft有限元软件中的单绕组磁悬浮开关磁阻电机模型,在三相轮流导通并施加额定电压UN的情况下,仿真得到一相绕组仅在导通期间的电流有效值,留待对后续建立的单绕组磁悬浮开关磁阻电机有限元模型进行激励,一相绕组仅在导通期间的电流有效值即为转矩电流分量im;Step 2-1, establish the finite element model of the single-winding maglev switched reluctance motor with the initial structural parameters calculated in step 1, and obtain the torque current component i m by simulating the finite element model: establish the initial structural parameters in Ansoft finite element software The single-winding magnetic levitation switched reluctance motor model in , under the condition that the three phases are turned on in turn and the rated voltage U N is applied, the simulation obtains the effective value of the current of the one-phase winding only during the conduction period, which is left for the subsequent establishment of the single-winding magnetic levitation The finite element model of the switched reluctance motor is used for excitation, and the effective value of the current of the one-phase winding only during the conduction period is the torque current component i m ;
步骤2-2,在Ansoft的Rmxprt模块中以初始结构参数建立开关磁阻电机模型,记录下软件自动计算得到的转子质量mr,以转子质量mr对Matlab/Simulink中单绕组磁悬浮开关磁阻电机的悬浮系统中转子质量进行设置,之后由该悬浮系统仿真得到成功实现转子悬浮的径向悬浮力数值区间F,在Ansoft中以初始结构参数建立单绕组磁悬浮开关磁阻电机的模型,根据径向悬浮力数值区间F仿真得到大致的悬浮电流分量isα、isβ数值;Step 2-2, establish the switched reluctance motor model with the initial structural parameters in the Rmxprt module of Ansoft, record the rotor mass m r automatically calculated by the software, and use the rotor mass m r to compare the single-winding magnetic levitation switched reluctance in Matlab/Simulink The mass of the rotor in the suspension system of the motor is set, and then the radial suspension force value range F for successful rotor suspension is obtained by the simulation of the suspension system. In Ansoft, the model of the single-winding magnetic levitation switched reluctance motor is established with the initial structural parameters. The numerical value interval F of the levitation force is simulated to obtain approximate values of the levitation current components i sα and i sβ ;
步骤2-3,在铁芯实际长度la、定子外径Ds不变的情况下,给有限元模型中的绕组施加励磁电流,励磁电流包括转矩电流分量im和悬浮电流分量isα、isβ,分别改变转子外径Da、转子内径Di、气隙长度g、定子极弧βs、转子极弧βr、定子轭厚hcs、转子轭厚hcr的取值仿真分析得到悬浮力、转矩随其余结构参数变化的规律,选取对悬浮力、转矩影响不同的结构参数作为待优化参数x1,x2,…xi,…,xn,i≤n,n=1,…,7,xi为转子外径、转子内径、气隙长度、定子极弧、转子极弧、定子轭厚、转子轭厚中任意一个结构参数,悬浮力、转矩随着结构参数同为单调增或者同为单调减的结构参数不需要优化,应选取悬浮力随之单调增(或者单调减)而转矩随之单调减(或者单调增)的结构参数作为待优化参数;Step 2-3, under the condition that the actual length of the iron core l a and the outer diameter of the stator D s are constant, apply the excitation current to the winding in the finite element model, the excitation current includes the torque current component i m and the levitation current component i sα , i sβ , changing the values of rotor outer diameter D a , rotor inner diameter D i , air gap length g, stator pole arc β s , rotor pole arc β r , stator yoke thickness h cs , and rotor yoke thickness h cr Obtain the rule that levitation force and torque vary with other structural parameters, and select structural parameters that have different effects on levitation force and torque as parameters to be optimized x 1 , x 2 ,… xi ,…,x n , i≤n,n =1,…,7, x i is any structural parameter among rotor outer diameter, rotor inner diameter, air gap length, stator pole arc, rotor pole arc, stator yoke thickness, and rotor yoke thickness. Levitation force and torque vary with the structure The structural parameters whose parameters are monotonically increasing or monotonically decreasing do not need to be optimized, and the structural parameters whose suspension force monotonically increases (or monotonically decreases) and torque monotonically decreases (or monotonically increases) should be selected as parameters to be optimized;
步骤2-4,将不同待优化参数数值及其对应的悬浮力Fs、转矩T集合成样本数据集(x1,x2,…,xn,Fs,T),以该训练数据集作为极限学习机的样本数据集。In step 2-4, the values of different parameters to be optimized and their corresponding levitation force F s and torque T are combined into a sample data set (x 1 ,x 2 ,…,x n ,F s ,T), and the training data The set is used as the sample data set of the extreme learning machine.
进一步的,步骤4利用非支配排序遗传算法对电机模型进行多目标寻优。Further, step 4 uses the non-dominated sorting genetic algorithm to perform multi-objective optimization on the motor model.
作为单绕组磁悬浮开关磁阻电机结构参数的优化方法的进一步优化方案,根据传统开关磁阻电机结构参数计算方法计算得到单绕组磁悬浮开关磁阻电机结构参数,为了进一步说明传统开关磁阻电机结构参数计算方法,结构参数定义如下:As a further optimization scheme for the optimization method of the structural parameters of the single-winding magnetic levitation switched reluctance motor, the structural parameters of the single-winding magnetic levitation switched reluctance motor are calculated according to the traditional calculation method of the structural parameters of the switched reluctance motor. In order to further illustrate the structural parameters of the traditional switched reluctance motor Calculation method, structure parameters are defined as follows:
根据单绕组磁悬浮开关磁阻电机设计应用场合确定额定功率、额定转速、效率,依据各变量经验取值范围得到磁负荷、电负荷、绕组电流系数、方波电流系数、系数1、系数2、系数3、系数4、系数5、气隙长度的具体数值,步骤1按照式子(1):Determine the rated power, rated speed, and efficiency according to the design and application of the single-winding magnetic levitation switched reluctance motor, and obtain the magnetic load, electric load, winding current coefficient, square wave current coefficient, coefficient 1, coefficient 2, and coefficient based on the empirical value range of each variable 3. Coefficient 4, Coefficient 5, specific value of air gap length, step 1 according to formula (1):
确定结构参数初始值,ki为绕组电流系数,km为方波电流系数,PN为额定功率,nN为额定转速,η为效率,Bδ为磁负荷,A为电负荷,bps为定子极身宽度,bpr为转子极身宽度,λ1、λ2、λ3、λ4、λ5为系数,λ1=0.5~3.0,λ2=0.5~0.55,λ3=0.4~0.5,λ4=1.2~1.4,λ5=1.2~1.4,km≈0.8,ki≈0.5,Bδ=0.3~0.6,A=15000~50000,Determine the initial value of the structural parameters, k i is the winding current coefficient, k m is the square wave current coefficient, P N is the rated power, n N is the rated speed, η is the efficiency, B δ is the magnetic load, A is the electric load, b ps is the stator pole width, b pr is the rotor pole width, λ 1 , λ 2 , λ 3 , λ 4 , λ 5 are coefficients, λ 1 =0.5~3.0, λ 2 =0.5~0.55, λ 3 =0.4~ 0.5, λ 4 =1.2~1.4, λ 5 =1.2~1.4, km ≈0.8 , ki ≈0.5, B δ =0.3~0.6, A=15000~50000,
为满足单绕组磁悬浮开关磁阻电机自启动能力的要求,转子极弧βr、定子极弧βs取值必须满足式(2):In order to meet the self-starting capability requirements of single-winding maglev switched reluctance motors, the values of rotor pole arc β r and stator pole arc β s must satisfy formula (2):
Nr为转子齿极个数,m为电流相数,N r is the number of rotor teeth, m is the number of current phases,
至此,便得到具体的单绕组磁悬浮开关磁阻电机各结构参数,且各结构参数记为:转子外径初始值Da0、转子内径初始值Di0、铁芯实际长度初始值la0、定子外径初始值Ds0、气隙长度初始值g0、定子极弧初始值βs0、转子极弧初始值βr0、定子轭厚初始值hcs0、转子轭厚初始值hcr0,其中,Dsi0=Da0+2g0,各结构参数组成初始结构参数。So far, the specific structural parameters of the single-winding magnetic levitation switched reluctance motor are obtained, and the structural parameters are recorded as: the initial value of the rotor outer diameter D a0 , the initial value of the rotor inner diameter D i0 , the initial value of the actual length of the iron core l a0 , the outer diameter of the stator diameter initial value D s0 , air gap length initial value g 0 , stator pole arc initial value β s0 , rotor pole arc initial value β r0 , stator yoke thickness initial value h cs0 , rotor yoke thickness initial value h cr0 , where D si0 =D a0 +2g 0 , each structural parameter constitutes the initial structural parameter.
本发明采用上述技术方案,具有以下有益效果:The present invention adopts the above-mentioned technical scheme, and has the following beneficial effects:
(1)以单隐层前馈神经网络的极限学习机进行模型的数据训练,无需迭代;(1) The extreme learning machine of the single hidden layer feedforward neural network is used for data training of the model without iteration;
(2)实现了悬浮力、转矩协同最优的参数设计。(2) The parameter design of synergistic optimization of suspension force and torque is realized.
附图说明Description of drawings
图1示出了本发明所提出的单绕组磁悬浮开关磁阻电机结构优化设计具体流程。Fig. 1 shows the specific process of the structural optimization design of the single-winding magnetic levitation switched reluctance motor proposed by the present invention.
图2(a)、图2(b)、图2(c)、图2(d)、图2(e)、图2(f)为定、转子极中心线重合位置、转子无偏心情况下的悬浮力与各参数关系曲线图。Fig. 2(a), Fig. 2(b), Fig. 2(c), Fig. 2(d), Fig. 2(e), Fig. 2(f) are the coincident positions of stator and rotor pole center lines, and the rotor has no eccentricity The suspension force and the relationship curve of each parameter.
图3(a)、图3(b)、图3(c)、图3(d)、图3(e)、图3(f)为平均转矩与各参数的关系曲线。Figure 3(a), Figure 3(b), Figure 3(c), Figure 3(d), Figure 3(e), Figure 3(f) are the relationship curves between the average torque and various parameters.
图4(a)、图4(b)、图4(c)分别为优化前电机截面图、优化电机1的截面图、优化电机2的截面图。Figure 4(a), Figure 4(b), and Figure 4(c) are the cross-sectional view of the motor before optimization, the cross-sectional view of the optimized motor 1, and the cross-sectional view of the optimized motor 2, respectively.
图5示出了优化前后的电机输出悬浮力对比。Figure 5 shows the comparison of the motor output suspension force before and after optimization.
图6显示的是优化前后电机输出转矩对比。Figure 6 shows the comparison of motor output torque before and after optimization.
具体实施方式detailed description
下面结合图2至图6对图1所示具体流程的的技术方案进行详细说明。The technical solution of the specific process shown in FIG. 1 will be described in detail below with reference to FIGS. 2 to 6 .
1.当电机预定性能参数为:额定功率PN=1.1kW、额定转速nN=2000r/min、额定电压UN=220V、额定效率η=0.8,根据SRM(Switched Reluctance Motor,开关磁阻电机)结构参数传统计算方法可得12/8结构SWBSRM(Single Winding Bearingless SwitchedReluctance Motor,单绕组磁悬浮开关磁阻电机)的结构参数初值为:转子外径Ds=137mm、转子外径Da=70mm、转子内径Di=31.5mm、定子轭厚hcs=10mm、转子轭厚hcr=10mm、气隙长度g=0.3mm、定子极弧βs=15°、转子极弧βr=15°、铁芯实际长度la=70mm、每极定子绕组N=85匝。1. When the predetermined performance parameters of the motor are: rated power P N = 1.1kW, rated speed n N = 2000r/min, rated voltage U N = 220V, rated efficiency η = 0.8, according to SRM (Switched Reluctance Motor, switched reluctance motor ) The structural parameters of the traditional calculation method can be obtained 12/8 structure SWBSRM (Single Winding Bearingless Switched Reluctance Motor, single winding magnetic levitation switched reluctance motor) The initial value of the structural parameters is: rotor outer diameter D s = 137mm, rotor outer diameter D a = 70mm , rotor inner diameter D i =31.5mm, stator yoke thickness h cs =10mm, rotor yoke thickness h cr =10mm, air gap length g=0.3mm, stator pole arc β s =15°, rotor pole arc β r =15° , The actual length of iron core l a =70mm, each pole stator winding N=85 turns.
2.以上述方法确定转矩电流分量im=4.7A,因为垂直坐标系下两悬浮力分量原理一致,所以,此处只设置x坐标轴方向悬浮电流分量isx=1.88A。2. Determine the torque current component im = 4.7A by the above method, because the principle of the two levitation force components in the vertical coordinate system is the same, so here only set the levitation current component i sx = 1.88A in the direction of the x coordinate axis.
3.以im=4.7A、isx=1.88A、isy=0A设置有限元仿真中电机激励,分析各结构参数变化时,所得悬浮力与转矩随参数增加的变化规律,具体为:3. Set the motor excitation in the finite element simulation with i m = 4.7A, i sx = 1.88A, and i sy = 0A, and analyze the change law of the levitation force and torque obtained with the increase of the parameters when the structural parameters change, specifically:
(1)悬浮力随转子内径Di、转子外径Da、定子轭厚hcs、转子轭厚hcr的增加而单调增加;悬浮力随气隙长度g增加而单调减小;另外,定子极弧βs增加,悬浮力先增加后趋于稳定,且悬浮力随转子极弧βr的变化规律与βs一致,其中,定、转子极中心线重合位置、转子无偏心情况下的悬浮力与各参数关系曲线如图2(a)、图2(b)、图2(c)、图2(d)、图2(e)、图2(f)所示;(1) Levitation force increases monotonously with the increase of rotor inner diameter D i , rotor outer diameter Da , stator yoke thickness h cs , and rotor yoke thickness h cr ; levitation force decreases monotonously with the increase of air gap length g; in addition, the stator As the pole arc β s increases, the levitation force first increases and then tends to be stable, and the change law of the levitation force with the rotor pole arc β r is consistent with β s . Figure 2(a), Figure 2(b), Figure 2(c), Figure 2(d), Figure 2(e) and Figure 2(f) show the relationship between force and various parameters;
(2)转矩随转子外径Da、定子轭厚hcs增加而单调增加;转矩随转子内径Di、转子轭厚hcr、气隙长度g增加而减小;转矩随定子极弧βs、转子极弧βr增加,变化趋势是先增加后减小,其中,平均转矩与各参数的关系曲线如图3(a)、图3(b)、图3(c)、图3(d)、图3(e)、图3(f)所示;(2) The torque increases monotonously with the increase of the rotor outer diameter D a and the stator yoke thickness h cs ; the torque decreases with the increase of the rotor inner diameter D i , the rotor yoke thickness h cr , and the air gap length g; the torque decreases with the stator pole The arc β s and the rotor pole arc β r increase, and the trend is to increase first and then decrease. Among them, the relationship curves between the average torque and various parameters are shown in Figure 3(a), Figure 3(b), Figure 3(c), Shown in Figure 3(d), Figure 3(e), and Figure 3(f);
最终选择转子内径Di、转子轭厚hcr、定子极弧βs、转子极弧βr为优化对象。Finally, the rotor inner diameter D i , rotor yoke thickness h cr , stator pole arc β s , and rotor pole arc β r are selected as optimization objects.
4.有限元仿真,改变内径Di、转子轭厚hcr、定子极弧βs、转子极弧βr,得到输出为(Fs,T),合成得到样本数据(Di,hcr,βs,βr,Fs,T)。4. Finite element simulation, changing the inner diameter D i , rotor yoke thickness h cr , stator pole arc β s , rotor pole arc β r , the output is (F s , T), and the sample data (D i ,h cr , β s , β r , F s , T).
5.利用ELM(Extrem Learning Machine,极限学习机)对上述样本数据进行训练得到电机模型,该模型输入为(Di,hcr,βs,βr),输出为(Fs,T)。5. Use ELM (Extrem Learning Machine, extreme learning machine) to train the above sample data to obtain a motor model, the input of which is (D i , h cr , β s , β r ), and the output is (F s , T).
6.利用NSGA(Non dominated Sorting Genetic Algorithm,非支配排序遗传算法)寻优得到优化后的单绕组磁悬浮开关磁阻电机,因为优化得到的最优结果是一集合(多目标优化所得“最优解”是“广义最优”,因为各优化目标之间很可能互相矛盾,所以,得到的“最优解”往往是一个集合),其中具体2例为:6. Use NSGA (Non dominated Sorting Genetic Algorithm, Non-Dominated Sorting Genetic Algorithm) to optimize and obtain the optimized single-winding magnetic levitation switched reluctance motor, because the optimal result obtained by optimization is a set (the "optimal solution obtained by multi-objective optimization) " is "generalized optimal", because the optimization objectives are likely to contradict each other, so the "optimal solution" obtained is often a set), and two specific examples are:
(1)优化电机1:转子外径Ds=137mm、转子外径Da=70mm、转子内径Di=31.5mm、定子轭厚hcs=10mm、转子轭厚hcr=12mm、气隙长度g=0.3mm、定子极弧βs=23.42°、转子极弧βr=20.53°、铁芯实际长度la=70mm、每极定子绕组N=85匝;(1) Optimized motor 1: rotor outer diameter D s =137mm, rotor outer diameter D a =70mm, rotor inner diameter D i =31.5mm, stator yoke thickness h cs =10mm, rotor yoke thickness h cr =12mm, air gap length g=0.3mm, stator pole arc β s =23.42°, rotor pole arc β r =20.53°, actual iron core length l a =70mm, stator winding N=85 turns per pole;
(2)优化电机2:转子外径Ds=137mm、转子外径Da=70mm、转子内径Di=40mm、定子轭厚hcs=10mm、转子轭厚hcr=11.329mm、气隙长度g=0.3mm、定子极弧βs=23.287°、转子极弧βr=20.14°、铁芯实际长度la=70mm、每极定子绕组N=85匝。(2) Optimize motor 2: rotor outer diameter D s =137mm, rotor outer diameter D a =70mm, rotor inner diameter D i =40mm, stator yoke thickness h cs =10mm, rotor yoke thickness h cr =11.329mm, air gap length g=0.3mm, stator pole arc β s =23.287°, rotor pole arc β r =20.14°, core actual length l a =70mm, stator winding N=85 turns per pole.
7.图4(a)、图4(b)、图4(c)显示了优化前后电机截面图,图5、图6所示为优化前后的悬浮力、转矩随转子角的变化曲线,对比可知,7. Figure 4(a), Figure 4(b), and Figure 4(c) show the cross-sectional views of the motor before and after optimization, and Figure 5 and Figure 6 show the curves of the levitation force and torque before and after optimization with the rotor angle. By comparison, we can see that
8.所示为优化前后的悬浮力、转矩随转子角的变化曲线,对比可知,优化电机1的曲线与优化电机2的曲线基本重合,优化电机1、2相比于原电机在全周期范围内,即在所有转子位置角处(-22.5°~22.5°)悬浮力均增加了约200N,这很大程度上增强了电机径向悬浮稳定性能,换言之,针对同一悬浮力下,可以减小电机悬浮过程中所需要的电流输入,因而降低了电机的径向悬浮运行功耗;同时,在转子位置角(-22.5°~-13.5°)与(13.5~22.5)范围内,优化电机1、2比原电机的输出转矩约增加2N·m,这表明优化电机可以适应更大的负载转矩,且转矩脉动相比于原电机得到了很大改善,这使得优化后的电机转速更加平稳,一定程度上减小了大转矩脉动对电机应用的限制。因此,通过本优化方法的实施,大大增强了电机径向悬浮力和输出转矩,提升了电机径向悬浮性能并降低了运行功耗和转矩脉动。8. Shown are the change curves of levitation force and torque with the rotor angle before and after optimization. The comparison shows that the curve of optimized motor 1 and the curve of optimized motor 2 basically coincide. Within the range, that is, at all rotor position angles (-22.5°~22.5°), the suspension force increases by about 200N, which greatly enhances the radial suspension stability of the motor. In other words, under the same suspension force, the suspension force can be reduced The current input required for the motor suspension process is small, thus reducing the power consumption of the motor's radial suspension operation; at the same time, in the range of rotor position angle (-22.5°~-13.5°) and (13.5~22.5°), the motor 1 , 2 The output torque of the original motor is increased by about 2N m, which shows that the optimized motor can adapt to a larger load torque, and the torque ripple has been greatly improved compared with the original motor, which makes the optimized motor speed It is more stable, and to a certain extent reduces the limitation of large torque ripple on the application of motors. Therefore, through the implementation of this optimization method, the radial levitation force and output torque of the motor are greatly enhanced, the radial levitation performance of the motor is improved, and the operating power consumption and torque ripple are reduced.
上述实施例仅为12/8结构单绕组磁悬浮开关磁阻电机参数优化,其余结构单绕组磁悬浮开关磁阻电机的参数均可以利用本发明的技术方案进行优化设计。The above-mentioned embodiment only optimizes the parameters of the 12/8 single-winding magnetic levitation switched reluctance motor, and the parameters of the other single-winding magnetic levitation switched reluctance motors can be optimally designed by using the technical solution of the present invention.
综上所述,本发明具有以下有益效果:In summary, the present invention has the following beneficial effects:
(1)以单隐层前馈神经网络的极限学习机进行模型的数据训练,无需迭代,能够快速、高精度地对电机模型进行训练;(1) The data training of the model is carried out with the extreme learning machine of the single hidden layer feedforward neural network, without iteration, and the motor model can be trained quickly and with high precision;
(2)利用多目标须有算法实现了悬浮力、转拒同时最优的参数设计。(2) The multi-objective algorithm is used to realize the optimal parameter design of suspension force and rotation rejection at the same time.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410499891.XA CN104283393B (en) | 2014-09-25 | 2014-09-25 | Method for optimizing structure parameter of single-winding magnetic suspension switch reluctance machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410499891.XA CN104283393B (en) | 2014-09-25 | 2014-09-25 | Method for optimizing structure parameter of single-winding magnetic suspension switch reluctance machine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104283393A CN104283393A (en) | 2015-01-14 |
CN104283393B true CN104283393B (en) | 2017-02-15 |
Family
ID=52257979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410499891.XA Active CN104283393B (en) | 2014-09-25 | 2014-09-25 | Method for optimizing structure parameter of single-winding magnetic suspension switch reluctance machine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104283393B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104598686A (en) * | 2015-01-24 | 2015-05-06 | 安徽大学 | Water pump motor modeling and optimizing method based on electromagnetic calculation and neural network |
CN106208433B (en) * | 2016-08-01 | 2018-09-28 | 湘潭大学 | A method of improving switching magnetic-resistance wind driven generator output power |
CN106407559B (en) * | 2016-09-19 | 2019-06-04 | 湖南科技大学 | Structural parameter optimization method and device for switched reluctance motor |
CN108073755B (en) * | 2017-05-25 | 2021-04-02 | 烟台仙崴机电有限公司 | Multi-objective optimization design method of switched reluctance motor system for electric vehicle |
CN108258867A (en) * | 2018-01-24 | 2018-07-06 | 淄博京科电气有限公司 | A kind of novel super-low speed large torque switched reluctance motor |
CN109245449B (en) * | 2018-11-12 | 2020-11-03 | 南京工程学院 | Optimization design method of axial split-phase magnetic suspension switched reluctance flywheel motor |
CN110059348B (en) * | 2019-03-12 | 2023-04-25 | 南京工程学院 | A Numerical Modeling Method for Suspension Force of Axial Phase Split Magnetic Levitation Flywheel Motor |
CN110007232B (en) * | 2019-05-23 | 2021-09-03 | 广东工业大学 | Method and related device for predicting running efficiency of squirrel-cage asynchronous motor |
CN110661390B (en) * | 2019-09-24 | 2021-05-25 | 江苏大学 | Accurate modeling method for suspension force of 12/14 pole magnetic suspension switched reluctance motor |
CN111797495B (en) * | 2020-05-19 | 2024-02-20 | 国网浙江瑞安市供电有限责任公司 | A simulink modeling method for single-winding magnetic levitation switched reluctance motor |
CN111859574B (en) * | 2020-07-22 | 2024-05-03 | 合肥工业大学 | Synchronous reluctance motor rotor optimization design method for reducing torque pulsation |
CN113094952B (en) * | 2021-04-06 | 2022-05-13 | 哈尔滨工业大学(威海) | A static eccentricity detection method of permanent magnet motor based on stray magnetic field |
CN114896716A (en) * | 2022-04-14 | 2022-08-12 | 江苏大学 | A unified optimization method for magnetic suspension motor torque system and suspension system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101441728A (en) * | 2007-11-21 | 2009-05-27 | 新乡市起重机厂有限公司 | Neural network method of crane optimum design |
CN102819651A (en) * | 2012-08-20 | 2012-12-12 | 西北工业大学 | Simulation-based parameter optimizing method for precise casting process of single crystal turbine blade |
CN103065191A (en) * | 2011-10-19 | 2013-04-24 | 西安邮电学院 | Rapid neural network leaning method |
CN103106305A (en) * | 2013-02-01 | 2013-05-15 | 北京工业大学 | Space grid structure model step-by-step correction method based on actual measurement mode |
CN103888037A (en) * | 2014-02-25 | 2014-06-25 | 江苏大学 | Construction method for inverse decoupling controller of extreme learning machine |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103236769A (en) * | 2013-04-24 | 2013-08-07 | 江苏大学 | Method for optimizing key parameters of bearingless permanent magnet motor |
CN103414292B (en) * | 2013-07-23 | 2015-08-26 | 江苏大学 | Based on the Induction-type bearingless motor Optimization Design of dichotomy |
CN103678783B (en) * | 2013-11-26 | 2016-08-17 | 上海交通大学 | Permanent magnet brushless direct-current motor with closed windings Optimization Design |
-
2014
- 2014-09-25 CN CN201410499891.XA patent/CN104283393B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101441728A (en) * | 2007-11-21 | 2009-05-27 | 新乡市起重机厂有限公司 | Neural network method of crane optimum design |
CN103065191A (en) * | 2011-10-19 | 2013-04-24 | 西安邮电学院 | Rapid neural network leaning method |
CN102819651A (en) * | 2012-08-20 | 2012-12-12 | 西北工业大学 | Simulation-based parameter optimizing method for precise casting process of single crystal turbine blade |
CN103106305A (en) * | 2013-02-01 | 2013-05-15 | 北京工业大学 | Space grid structure model step-by-step correction method based on actual measurement mode |
CN103888037A (en) * | 2014-02-25 | 2014-06-25 | 江苏大学 | Construction method for inverse decoupling controller of extreme learning machine |
Also Published As
Publication number | Publication date |
---|---|
CN104283393A (en) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104283393B (en) | Method for optimizing structure parameter of single-winding magnetic suspension switch reluctance machine | |
Li et al. | Modeling, design optimization, and applications of switched reluctance machines—A review | |
CN109245449B (en) | Optimization design method of axial split-phase magnetic suspension switched reluctance flywheel motor | |
Duan et al. | A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study | |
CN113177341B (en) | Multi-objective optimization design method for maglev flywheel motor based on kriging approximate model | |
Navardi et al. | Efficiency improvement and torque ripple minimization of switched reluctance motor using FEM and seeker optimization algorithm | |
Shi et al. | Design optimisation of an outer‐rotor permanent magnet synchronous hub motor for a low‐speed campus patrol EV | |
Diao et al. | Robust-oriented optimization of switched reluctance motors considering manufacturing fluctuation | |
Faiz et al. | Design of switched reluctance machine for starter/generator of hybrid electric vehicle | |
Liu et al. | Direct instantaneous torque control system for switched reluctance motor in electric vehicles | |
Zhu et al. | Multi‐objective optimisation design of air‐cored axial flux PM generator | |
CN106202836A (en) | A kind of Optimization Design of piecemeal rotor switched reluctance motor | |
Sun et al. | Multi‐objective comprehensive teaching algorithm for multi‐objective optimisation design of permanent magnet synchronous motor | |
CN106407559A (en) | A switch reluctance motor structure parameter optimization method and device | |
Zhao et al. | Minimum‐copper‐loss control of hybrid excited axial field flux‐switching machine | |
Zhang et al. | Investigation and implementation of a new hybrid excitation synchronous machine drive system | |
CN117634397A (en) | A multi-objective optimization method and system based on the two-dimensional equivalent model of axial flux permanent magnet motor | |
Cosoroaba et al. | Comparison of winding configurations in double‐stator switched reluctance machines | |
Hui et al. | Design and optimisation of transverse flux machine with passive rotor and flux‐concentrating structure | |
Zhang et al. | System-level optimization design of tubular permanent-magnet linear synchronous motor for electromagnetic emission | |
Mutluer et al. | Comparison of stochastic optimization methods for design optimization of permanent magnet synchronous motor | |
Xie et al. | Super‐spiral sliding mode controller design for single‐winding bearingless switched reluctance motor | |
Bose et al. | An Optimization Based PID Controller tunning approach for the induction motor employed in an Electric Vehicle | |
Ji et al. | An efficient design optimization method for consequent-pole asymmetric rotor hybrid interior permanent magnet synchronous machine | |
CN113343592B (en) | A DQN intelligent control method for permanent magnet synchronous motor of new energy aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |