CN104280705B - magnetic resonance image reconstruction method and device based on compressed sensing - Google Patents
magnetic resonance image reconstruction method and device based on compressed sensing Download PDFInfo
- Publication number
- CN104280705B CN104280705B CN201410526251.3A CN201410526251A CN104280705B CN 104280705 B CN104280705 B CN 104280705B CN 201410526251 A CN201410526251 A CN 201410526251A CN 104280705 B CN104280705 B CN 104280705B
- Authority
- CN
- China
- Prior art keywords
- image
- reconstruction
- map
- variance
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000009466 transformation Effects 0.000 claims description 15
- 238000010606 normalization Methods 0.000 claims description 13
- 238000005070 sampling Methods 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 3
- 230000000873 masking effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 238000002595 magnetic resonance imaging Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 2
- 238000011478 gradient descent method Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Processing (AREA)
Abstract
本发明提供了一种基于压缩感知的磁共振图像重建方法和装置,其中,所述方法包括:通过磁共振扫描得到欠采样的原始K空间数据;利用压缩感知方法对所述原始K空间数据进行图像重建;当所述图像重建的重建结果趋于收敛后,在所述原始K空间数据中加入扰动,并统计加入扰动后重建结果的方差得到第一方差图;提取所述第一方差图中的感兴趣区域;对所述感兴趣区域做图像掩膜处理,得到第二方差图;利用非线性函数将第二方差图加入到所述图像重建结果中,得到重建图像。上述方法和装置提高了磁共振图像重建结果的精度。
The present invention provides a magnetic resonance image reconstruction method and device based on compressed sensing, wherein the method includes: obtaining under-sampled original K-space data through magnetic resonance scanning; Image reconstruction; when the reconstruction result of the image reconstruction tends to converge, adding a disturbance to the original K-space data, and counting the variance of the reconstruction result after adding the disturbance to obtain a first variance map; extracting the first variance A region of interest in the figure; image masking is performed on the region of interest to obtain a second variance map; a nonlinear function is used to add the second variance map to the image reconstruction result to obtain a reconstructed image. The above method and device improve the accuracy of the magnetic resonance image reconstruction results.
Description
技术领域technical field
本发明涉及磁共振成像技术领域,特别是涉及一种基于压缩感知的磁共振图像重建方法和装置。The present invention relates to the technical field of magnetic resonance imaging, in particular to a method and device for reconstructing magnetic resonance images based on compressed sensing.
背景技术Background technique
压缩感知理论利用信号的稀疏性,只需采集少量样本即可高质量重建出原始数据。近年来,压缩感知(CS)理论在磁共振快速成像中得到了快速的发展和应用,利用该理论,可从欠采的k空间中重建出原始图像,从而减少k空间的采集线数,减少扫描时间,达到快速成像的目的。The theory of compressed sensing takes advantage of the sparsity of the signal, and only needs to collect a small number of samples to reconstruct the original data with high quality. In recent years, the theory of compressed sensing (CS) has been rapidly developed and applied in fast magnetic resonance imaging. Using this theory, the original image can be reconstructed from the under-sampled k-space, thereby reducing the number of acquisition lines of k-space and reducing the Scanning time, to achieve the purpose of fast imaging.
传统的基于压缩感知的磁共振图像重建方法在图像重建过程中,低对比度图像的细节信息容易丢失,而且随加速倍数的增加信息丢失会更加严重,影响磁共振图像重建结果的精度。In the traditional MRI image reconstruction method based on compressed sensing, the detail information of the low-contrast image is easy to lose during the image reconstruction process, and the information loss will be more serious with the increase of the acceleration multiple, which will affect the accuracy of the MRI image reconstruction results.
发明内容Contents of the invention
基于此,有必要提供一种能提高磁共振图像重建结果精度的基于压缩感知的磁共振图像重建方法和装置。Based on this, it is necessary to provide a magnetic resonance image reconstruction method and device based on compressed sensing that can improve the accuracy of magnetic resonance image reconstruction results.
一种基于压缩感知的磁共振图像重建方法,所述方法包括:A method for reconstructing magnetic resonance images based on compressed sensing, the method comprising:
通过磁共振扫描得到欠采样的原始K空间数据;Obtain undersampled raw K-space data through magnetic resonance scanning;
利用压缩感知方法对所述原始K空间数据进行图像重建;performing image reconstruction on the original K-space data by means of compressed sensing;
当所述图像重建的重建结果趋于收敛后,在所述原始K空间数据中加入扰动,并统计加入扰动后重建结果的方差得到第一方差图;After the reconstruction result of the image reconstruction tends to converge, adding a disturbance to the original K-space data, and counting the variance of the reconstruction result after adding the disturbance to obtain a first variance map;
提取所述第一方差图中的感兴趣区域;extracting a region of interest in the first variogram;
对所述感兴趣区域做图像掩膜处理,得到第二方差图;performing image mask processing on the region of interest to obtain a second variance map;
利用非线性函数将第二方差图加入到所述图像重建结果中,得到重建图像。The second variance map is added to the image reconstruction result by using a nonlinear function to obtain a reconstructed image.
在其中一个实施例中,所述在所述原始K空间数据中加入扰动,并统计加入扰动后重建结果的方差得到第一方差图的步骤,包括:In one of the embodiments, the step of adding a disturbance to the original K-space data, and counting the variance of the reconstruction result after adding the disturbance to obtain the first variance map includes:
在所述原始K空间数据中随机选取预设数量的采样点,将所述采样点置为零使得原始K空间转换为新的K空间数据;Randomly select a preset number of sampling points in the original K-space data, and set the sampling points to zero so that the original K-space is converted into new K-space data;
利用压缩感知方法对所述新的K空间数据进行图像重建,得到重建结果图像;performing image reconstruction on the new K-space data using a compressed sensing method to obtain a reconstruction result image;
重复执行预设次数的上述两个步骤,得到与所述预设次数数量相同的重建结果图像;Repeating the above two steps for a preset number of times to obtain a reconstruction result image equal to the preset number of times;
统计所述重建结果图像中的方差,获得第一方差图。The variance in the reconstruction result image is counted to obtain a first variance map.
在其中一个实施例中,所述提取所述第一方差图中的感兴趣区域的步骤,包括:In one of the embodiments, the step of extracting the region of interest in the first variance map includes:
提取第一方差图中的前景区域和背景区域,将所述前景区域作为感兴趣区域。A foreground area and a background area in the first variance map are extracted, and the foreground area is used as an area of interest.
在其中一个实施例中,所述利用非线性函数将第二方差图加入到所述图像重建结果中,得到重建图像的步骤,包括:In one of the embodiments, the step of using a nonlinear function to add the second variance map to the image reconstruction result to obtain the reconstructed image includes:
对所述图像重建结果的幅值做归一化处理,得到处理后的重建幅值图;Performing normalization processing on the magnitude of the image reconstruction result to obtain a processed reconstruction magnitude map;
利用非线性函数对所述重建幅值图中的每个像素点做非线性变换,得到变换图像;Using a nonlinear function to perform nonlinear transformation on each pixel in the reconstructed magnitude map to obtain a transformed image;
将所述第二方差图与所述变换图像相加,得到相加图像;adding the second variance map to the transformed image to obtain an added image;
对所述相加图像中的每个像素点做非线性逆变换,获得重建图像。A nonlinear inverse transformation is performed on each pixel in the added image to obtain a reconstructed image.
在其中一个实施例中,所述对所述重建结果图像的幅值做归一化处理,得到处理后的重建幅值图的步骤,包括:In one of the embodiments, the step of normalizing the magnitude of the reconstruction result image to obtain the processed reconstruction magnitude map includes:
对所述重建结果图像中的每个像素点取模值,得到幅值图;Taking a modulus value for each pixel in the reconstruction result image to obtain an amplitude map;
获取所述幅值图中的最大灰度值,将所述幅值图中的每个像素点除以最大灰度值,得到重建幅值图。Acquiring the maximum grayscale value in the magnitude map, dividing each pixel in the magnitude map by the maximum grayscale value to obtain the reconstructed magnitude map.
一种基于压缩感知的磁共振图像重建装置,所述装置包括:A magnetic resonance image reconstruction device based on compressed sensing, the device comprising:
空间数据获取模块,用于通过磁共振扫描得到欠采样的原始K空间数据;The spatial data acquisition module is used to obtain undersampled original K-space data by magnetic resonance scanning;
第一图像重建模块,用于利用压缩感知装置对所述原始K空间数据进行图像重建;The first image reconstruction module is used to perform image reconstruction on the original K-space data using a compressed sensing device;
第一方差图获取模块,用于当所述图像重建的重建结果趋于收敛后,在所述原始K空间数据中加入扰动,并统计加入扰动后重建结果的方差得到第一方差图;The first variance map acquisition module is used to add disturbance to the original K-space data when the reconstruction result of the image reconstruction tends to converge, and count the variance of the reconstruction result after adding the disturbance to obtain the first variance map;
感兴趣区域提取模块,用于提取所述第一方差图中的感兴趣区域;A region of interest extraction module, configured to extract a region of interest in the first variance map;
第二方差图获取模块,用于对所述感兴趣区域做图像掩膜处理,得到第二方差图;A second variance map acquisition module, configured to perform image mask processing on the region of interest to obtain a second variance map;
第二图像重建模块,用于利用非线性函数将第二方差图加入到所述图像重建结果中,得到重建图像。The second image reconstruction module is configured to use a nonlinear function to add the second variance map to the image reconstruction result to obtain a reconstructed image.
在其中一个实施例中,所述第一方差图获取模块包括:In one of the embodiments, the first variance map acquisition module includes:
空间数据更新模块,用于在所述原始K空间数据中随机选取预设数量的采样点,将所述采样点置为零使得原始K空间转换为新的K空间数据;A spatial data update module, configured to randomly select a preset number of sampling points in the original K-space data, and set the sampling points to zero so that the original K-space is converted into new K-space data;
第三图像重建模块,用于利用压缩感知装置对所述新的K空间数据进行图像重建,得到重建结果图像;The third image reconstruction module is used to reconstruct the image of the new K-space data by using the compressed sensing device to obtain the reconstruction result image;
重复执行模块,用于重复执行预设次数的上述两个步骤,得到与所述预设次数数量相同的重建结果图像;A repeat execution module, configured to repeatedly execute the above two steps for a preset number of times, to obtain a reconstruction result image equal to the preset number of times;
方差统计模块,用于统计所述重建结果图像中的方差,获得第一方差图。A variance statistics module, configured to count the variance in the reconstruction result image to obtain a first variance map.
在其中一个实施例中,所述感兴趣区域提取模块还用于提取第一方差图中的前景区域和背景区域,将所述前景区域作为感兴趣区域。In one of the embodiments, the region-of-interest extracting module is further configured to extract the foreground region and the background region in the first variance map, and use the foreground region as the region-of-interest.
在其中一个实施例中,所述第二图像重建模块包括:In one of the embodiments, the second image reconstruction module includes:
归一化处理模块,用于对所述图像重建结果的幅值做归一化处理,得到处理后的重建幅值图;A normalization processing module, configured to perform normalization processing on the magnitude of the image reconstruction result to obtain a processed reconstruction magnitude map;
非线性变换模块,用于利用非线性函数对所述重建幅值图中的每个像素点做非线性变换,得到变换图像;A nonlinear transformation module, configured to use a nonlinear function to perform nonlinear transformation on each pixel in the reconstructed magnitude map to obtain a transformed image;
图像相加模块,用于将所述第二方差图与所述变换图像相加,得到相加图像;An image addition module, configured to add the second variance map to the transformed image to obtain an added image;
逆变换模块,用于对所述相加图像中的每个像素点做非线性逆变换,获得重建图像。The inverse transform module is used to perform non-linear inverse transform on each pixel in the added image to obtain a reconstructed image.
在其中一个实施例中,所述归一化处理模块包括:In one of the embodiments, the normalization processing module includes:
取模值模块,用于对所述重建结果图像中的每个像素点取模值,得到幅值图;A module for obtaining a modulus value, which is used to obtain a modulus value for each pixel in the reconstruction result image to obtain an amplitude value map;
重建幅值图获取模块,用于获取所述幅值图中的最大灰度值,将所述幅值图中的每个像素点除以最大灰度值,得到重建幅值图。The reconstructed amplitude map acquisition module is configured to obtain the maximum gray value in the amplitude map, and divide each pixel in the magnitude map by the maximum gray value to obtain the reconstructed amplitude map.
上述基于压缩感知的磁共振图像重建方法和装置,在压缩感知方法进行磁共振图像重建过程中,在原始K空间数据中加入扰动,使得重建结果发生细微变化,通过统计加入扰动后重建结果的方差图,利用方差图中的信息,对重建结果中丢失的信息进行补充,提高了磁共振图像重建结果的精度。In the method and device for reconstructing magnetic resonance images based on compressed sensing, in the process of reconstructing magnetic resonance images by compressive sensing methods, disturbances are added to the original K-space data, so that the reconstruction results are slightly changed, and the variance of the reconstruction results after adding disturbances is counted The information in the variance map is used to supplement the information lost in the reconstruction results, which improves the accuracy of the MRI image reconstruction results.
附图说明Description of drawings
图1为一个实施例中基于压缩感知的磁共振图像重建方法的流程示意图;Fig. 1 is a schematic flow chart of a magnetic resonance image reconstruction method based on compressed sensing in an embodiment;
图2为一个实施例中在所述原始K空间数据中加入扰动,并统计加入扰动后重建结果的方差得到第一方差图步骤的流程示意图;Fig. 2 is a schematic flow chart of adding disturbance to the original K-space data in one embodiment, and statistically adding the variance of the reconstruction result after disturbance to obtain the first variance map step;
图3为一个实施例中利用非线性函数将第二方差图加入到重建结果中,得到重建图像步骤的流程示意图;Fig. 3 is a schematic flow chart of the step of obtaining a reconstructed image by adding the second variance map to the reconstruction result by using a nonlinear function in one embodiment;
图4为一个实施例中基于压缩感知的磁共振图像重建方法进行图像重建过程中各步骤生成图像的展示图;Fig. 4 is a display diagram of images generated by each step in the process of image reconstruction based on the compressed sensing magnetic resonance image reconstruction method in an embodiment;
图5为一个实施例中基于压缩感知的磁共振图像重建装置的结构示意图;Fig. 5 is a schematic structural diagram of a magnetic resonance image reconstruction device based on compressed sensing in an embodiment;
图6为一个实施例中第一方差图获取模块的结构示意图;Fig. 6 is a schematic structural diagram of the first variance map acquisition module in an embodiment;
图7为一个实施例中第二方差图获取模块的结构示意图;Fig. 7 is a schematic structural diagram of a second variance map acquisition module in an embodiment;
图8为一个实施例中归一化处理模块的结构示意图。Fig. 8 is a schematic structural diagram of a normalization processing module in an embodiment.
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
如图1所示,在一个实施例中,提供了一种基于压缩感知的磁共振图像重建方法,该方法包括如下步骤:As shown in Figure 1, in one embodiment, a kind of magnetic resonance image reconstruction method based on compressive sensing is provided, and this method comprises the following steps:
步骤101,通过磁共振扫描得到欠采样的原始K空间数据。Step 101 , obtain undersampled original K-space data through magnetic resonance scanning.
步骤102,利用压缩感知方法对原始K空间数据进行图像重建。Step 102, image reconstruction is performed on the original K-space data by using the compressive sensing method.
本实施例中,压缩感知方法进行图像重建方程为:min||ψx||1,s.t.||Fpx-y||2≤ε,其中,Ψ称为固定稀疏变换,y为测得的K空间信号,Fp为欠采样的傅立叶算子,ε是与信号的噪声等级有关的参数。常用的稀疏变换有小波变换,主成份分析,有限差分变换等。x为待求解的重建图像,采用共轭梯度下降法求解重建方程,得到重建结果xIn this embodiment, the image reconstruction equation performed by the compressed sensing method is: min||ψx|| 1 , st||F p xy|| 2 ≤ε, where Ψ is called a fixed sparse transformation, and y is the measured K space signal, F p is the under-sampled Fourier operator, and ε is a parameter related to the noise level of the signal. Commonly used sparse transforms include wavelet transform, principal component analysis, finite difference transform, etc. x is the reconstructed image to be solved, and the reconstruction equation is solved by the conjugate gradient descent method to obtain the reconstruction result x
步骤103,当所述图像重建的重建结果趋于收敛后,在所述原始K空间数据中加入扰动,并统计加入扰动后重建结果的方差得到第一方差图。Step 103, when the reconstruction result of the image reconstruction tends to converge, adding disturbance to the original K-space data, and counting the variance of the reconstruction result after the disturbance is added to obtain a first variance map.
本实施例中,将min||ψx||1,s.t.||Fpx-y||2≤ε转换为拉格朗日表示为:其中,λ为正则化系数,根据经验选取。用共轭梯度下降法求解上式,使得重建结果趋于收敛。In this embodiment, converting min||ψx|| 1 , st||F p xy|| 2 ≤ ε into Lagrangian is expressed as: Among them, λ is the regularization coefficient, which is selected according to experience. The above formula is solved by the conjugate gradient descent method, so that the reconstruction result tends to converge.
在一个实施例中,步骤103,在所述原始K空间数据中加入扰动,并统计加入扰动后重建结果的方差得到第一方差图包括:In one embodiment, step 103, adding disturbances to the original K-space data, and counting the variance of the reconstruction results after adding the disturbances to obtain the first variance map includes:
步骤201,在原始K空间数据中随机选取预设数量的采样点,将采样点置为零使得原始K空间转换为新的K空间数据。预设数量的取值范围为:大于等于1且小于等于20,优先的,预设数量为10。Step 201, randomly select a preset number of sampling points in the original K-space data, and set the sampling points to zero to convert the original K-space data into new K-space data. The value range of the preset number is: greater than or equal to 1 and less than or equal to 20, and the default number is 10 in priority.
步骤202,利用压缩感知方法对新的K空间数据进行图像重建,得到重建结果图像。Step 202, using the compressed sensing method to perform image reconstruction on the new K-space data to obtain a reconstruction result image.
步骤203,重复执行预设次数的上述两个步骤,得到与预设次数数量相同的重建结果图像。重复执行步骤201和步骤202的次数N次得到N个重建结果图像{x1,x2…xN},其中N大于10,优选的,预设次数N为20。Step 203 , repeating the above two steps for a preset number of times to obtain the reconstructed result images equal to the preset number of times. Repeat step 201 and step 202 for N times to obtain N reconstructed result images {x 1 , x 2 .
步骤204,统计重建结果图像中的方差,获得第一方差图。In step 204, the variance in the reconstructed image is counted to obtain a first variance map.
本实施例中,获得的N个重建结果图像具有相同的空间位置,即重建结果图像的任一个空间点有N个重建值,对重建结果图像中的每个空间点统计方差,最后得到第一方差图。In this embodiment, the obtained N reconstruction result images have the same spatial position, that is, any spatial point of the reconstruction result image has N reconstruction values, and the variance is calculated for each spatial point in the reconstruction result image, and finally the first Variance plot.
步骤104,提取第一方差图中的感兴趣区域。Step 104, extract the region of interest in the first variance map.
具体的,提取第一方差图中的前景区域和背景区域,将前景区域作为感兴趣区域。在一个实施例中,采用阈值法将第一方差图中的前景区域与背景区域区分开来,通过选择一个阈值将图像中大于阈值的像素点标记为前景区域,小于阈值的像素点标记为背景区域。Specifically, the foreground area and the background area in the first variance map are extracted, and the foreground area is used as the region of interest. In one embodiment, a threshold method is used to distinguish the foreground area from the background area in the first variance map, and by selecting a threshold, the pixels greater than the threshold in the image are marked as the foreground area, and the pixels less than the threshold are marked as background area.
步骤105,对感兴趣区域做图像掩膜处理,得到第二方差图。Step 105, performing image mask processing on the region of interest to obtain a second variance map.
步骤106,利用非线性函数将第二方差图加入到重建结果中,得到重建图像。Step 106, using a nonlinear function to add the second variance map to the reconstruction result to obtain a reconstructed image.
本实施例中,通过第二方差图恢复磁共振图像重建过程中丢失的低对比度信息,利用非线性函数将第二方差图加入到重建结果中对低对比度信息进行恢复。上述基于压缩感知的磁共振图像重建方法,在压缩感知方法进行磁共振图像重建过程中,在原始K空间数据中加入扰动,使得重建结果发生细微变化,通过统计加入扰动后重建结果的方差图,利用方差图中的信息,对重建结果中丢失的信息进行补充,提高了磁共振图像重建结果的精度。In this embodiment, the low-contrast information lost in the reconstruction process of the magnetic resonance image is restored through the second variance map, and the low-contrast information is restored by adding the second variance map to the reconstruction result by using a nonlinear function. In the above-mentioned magnetic resonance image reconstruction method based on compressed sensing, in the process of magnetic resonance image reconstruction by the compressed sensing method, disturbance is added to the original K-space data, so that the reconstruction result changes slightly, and the variance map of the reconstruction result after adding the disturbance is counted, The information in the variance map is used to supplement the information lost in the reconstruction result, which improves the accuracy of the reconstruction result of the magnetic resonance image.
如图3所示,在一个实施例中,步骤106,利用非线性函数将第二方差图加入到重建结果中,得到重建图像包括:As shown in FIG. 3, in one embodiment, step 106, using a nonlinear function to add the second variance map to the reconstruction result, and obtaining the reconstructed image includes:
步骤301,对图像重建结果的幅值做归一化处理,得到处理后的重建幅值图。具体的,对重建结果图像中的每个像素点取模值,得到幅值图;获取幅值图中的最大灰度值,将幅值图中的每个像素点除以最大灰度值,得到重建幅值图。Step 301 , performing normalization processing on the magnitude of the image reconstruction result to obtain a processed reconstruction magnitude map. Specifically, the modulus value is taken for each pixel in the reconstruction result image to obtain the magnitude map; the maximum gray value in the magnitude map is obtained, and each pixel in the magnitude map is divided by the maximum gray value, Obtain the reconstructed magnitude map.
步骤302,利用非线性函数对重建幅值图中的每个像素点做非线性变换,得到变换图像。在一个实施例中,非线性函数为幂函数,f(x)=xa,x为重建幅值图中的像素点,a为预设的数值,优选的,a=5。Step 302, using a nonlinear function to perform nonlinear transformation on each pixel in the reconstructed magnitude map to obtain a transformed image. In one embodiment, the nonlinear function is a power function, f(x)=x a , x is a pixel in the reconstructed magnitude map, and a is a preset value, preferably, a=5.
步骤303,将第二方差图与变换图像相加,得到相加图像。将第二方差图中的像素点值与变换图像的像素点值进行相加得到相加图像。Step 303, adding the second variance map to the transformed image to obtain an added image. The added image is obtained by adding the pixel point values in the second variance map to the pixel point values in the transformed image.
步骤304,对相加图像中的每个像素点做非线性逆变换,获得重建图像。Step 304, performing non-linear inverse transformation on each pixel in the added image to obtain a reconstructed image.
通过非线性函数f(x)=x1/a对相加图像中的每个像素点做非线性逆变换。其中,x为相加图像中的像素点,a为预设的数值,优选的,a=5。A non-linear inverse transformation is performed on each pixel in the added image through the non-linear function f(x)=x 1/a . Wherein, x is a pixel in the added image, and a is a preset value, preferably, a=5.
在一个实施例中,如图4为基于压缩感知的磁共振图像重建方法进行图像重建过程中各步骤生成图像的展示图。如图4所示,4a为原始图像,4b为通过压缩感知方法进行图像重建后得到的图像,其中4a白色圆圈标记区域40和42的低对比度信息经过压缩感知方法重建后消失在4b中;In one embodiment, as shown in FIG. 4 , it is a display diagram of images generated by each step in the image reconstruction process based on the compressed sensing-based magnetic resonance image reconstruction method. As shown in Figure 4, 4a is the original image, 4b is the image obtained after image reconstruction by the compressed sensing method, wherein the low contrast information of the white circle marked areas 40 and 42 in 4a disappears in 4b after being reconstructed by the compressed sensing method;
4c为统计4b中的方差得到的第一方差图,从4c中可以看出图中包含了4a中40和42的部分低对比度信息。4d为对4c中感兴趣区域进行图像掩膜处理后得到第二方差图。4e为对4b的幅值做归一化处理后得到的重建幅值图。4f为对4e中的每个像素点做非线性变换后得到的变换图像。4g为4f与4d图像相加后得到的相加图像。4h为对4g做逆变换后得到的重建图像,可以明显看到4b中丢失的低对比度信息40和42在4h中又出现了,本发明提供的基于压缩感知的磁共振图像重建方法能够对低对比度信息进行恢复,提高磁共振图像重建的精度。4c is the first variance map obtained by counting the variance in 4b. It can be seen from 4c that the map contains part of the low-contrast information of 40 and 42 in 4a. 4d is the second variance map obtained after performing image mask processing on the region of interest in 4c. 4e is the reconstructed magnitude map obtained after normalizing the magnitude of 4b. 4f is a transformed image obtained by performing nonlinear transformation on each pixel in 4e. 4g is an added image obtained by adding the 4f and 4d images. 4h is the reconstructed image obtained after inverse transforming 4g. It can be clearly seen that the lost low-contrast information 40 and 42 in 4b reappeared in 4h. Contrast information is restored to improve the accuracy of MRI image reconstruction.
如图5所示,在一个实施例中,提供的一种基于压缩感知的磁共振图像重建装置,该装置包括:As shown in Figure 5, in one embodiment, a kind of magnetic resonance image reconstruction device based on compressive sensing is provided, and this device comprises:
空间数据获取模块50,用于通过磁共振扫描得到欠采样的原始K空间数据。The spatial data acquisition module 50 is configured to obtain under-sampled original K-space data through magnetic resonance scanning.
第一图像重建模块51,用于利用压缩感知装置对原始K空间数据进行图像重建。The first image reconstruction module 51 is configured to perform image reconstruction on the original K-space data using a compressed sensing device.
第一方差图获取模块52,用于当图像重建的重建结果趋于收敛后,在原始K空间数据中加入扰动,并统计加入扰动后重建结果的方差得到第一方差图。The first variance map acquisition module 52 is configured to add disturbance to the original K-space data when the reconstruction result of the image reconstruction tends to converge, and calculate the variance of the reconstruction result after adding the disturbance to obtain the first variance map.
感兴趣区域提取模块53,用于提取第一方差图中的感兴趣区域。A region of interest extracting module 53, configured to extract a region of interest in the first variance map.
在一个实施例中,感兴趣区域提取模块53还用于提取第一方差图中的前景区域和背景区域,将前景区域作为感兴趣区域。In one embodiment, the ROI extracting module 53 is further configured to extract the foreground area and the background area in the first variance map, and use the foreground area as the ROI.
第二方差图获取模块54,用于对感兴趣区域做图像掩膜处理,得到第二方差图。The second variance map acquisition module 54 is configured to perform image mask processing on the region of interest to obtain a second variance map.
第二图像重建模块55,用于利用非线性函数将第二方差图加入到图像重建结果中,得到重建图像。The second image reconstruction module 55 is configured to use a nonlinear function to add the second variance map to the image reconstruction result to obtain a reconstructed image.
如图6所示,在一个实施例中,第一方差图获取模块52包括:As shown in Figure 6, in one embodiment, the first variance map acquisition module 52 includes:
空间数据更新模块520,用于在原始K空间数据中随机选取预设数量的采样点,将采样点置为零使得原始K空间转换为新的K空间数据。The spatial data update module 520 is configured to randomly select a preset number of sampling points in the original K-space data, and set the sampling points to zero to convert the original K-space data into new K-space data.
第三图像重建模块521,用于利用压缩感知装置对新的K空间数据进行图像重建,得到重建结果图像。The third image reconstruction module 521 is configured to perform image reconstruction on the new K-space data by using the compressed sensing device to obtain a reconstruction result image.
重复执行模块523,用于重复执行预设次数的上述两个步骤,得到与预设次数数量相同的重建结果图像。The repeat execution module 523 is configured to repeatedly execute the above two steps for a preset number of times to obtain the reconstructed result image equal to the preset number of times.
方差统计模块524,用于统计重建结果图像中的方差,获得第一方差图。The variance statistics module 524 is configured to calculate the variance in the reconstructed image to obtain a first variance map.
如图7所示,在一个实施例中,第二图像重建模块55包括:As shown in Figure 7, in one embodiment, the second image reconstruction module 55 includes:
归一化处理模块550,用于对图像重建结果的幅值做归一化处理,得到处理后的重建幅值图。The normalization processing module 550 is configured to perform normalization processing on the magnitude of the image reconstruction result to obtain a processed reconstruction magnitude map.
非线性变换模块551,用于利用非线性函数对重建幅值图中的每个像素点做非线性变换,得到变换图像。The nonlinear transformation module 551 is configured to use a nonlinear function to perform nonlinear transformation on each pixel in the reconstructed magnitude map to obtain a transformed image.
图像相加模块552,用于将第二方差图与变换图像相加,得到相加图像。The image addition module 552 is configured to add the second variance map to the transformed image to obtain an added image.
逆变换模块553,用于对相加图像中的每个像素点做非线性逆变换,获得重建图像。The inverse transform module 553 is configured to perform non-linear inverse transform on each pixel in the added image to obtain a reconstructed image.
如图8所示,在一个实施例中,归一化处理模块550包括:As shown in Figure 8, in one embodiment, the normalization processing module 550 includes:
取模值模块5500,用于对重建结果图像中的每个像素点取模值,得到幅值图。The modulus value acquisition module 5500 is configured to acquire a modulus value for each pixel in the reconstruction result image to obtain a magnitude map.
重建幅值图获取模块5501,用于获取幅值图中的最大灰度值,将幅值图中的每个像素点除以最大灰度值,得到重建幅值图。The reconstructed magnitude map acquisition module 5501 is used to obtain the maximum gray value in the magnitude map, and divide each pixel in the magnitude map by the maximum gray value to obtain the reconstructed magnitude map.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410526251.3A CN104280705B (en) | 2014-09-30 | 2014-09-30 | magnetic resonance image reconstruction method and device based on compressed sensing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410526251.3A CN104280705B (en) | 2014-09-30 | 2014-09-30 | magnetic resonance image reconstruction method and device based on compressed sensing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104280705A CN104280705A (en) | 2015-01-14 |
CN104280705B true CN104280705B (en) | 2017-01-11 |
Family
ID=52255774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410526251.3A Active CN104280705B (en) | 2014-09-30 | 2014-09-30 | magnetic resonance image reconstruction method and device based on compressed sensing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104280705B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106546454A (en) * | 2015-09-16 | 2017-03-29 | 中国辐射防护研究院 | The Technique of Electron Paramagnetic Resonance is used for the method for reducing background when irradiation processing is detected |
CN106023116B (en) * | 2016-05-30 | 2018-09-28 | 中国科学院深圳先进技术研究院 | A kind of compressed sensing image rebuilding method and device based on block Weighted Constraint |
CN108280862B (en) * | 2018-01-31 | 2021-07-23 | 安徽福晴医疗科技有限公司 | Method and device for reconstructing magnetic resonance image |
CN109949257B (en) * | 2019-03-06 | 2021-09-10 | 西安电子科技大学 | Region-of-interest compressed sensing image reconstruction method based on deep learning |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102309328A (en) * | 2011-10-19 | 2012-01-11 | 中国科学院深圳先进技术研究院 | Diffusion-tensor imaging method and system |
CN103033783A (en) * | 2012-12-10 | 2013-04-10 | 深圳先进技术研究院 | Magnetic resonance imaging fast reconstruction system and method thereof |
CN103048632A (en) * | 2012-12-19 | 2013-04-17 | 北京大学 | Compressive sensing-based quick fine angular resolution diffusion imaging method |
CN103064046A (en) * | 2012-12-25 | 2013-04-24 | 深圳先进技术研究院 | Image processing method based on sparse sampling magnetic resonance imaging |
CN103142228A (en) * | 2012-12-14 | 2013-06-12 | 中国科学院深圳先进技术研究院 | Compressed sensing magnetic resonance fast imaging method |
CN103356193A (en) * | 2013-07-19 | 2013-10-23 | 哈尔滨工业大学深圳研究生院 | Method and system for performing rapid diffusion tensor imaging under compression sensing framework |
EP2660618A1 (en) * | 2012-05-04 | 2013-11-06 | Esaote S.p.A. | Biomedical image reconstruction method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8879852B2 (en) * | 2010-11-10 | 2014-11-04 | Siemens Aktiengesellschaft | Non-contrast-enhanced 4D MRA using compressed sensing reconstruction |
US9373159B2 (en) * | 2012-06-18 | 2016-06-21 | University Health Network | Method and system for compressed sensing image reconstruction |
US9081074B2 (en) * | 2012-08-21 | 2015-07-14 | Beth Israel Deaconess Medical Center, Inc. (Bidmc, Inc.) | Method and apparatus for accelerated phase contrast magnetic resonance angiography and blood flow imaging |
-
2014
- 2014-09-30 CN CN201410526251.3A patent/CN104280705B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102309328A (en) * | 2011-10-19 | 2012-01-11 | 中国科学院深圳先进技术研究院 | Diffusion-tensor imaging method and system |
EP2660618A1 (en) * | 2012-05-04 | 2013-11-06 | Esaote S.p.A. | Biomedical image reconstruction method |
CN103033783A (en) * | 2012-12-10 | 2013-04-10 | 深圳先进技术研究院 | Magnetic resonance imaging fast reconstruction system and method thereof |
CN103142228A (en) * | 2012-12-14 | 2013-06-12 | 中国科学院深圳先进技术研究院 | Compressed sensing magnetic resonance fast imaging method |
CN103048632A (en) * | 2012-12-19 | 2013-04-17 | 北京大学 | Compressive sensing-based quick fine angular resolution diffusion imaging method |
CN103064046A (en) * | 2012-12-25 | 2013-04-24 | 深圳先进技术研究院 | Image processing method based on sparse sampling magnetic resonance imaging |
CN103356193A (en) * | 2013-07-19 | 2013-10-23 | 哈尔滨工业大学深圳研究生院 | Method and system for performing rapid diffusion tensor imaging under compression sensing framework |
Also Published As
Publication number | Publication date |
---|---|
CN104280705A (en) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Adaptive dictionary learning in sparse gradient domain for image recovery | |
Qu et al. | Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator | |
CN102708576B (en) | Block Image Compressive Sensing Reconstruction Method Based on Structural Dictionary | |
CN103654789B (en) | Fast magnetic resonance parametric formation method and system | |
CN104569880B (en) | A kind of magnetic resonance fast imaging method and system | |
WO2018099321A1 (en) | Generalized tree sparse-based weighted nuclear norm magnetic resonance imaging reconstruction method | |
CN103472419B (en) | Magnetic resonance fast imaging method and system thereof | |
RU2013103063A (en) | DYNAMIC CONTRAST IMPROVED MR VISUALIZATION WITH RECONSTRUCTION OF COMPRESSED MEASUREMENT | |
CN105118078B (en) | The CT image rebuilding methods of lack sampling | |
CN103116873B (en) | Image Noise Reduction Method | |
CN104280705B (en) | magnetic resonance image reconstruction method and device based on compressed sensing | |
CN104217448A (en) | A magnetic-resonance fast imaging method and system based on iterative feature correction | |
CN112419203B (en) | Diffusion-weighted image compression sensing restoration method and device based on confrontation network | |
CN102881003B (en) | Method for removing cosmic rays in charge-coupled device (CCD) astronomic image | |
WO2014147518A3 (en) | Dynamic mri with image reconstruction using compressed sensing | |
CN103142228A (en) | Compressed sensing magnetic resonance fast imaging method | |
US20190355125A1 (en) | System and method for multi-contrast magnetic resonance imaging | |
CN102332153A (en) | Image Compressive Sensing Reconstruction Method Based on Kernel Regression | |
CN108717171A (en) | A kind of compressed sensing Low-field magnetic resonance imaging algorithm | |
Wang et al. | Iterative feature refinement for accurate undersampled MR image reconstruction | |
CN108447039A (en) | A kind of non-lower sampling Shearlet method for reducing speckle based on improvement non-local mean | |
CN104597419A (en) | Method for correcting motion artifacts in combination of navigation echoes and compressed sensing | |
CN104734724B (en) | Based on the Compression of hyperspectral images cognitive method for weighting Laplce's sparse prior again | |
Cheng et al. | Improved parallel image reconstruction using feature refinement | |
Babacan et al. | Reference-guided sparsifying transform design for compressive sensing MRI |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230223 Address after: 201807 2258 Chengbei Road, Jiading District, Shanghai Patentee after: Shanghai Lianying Medical Technology Co.,Ltd. Address before: 1068 No. 518055 Guangdong city in Shenzhen Province, Nanshan District City Xili University School Avenue Patentee before: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY |