CN104280535A - 一种水处理离子交换树脂分离度测试系统及测试方法 - Google Patents

一种水处理离子交换树脂分离度测试系统及测试方法 Download PDF

Info

Publication number
CN104280535A
CN104280535A CN201310279260.2A CN201310279260A CN104280535A CN 104280535 A CN104280535 A CN 104280535A CN 201310279260 A CN201310279260 A CN 201310279260A CN 104280535 A CN104280535 A CN 104280535A
Authority
CN
China
Prior art keywords
resin
degree
separation
ion exchange
separating column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310279260.2A
Other languages
English (en)
Other versions
CN104280535B (zh
Inventor
李永立
星成霞
王应高
金绪良
赵荧
翟雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
North China Electric Power Research Institute Co Ltd
Original Assignee
State Grid Corp of China SGCC
North China Electric Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, North China Electric Power Research Institute Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201310279260.2A priority Critical patent/CN104280535B/zh
Publication of CN104280535A publication Critical patent/CN104280535A/zh
Application granted granted Critical
Publication of CN104280535B publication Critical patent/CN104280535B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

本发明涉及一种水处理离子交换树脂分离度测试系统及测试方法。该测试系统包括树脂分离柱、柱塞式计量泵、三通调节阀、水箱,水箱通过管道与三通调节阀的第一端口连接,该连接管道上设有柱塞式计量泵,树脂分离柱的底部开口与三通调节阀的第二端口连接,树脂分离柱的顶部开口通过管道排空,三通调节阀的第三端口排空,树脂分离柱上具有刻度。本发明还提供了一种水处理离子交换树脂分离度测试方法,其是采用上述测试系统进行。本发明提供的水处理离子交换树脂分离度测试装置及测试方法实现了对高速混床树脂分离度的定量测定,对树脂分离设备的树脂分离效果给以科学的、定量化的判定。

Description

一种水处理离子交换树脂分离度测试系统及测试方法
技术领域
本发明涉及一种水处理离子交换树脂分离度测试系统及测试方法,属于水处理树脂再生技术领域。
背景技术
高速混床是电厂凝结水精处理系统的重要单元,高速混床树脂的交叉污染是影响出水水质的重要因素。因此,如何减少树脂的交叉污染,就成了凝结水精处理的主要研究课题。目前减少交叉污染的方法是采用高塔分离法、锥体分离法等先进的树脂分离设备,通过优化设备工艺参数和树脂选型等方法来提高阴阳树脂的分离度。
树脂分离度是衡量高速混床树脂交叉污染的重要指标之一,阴树脂在阳树脂层中的含量和阳树脂在阴树脂层中的含量的百分比即为树脂的分离度。采用高塔分离工艺,可使高速混床阴、阳树脂得到较彻底的分离。资料认为,此系统可使阴树脂在阳树脂层中的含量和阳树脂在阴树脂层中的含量小于0.1%。
目前,树脂分离度常用于高速混床(也可用于一般水处理混床)树脂分离程度的定性分析中,如高速混床出水水质较差或周期制水量偏低可能与树脂分离度较低有关,而很少采取阳树脂塔(分离塔中分离好的阳树脂输送到阳树脂塔待再生)和阴树脂塔(分离塔中分离好的阴树脂输送到阴树脂塔待再生)中的树脂进行树脂分离度的定量测定,主要原因是没有树脂分离度测试系统及方法。
因此,实现对高速混床树脂分离度的定量测定,对树脂分离设备的树脂分离效果给以科学的、定量化的判定,对于优化树脂分离设备的树脂分离工艺参数、提高树脂的再生水平,进而提高高速混床的出水水质及出力具有非常重要的指导意义和实用价值。
发明内容
为解决上述技术问题,本发明的目的在于提供一种水处理离子交换树脂分离度测试系统,采用该测试系统可以很方便地实现对于树脂分离度的测定。
本发明的目的还在于提供一种基于上述测试系统的水处理离子交换树脂分离度测试方法。
为达到上述目的,本发明提供了一种水处理离子交换树脂分离度测试系统,其包括树脂分离柱、柱塞式计量泵、三通调节阀、水箱,其中,所述水箱通过管道与所述三通调节阀的第一端口连接,并且该连接管道上设有柱塞式计量泵,所述树脂分离柱的底部开口与所述三通调节阀的第二端口连接,所述树脂分离柱的顶部开口通过管道排空,所述三通调节阀的第三端口排空,所述树脂分离柱上具有刻度。
本发明所提供的上述测试系统是基于电厂实际应用需要,结合高速混床离子交换树脂性能和离子交换水处理工艺技术开发的一套水处理离子交换树脂分离度测试系统,该系统可以用于电厂凝结水精处理混床树脂再生工艺对树脂分离度的定量测定。
根据本发明的具体实施方案,优选地,上述测试系统还包括一排放池,以便收集通过三通阀的第三端口和树脂分离柱的顶部开口流出的水,三通调节阀的第三端口通过管道与排放池连接,树脂分离柱的顶部开口通过管道与排放池连接。
树脂分离柱是本发明提供的分离度测试系统的核心部件,为了达到对阴离子交换树脂中混入的阳离子交换树脂和阳离子交换树脂中混入的阴离子交换树脂的完全分离,考虑到精处理混床树脂粒径、密度、溶胀性等性能指标特点,该树脂分离柱可以采用有机玻璃材质。在本发明中,该树脂分离柱需要垂直或者近似垂直放置,可以设置一个分离柱支架来固定该树脂分离柱。树脂分离柱表面的刻度为高度线刻度,可以用来度量树脂分层界面的高度,从而确定树脂的量。
根据本发明的具体实施方案,优选地,本发明所采用的树脂分离柱的高度为1200-1500mm,内径为15-25mm(优选为20mm)。
根据本发明的具体实施方案,优选地,本发明所采用的树脂分离柱的材质为有机玻璃。
根据本发明的具体实施方案,优选地,树脂分离柱两端的接头为螺纹接头。采用螺纹接头便于树脂的装填和更换。
根据本发明的具体实施方案,优选地,树脂分离柱的进出水结构为双层多孔板夹尼龙网结构。采用该结构可以防止树脂漏出。
柱塞式计量泵是本发明提供的分离度测试系统的重要部件,采用柱塞式计量泵作为树脂分离柱内树脂反洗分层用水的驱动部件,巧妙地利用了柱塞泵脉冲计量式工作特点,为树脂分离柱中树脂的有效分离起到了规律的振动和筛分作用,这一作用对于逆流反洗的树脂的有效分离起到了关键作用。
三通调节阀可以对进入分树脂离柱的水的流量进行有效调节。在树脂分层的初期,通过调节阀门流量,使树脂分离柱中树脂保持适度的膨胀高度,树脂分离柱中的树脂在逆水流的作用下充分运动起来。由于阴离子交换树脂、阳离子交换树脂的密度差异和粒径差异,两种树脂会逐渐分开,阳离子交换树脂在下面,阴离子交换树脂向上运动处于上层。当两种树脂基本分开分层之后,再次调节三通调节阀,逐渐减小进入树脂分离柱的水的流量,膨胀的树脂逐渐下降高度,慢慢恢复原先的树脂的高度,而分界面处的树脂尚未得到彻底分离,这时,脉冲柱塞泵的脉冲振动恰好为分界面附近树脂的分离提供了振动筛分的工作条件,最终能够得到清晰、明显、水平的树脂分界线,实现树脂的完全分离。
本发明还提供了一种水处理离子交换树脂分离度测试方法,其是采用上述水处理离子交换树脂分离度测试系统进行的,该方法包括以下步骤:
(1)预处理:取500mL树脂样品,用纯水或者浓度为2wt%-3wt%的氢氧化钠溶液作为浸泡液进行浸泡,浸泡时间为10分钟,以消除阴阳树脂抱团现象;
(2)装柱:向树脂分离柱中装填待分析的树脂样品,树脂样品的装填高度为60-80cm,并且,装填时经过浸泡的树脂样品和浸泡液一起装入,树脂表面以上保持10-20cm高的浸泡液(即水或氢氧化钠溶液),树脂层中不能夹带气饱;
(3)反洗:以纯水为反洗用水,启动计量泵,调节计量泵工作频率,保持适当的反洗流量,使树脂分离柱中的树脂充分膨胀,树脂膨胀的高度为120-140cm;通过反洗,将待分析样品中的杂质、破碎树脂洗出去,使树脂随逆向水量充分运动起来,阴树脂和阳树脂因密度、粒径差异逐渐分离;
(4)粗分层:保持树脂分离柱中树脂的膨胀高度和运动状态,使阴树脂和阳树脂逐渐分离,阴树脂在上层、阳树脂在下层,中间是阴阳树脂混合层;
(5)细分层:当阴树脂和阳树脂初步分层之后,逐渐调低计量泵的工作频率,逐渐减小计量泵的振动作用和反洗用水的流量,使树脂的膨胀高度逐渐回落,树脂颗粒的紊动状态逐渐减弱,混合层的树脂在水力作用和规律的振动作用下,逐渐分离,混合层的厚度逐渐减小直至消失,最后出现清晰的阴树脂和阳树脂的分离界面,阴树脂和阳树脂彻底分离;
(6)计算:分别计量树脂分离柱中阴树脂、阳树脂的高度(有刻度时,可以通过树脂分离柱表面的刻度计量),带入公式计算待分析树脂样品的分离度,该公式为:
δ=H/HZ×100%,δ=H/HZ×100%
其中:
δ为阳树脂分离度,单位为%;
δ为阴树脂分离度,单位为%;
H为分离后的阳树脂高度,单位为cm;
H为分离后的阴树脂高度,单位为cm;
HZ为树脂的装填高度,单位为cm。
本发明提供的水处理离子交换树脂分离度测试装置及测试方法实现了对高速混床树脂分离度的定量测定,对树脂分离设备的树脂分离效果给以科学的、定量化的判定,对于优化树脂分离设备的树脂分离工艺参数、提高树脂的再生水平,进而提高高速混床的出水水质及出力具有非常重要的指导意义和实用价值。
附图说明
图1为实施例1提供的水处理离子交换树脂分离度测试系统的结构图;
图2为实施例3中序号为1的树脂所达到的分离效果图;
图3为实施例3中序号为2的树脂所达到的分离效果图;
图4为实施例3中序号为3的树脂所达到的分离效果图;
图5为实施例4中序号为4的树脂所达到的分离效果图;
图6为实施例4中序号为6的树脂所达到的分离效果图;
图7为实施例5中的运行树脂所达到的分离效果图。
主要附图标号说明:
树脂分离柱1  柱塞式计量泵2  三通调节阀3  水箱4  排放池  5
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种水处理离子交换树脂分离度测试系统,其结构如图1所示。该测试系统包括树脂分离柱1、柱塞式计量泵2、三通调节阀3、水箱4、排放池5;
其中,水箱4通过管道与三通调节阀3的第一端口连接,并且该连接管道上设有柱塞式计量泵2;
树脂分离柱1的高度为1500mm,内径为20mm,其两端的接头为螺纹接头,进出水结构为双层多孔板夹尼龙网结构,并且,树脂分离柱1上设有高度线刻度;
树脂分离柱1的底部开口与三通调节阀3的第二端口连接,树脂分离柱1的顶部开口通过管道与排放池5连接;
三通调节阀3的第三端口通过管道与排放池5连接。
实施例2
本实施例提供了一种水处理离子交换树脂分离度测试方法,其是采用实施例1提供的水处理离子交换树脂分离度测试系统进行分离度检测的方法,该方法包括以下步骤:
(1)预处理:取500mL树脂样品,用纯水或者浓度为2wt%-3wt%的氢氧化钠溶液作为浸泡液进行浸泡,浸泡时间为10分钟;
(2)装柱:向树脂分离柱1中装填待分析的树脂样品,树脂样品的装填高度为60-80cm,并且,装填时经过浸泡的树脂样品和浸泡液一起装入,树脂表面以上保持10-20cm高的浸泡液;
(3)反洗:以纯水为反洗用水,启动柱塞式计量泵2,调节柱塞式计量泵2的工作频率,保持适当的反洗流量,使树脂分离柱1中的树脂充分膨胀,树脂膨胀的高度为120-140cm;
(4)粗分层:保持树脂分离柱1中树脂的膨胀高度和运动状态,使阴树脂和阳树脂逐渐分离,阴树脂在上层、阳树脂在下层,中间是阴阳树脂混合层;
(5)细分层:当阴树脂和阳树脂初步分层之后,逐渐调低柱塞式计量泵2的工作频率,逐渐减小柱塞式计量泵2的振动作用和反洗用水的流量,使树脂的膨胀高度逐渐回落,树脂颗粒的紊动状态逐渐减弱,混合层的树脂在水力作用和规律的振动作用下,逐渐分离,混合层的厚度逐渐减小直至消失,最后出现清晰的阴树脂和阳树脂的分离界面,阴树脂和阳树脂彻底分离;
(6)计算:通过树脂分离柱表面的刻度计量树脂分离柱1中阴树脂、阳树脂的高度,带入公式计算待分析树脂样品的分离度,该公式为:
δ=H/HZ×100%,δ=H/HZ×100%
其中:
δ为阳树脂分离度,单位为%;
δ为阴树脂分离度,单位为%;
H为分离后的阳树脂高度,单位为cm;
H为分离后的阴树脂高度,单位为cm;
HZ为树脂的装填高度,单位为cm。
实施例3
本实施例提供了一种阳离子交换树脂分离度测试方法。该方法是采用实施例1提供的测试装置按照实施例2提供的测试方法对3组树脂(阳离子交换树脂中混有一定量的阴离子交换树脂,表1中序号为1、2、3的树脂)进行分离度测试,树脂量以及测试结果如表1所示。
本实施例中,序号为1、2、3的树脂所达到的分离效果分别如图2-图4所示,有这些图可以看出,树脂分层界面清晰、水平,这说明本实施例对混入了阴离子交换树脂的阳离子交换树脂的混合物实现了彻底分离。
实施例4
本实施例提供了一种阳离子交换树脂分离度测试方法。该方法是采用实施例1提供的测试装置按照实施例2提供的测试方法对3组树脂(阴离子交换树脂中混有一定量的阳离子交换树脂,表1中序号为4、5、6的树脂)进行分离度测试,树脂量以及测试结果如表1所示。
本实施例中序号为4、6的树脂所达到的分离效果如图5和图6所示,可以看出,树脂分层界面清晰、水平,这说明本实施例对混入了阳离子交换树脂的阴离子交换树脂也能够实现分离。
表1
实施例5
本实施例提供了一种阳离子交换树脂分离度测试方法,其是向树脂柱中装入一定高度的取自于电厂精处理再生工艺调整试验中阳塔中不同高度处的阳树脂和阴塔中不同高度处的阴树脂,测定树脂分离塔对阴、阳树脂的分离度,测定结果见表2和表3,分离效果见图7。该分离度测试是采用实施例1提供的测试装置按照实施例2提供的测试方法进行的。
表2电厂阳树脂分离度的测定
树脂类别 树脂总高度,cm 上层阴树脂高度,cm 分离度
张热阳上 65.0 0 100%
张热阳中 65.5 0.1 99.85%
张热阳下 65.3 0.1 99.85%
托电#3阳上 70 2.7 96.14%
托电#3阳中 72.3 5.5 92.39%
托电#4阳上 71.3 0.3 99.58%
托电#4阳中 48.4 0.25 99.48%
托电#4阳下 50.09 0.35 98.30%
表3电厂阴树脂分离度的测定
树脂类别 树脂总高度,cm 底层阳树脂高度,cm 分离度
张热阴上 74.5 0 100%
张热阴中 38 0.1 99.74%
张热阴下 41.6 4.3 89.67%
托电#3阴上 49 0 100%
托电#3阴中 40 0.1 99.75%
托电#3阴下 42.5 9.5 77.65%
托电#4阴上 45 0.2 99.56%
托电#4阴中 37 1.8 95.14%
托电#4阴下 28 27.2 2.86%
本实施例所达到的分离效果如图7所示,可以看出,树脂分层界面清晰、水平,这说明本实施例对运行树脂也能够实现良好的分离。测定结果见表2和表3,可以看出,阳塔和阴塔中不同部位树脂的分离度不同,下层树脂分离度明显低于上层树脂分离度。根据树脂反洗工艺特点,现场阳塔和阴塔的树脂经反洗、擦洗操作后,塔上部的树脂较塔底的树脂反洗彻底,上部树脂分离度较底部树脂分离度高。本系统对树脂分离度的测定结果与现场阳塔、阴塔树脂经反洗操作后,塔内阴、阳树脂的分离度沿塔高度方向的变化规律是一致的,充分验证了本系统测定结果的准确性和可靠性。

Claims (7)

1.一种水处理离子交换树脂分离度测试系统,其包括树脂分离柱、柱塞式计量泵、三通调节阀、水箱,其中,所述水箱通过管道与所述三通调节阀的第一端口连接,并且该连接管道上设有柱塞式计量泵,所述树脂分离柱的底部开口与所述三通调节阀的第二端口连接,所述树脂分离柱的顶部开口通过管道排空,所述三通调节阀的第三端口排空,所述树脂分离柱上具有刻度。
2.根据权利要求1所述的水处理离子交换树脂分离度测试系统,其中,该水处理离子交换树脂分离度测试系统包括一排放池,并且,所述三通调节阀的第三端口通过管道与所述排放池连接,所述树脂分离柱的顶部开口通过管道与所述排放池连接。
3.根据权利要求1所述的水处理离子交换树脂分离度测试系统,其中,所述树脂分离柱的高度为1200-1500mm,内径为15mm-25mm。
4.根据权利要求3所述的水处理离子交换树脂分离度测试系统,所述树脂分离柱的材质为有机玻璃。
5.根据权利要求1所述的水处理离子交换树脂分离度测试系统,其中,所述树脂分离柱两端的接头为螺纹接头。
6.根据权利要求1或5所述的水处理离子交换树脂分离度测试系统,其中,所述树脂分离柱的进出水结构为双层多孔板夹尼龙网结构。
7.一种水处理离子交换树脂分离度测试方法,其是采用权利要求1-6任一项所述的水处理离子交换树脂分离度测试系统进行的,该方法包括以下步骤:
(1)预处理:取500mL树脂样品,用纯水或者浓度为2wt%-3wt%的氢氧化钠溶液作为浸泡液进行浸泡,浸泡时间为10分钟;
(2)装柱:向树脂分离柱中装填待分析的树脂样品,树脂样品的装填高度为60-80cm,并且,装填时经过浸泡的树脂样品和浸泡液一起装入,树脂表面以上保持10-20cm高的浸泡液;
(3)反洗:以纯水为反洗用水,启动计量泵,调节计量泵工作频率,保持适当的反洗流量,使树脂分离柱中的树脂充分膨胀,树脂膨胀的高度为120-140cm;
(4)粗分层:保持树脂分离柱中树脂的膨胀高度和运动状态,使阴树脂和阳树脂逐渐分离,阴树脂在上层、阳树脂在下层,中间是阴阳树脂混合层;
(5)细分层:当阴树脂和阳树脂初步分层之后,逐渐调低计量泵的工作频率,逐渐减小计量泵的振动作用和反洗用水的流量,使树脂的膨胀高度逐渐回落,树脂颗粒的紊动状态逐渐减弱,混合层的树脂在水力作用和规律的振动作用下,逐渐分离,混合层的厚度逐渐减小直至消失,最后出现清晰的阴树脂和阳树脂的分离界面,阴树脂和阳树脂彻底分离;
(6)计算:分别计量树脂分离柱中阴树脂、阳树脂的高度,带入公式计算待分析树脂样品的分离度,该公式为:
δ=H/HZ×100%,δ=H/HZ×100%
其中:
δ为阳树脂分离度,单位为%;
δ为阴树脂分离度,单位为%;
H为分离后的阳树脂高度,单位为cm;
H为分离后的阴树脂高度,单位为cm;
HZ为树脂的装填高度,单位为cm。
CN201310279260.2A 2013-07-04 2013-07-04 一种水处理离子交换树脂分离度测试系统及测试方法 Active CN104280535B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310279260.2A CN104280535B (zh) 2013-07-04 2013-07-04 一种水处理离子交换树脂分离度测试系统及测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310279260.2A CN104280535B (zh) 2013-07-04 2013-07-04 一种水处理离子交换树脂分离度测试系统及测试方法

Publications (2)

Publication Number Publication Date
CN104280535A true CN104280535A (zh) 2015-01-14
CN104280535B CN104280535B (zh) 2017-03-08

Family

ID=52255622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310279260.2A Active CN104280535B (zh) 2013-07-04 2013-07-04 一种水处理离子交换树脂分离度测试系统及测试方法

Country Status (1)

Country Link
CN (1) CN104280535B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684484B (zh) * 2018-10-04 2020-02-11 行政院原子能委員會核能研究所 陰陽離子交換樹脂分離方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120786A (en) * 1977-03-29 1978-10-17 General Electric Company Separation of mixed ion exchange resins
CN1054019A (zh) * 1990-08-30 1991-08-28 华东电业管理局望亭发电厂 混合树脂完全分离的新方法
CN2662990Y (zh) * 2003-12-15 2004-12-15 王宏晓 凝结水精处理阴阳树脂高塔分离装置
CN101780422A (zh) * 2010-03-05 2010-07-21 南京中电联环保股份有限公司 一种四塔式混合离子交换器树脂体外分离再生方法
CN201676695U (zh) * 2010-03-31 2010-12-22 左矅 发电机内冷水混合离子交换树脂分离、再生装置
CN102008982A (zh) * 2010-11-04 2011-04-13 株洲冶炼集团股份有限公司 一种防止阴、阳离子树脂逃逸的方法
CN202606162U (zh) * 2012-06-18 2012-12-19 南通水山环保设备有限公司 混合离子交换器
CN202688040U (zh) * 2012-07-18 2013-01-23 南京中电环保工程有限公司 一种核电凝结水精处理系统用树脂分离塔
CN202766339U (zh) * 2012-08-17 2013-03-06 山东兆光色谱分离技术有限公司 混床离子交换器
CN203422377U (zh) * 2013-07-04 2014-02-05 国家电网公司 一种水处理离子交换树脂分离度测试系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120786A (en) * 1977-03-29 1978-10-17 General Electric Company Separation of mixed ion exchange resins
CN1054019A (zh) * 1990-08-30 1991-08-28 华东电业管理局望亭发电厂 混合树脂完全分离的新方法
CN2662990Y (zh) * 2003-12-15 2004-12-15 王宏晓 凝结水精处理阴阳树脂高塔分离装置
CN101780422A (zh) * 2010-03-05 2010-07-21 南京中电联环保股份有限公司 一种四塔式混合离子交换器树脂体外分离再生方法
CN201676695U (zh) * 2010-03-31 2010-12-22 左矅 发电机内冷水混合离子交换树脂分离、再生装置
CN102008982A (zh) * 2010-11-04 2011-04-13 株洲冶炼集团股份有限公司 一种防止阴、阳离子树脂逃逸的方法
CN202606162U (zh) * 2012-06-18 2012-12-19 南通水山环保设备有限公司 混合离子交换器
CN202688040U (zh) * 2012-07-18 2013-01-23 南京中电环保工程有限公司 一种核电凝结水精处理系统用树脂分离塔
CN202766339U (zh) * 2012-08-17 2013-03-06 山东兆光色谱分离技术有限公司 混床离子交换器
CN203422377U (zh) * 2013-07-04 2014-02-05 国家电网公司 一种水处理离子交换树脂分离度测试系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684484B (zh) * 2018-10-04 2020-02-11 行政院原子能委員會核能研究所 陰陽離子交換樹脂分離方法

Also Published As

Publication number Publication date
CN104280535B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
CN108344653B (zh) 测试土体抵抗冲刷能力的装置及方法
CN103018147B (zh) 一种测量泥页岩总孔隙度的方法
Ning et al. Effect of shale reservoir characteristics on shale oil movability in the lower third member of the Shahejie Formation, Zhanhua Sag
CN203422377U (zh) 一种水处理离子交换树脂分离度测试系统
CN115266800A (zh) 一种基于二维核磁共振的凝析油饱和度测试方法
CN111189994B (zh) 用于co2超覆程度的定量表征的模拟装置及方法
CN105938084B (zh) 一种化学渗吸剂渗透性能评价方法
CN104280535A (zh) 一种水处理离子交换树脂分离度测试系统及测试方法
CN103398890A (zh) 一种液基细胞制片系统及其制片方法
CN103484919A (zh) 电化学沉积修复混凝土试验装置
CN108956921B (zh) 一种新型油田注水水质检测仪器
CN103728349A (zh) 电阻型煤样瓦斯解吸速度全程自动测试方法及装置
CN201906611U (zh) 一种氢导表用阳离子交换树脂再生装置
CN203385605U (zh) 一种液基细胞制片系统
CN211426149U (zh) 置换法自动监测悬移质泥沙的装置
Ramser et al. Physical Structure of Silica-Alumina Catalysts
CN109444023B (zh) 油水分离效率测试系统
CN204731064U (zh) 一种近红外光谱在线取样系统
CN109854215B (zh) 一种酸化注水井精细分类的方法
CN110595931A (zh) 置换法自动监测悬移质泥沙的方法及装置
Tang et al. Prediction of clean-bed head loss in crumb rubber filters
CN202869918U (zh) 一种粉尘真密度测试装置
CN205773772U (zh) 喷水织机废水处理循环利用装置
CN206328237U (zh) 海上移动式洗井水处理装置
CN204989181U (zh) 一种减震稳定式再生沥青混合料含油量测定仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant