CN104243860A - 能提高输出信号电压幅度的全局快门像素结构及控制方法 - Google Patents

能提高输出信号电压幅度的全局快门像素结构及控制方法 Download PDF

Info

Publication number
CN104243860A
CN104243860A CN201410511555.2A CN201410511555A CN104243860A CN 104243860 A CN104243860 A CN 104243860A CN 201410511555 A CN201410511555 A CN 201410511555A CN 104243860 A CN104243860 A CN 104243860A
Authority
CN
China
Prior art keywords
switch
source
sampling switch
reset
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410511555.2A
Other languages
English (en)
Other versions
CN104243860B (zh
Inventor
吴治军
李明
张靖
李梦萄
刘业琦
祝晓笑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 44 Research Institute
Original Assignee
CETC 44 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 44 Research Institute filed Critical CETC 44 Research Institute
Priority to CN201410511555.2A priority Critical patent/CN104243860B/zh
Publication of CN104243860A publication Critical patent/CN104243860A/zh
Application granted granted Critical
Publication of CN104243860B publication Critical patent/CN104243860B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本发明公开了一种能提高输出信号电压幅度的全局快门像素结构,所述全局快门像素结构对采样开关的电气结构进行了创新,使得两个采样电容可以单独管理,保证了读出过程中电荷转换时采样电容大小不变;另外,本发明还公开了基于前述结构的信号控制方法;本发明的有益技术效果是:可以提高像素结构输出信号的电压幅度,扩展像素的动态范围,提高图像灰度质量;同时,不改变典型8T结构的CVF、PLS、噪声等指针。

Description

能提高输出信号电压幅度的全局快门像素结构及控制方法
技术领域
    本发明涉及一种CMOS图像传感器,尤其涉及一种能提高输出信号电压幅度的全局快门像素结构及控制方法。
背景技术
拍摄高速运动的物体时,需要采用全局快门来避免图像的扭曲;现有的CMOS图像传感器上,用于实现全局快门功能的典型像素结构如图1所示,该像素结构基于传统的4T像素结构变化而来,它由光电二极管、传输管、复位开关、源极跟随器一、电流源负载、两个采样开关(M5和M6)、两个采样电容(C1和C2)、源极跟随器二和行选开关组成;其工作原理是:1)驱动传输管和复位开关闭合,使光电二极管复位,之后,将传输管和复位开关断开,图像开始曝光;2)曝光开始后,闭合复位开关,使FD节点处形成复位信号;3)驱动两个采样开关和电流源负载闭合,待复位信号转移至采样电容C2中后,断开复位开关;复位信号转移完成后,驱动采样开关M6断开;4)驱动传输管闭合,将光信号存储在采样电容C1中,光信号转移完成后,断开传输管和采样开关M5;5)先驱动行选开关闭合,再驱动采样开关M6闭合,从而使采样电容C2和采样电容C1中的信号先后向外输出;前一帧图像信号控制的步骤5)开始后,后一帧图像信号控制重新开始步骤1)的操作;存在的问题是:基于现有的电学理论可知,采用前述的像素结构进行采样时,相比于光电二极管的输出电压幅度,通过行选开关向外输出的信号的电压幅度将降低C1*(Vreset-Vsignal)/(C1+C2),导致像素的动态范围也随之降低,导致图像灰度范围变低。
发明内容
针对背景技术中的问题,本发明提出了一种能提高输出信号电压幅度的全局快门像素结构,其结构为:所述全局快门像素结构由:光电二极管、传输管、复位开关、源极跟随器一、主采样开关、负载电流源、复位信号采样开关、光信号采样开关、采样电容一、采样电容二、源极跟随器二和行选开关组成;所述传输管、复位开关、源极跟随器一、主采样开关、负载电流源、复位信号采样开关、光信号采样开关、源极跟随器二和行选开关均采用NMOS场效应管;光电二极管的阳极接地,光电二极管的阴极与传输管的源极连接,传输管的栅极与控制端一连接,传输管的漏极与FD节点连接;复位开关的源极与FD节点连接,复位开关的栅极与控制端二连接,复位开关的漏极与电压源一连接;源极跟随器一的栅极与FD节点连接,源极跟随器一的源极与主采样开关的源极连接,源极跟随器一的漏极与电压源二;主采样开关的栅极与控制端三连接,主采样开关的漏极与A节点连接;负载电流源的漏极与主采样开关的源极连接,负载电流源的栅极与控制端四连接,负载电流源的源极接地;复位信号采样开关的漏极与A节点连接,复位信号采样开关的栅极与控制端五连接,复位信号采样开关的源极与采样电容一的一端连接,采样电容一的另一端接地;光信号采样开关的漏极与A节点连接,光信号采样开关的栅极与控制端六连接,光信号采样开关的源极与采样电容二的一端连接,采样电容二的另一端接地;源极跟随器二的栅极与A节点连接,源极跟随器二的漏极与电压源三连接,源极跟随器二的源极与行选开关的漏极连接;行选开关的栅极与控制端七连接,行选开关的源极与列级总线COL_BUS连接。
本发明的原理是:现有技术中,由于两个采样电容仅用一个采样开关连接,导致光信号读出时,光信号电荷在两个采样电容同时分配,最终使得行选开关向外输出光信号的电压幅度将降低C1·(Vreset-Vsignal)/(C1+C2),而采用本发明的方案后,可以分别对两个采样电容进行单独管理,读出过程中电荷转换时采样电容大小不变,这就解决了输出信号的电压幅度降低问题;同时,该像素能够采用相关双采样,消除了KTC噪声;而且,复位电压信号和光电压信号存储环境相同,通过相关双采样具有小的PLS;与典型的8T像素结构对比,没有降低的PLS、CVF、噪声等指针。
为了便于本领域技术人员实施,本发明还提出了一种能提高输出信号电压幅度的全局快门像素结构控制方法,所涉及的硬件如前所述;所述控制方法包括:
初始状态时,传输管、复位开关、主采样开关、负载电流源、复位信号采样开关、光信号采样开关和行选开关均处于断开状态;
1)驱动传输管和复位开关闭合,使光电二极管复位;光电二极管复位后,驱动传输管和复位开关断开,图像开始曝光;
2)曝光完成前,驱动复位开关闭合,使FD节点处形成复位信号;然后驱动主采样开关、负载电流源和复位信号采样开关闭合,再驱动驱动复位开关断开,待FD节点处的复位信号存储到采样电容一中后,驱动主采样开关、负载电流源和复位信号采样开关断开;
3)步骤2)的操作完成后,驱动传输管、主采样开关、负载电流源和光信号采样开关闭合,待光电二极管内的光信号转移至采样电容二中后,驱动传输管、主采样开关、负载电流源和光信号采样开关断开,曝光操作结束;
4)步骤3)的操作完成后,驱动复位信号采样开关和行选开关闭合,使采样电容一中的信号传输至列级总线COL_BUS并向外输出;
5)步骤4)的操作完成后,先驱动复位信号采样开关断开,然后驱动光信号采样开关闭合,使采样电容二中的信号传输至列级总线COL_BUS并向外输出,采样电容二的输出动作结束后,驱动光信号采样开关和行选开关断开;
前一帧图像信号控制的曝光操作结束后,后一帧图像信号控制同步开始步骤1)的操作。
本发明的有益技术效果是:可以提高像素结构输出信号的电压幅度,扩展像素的动态范围,提高图像灰度质量;同时,不改变典型8T结构的CVF、PLS、噪声等指针。
附图说明
图1、现有像素结构的电气原理示意图;
图2、本发明的像素结构的电气原理示意图;
图3、本发明的像素结构的操作时序图;
图中各个标记所对应的名称分别为:光电二极管1、传输管2、复位开关3、源极跟随器一4、主采样开关5、负载电流源6、复位信号采样开关7、光信号采样开关8、采样电容一9、采样电容二10、源极跟随器二11、行选开关12、采样电容C1/C2、电流源负载M4、采样开关M5/M6、控制端一TX、控制端二RST、控制端三Sample、制端四PC、控制端五Sreset、控制端六Spho、控制端七SEL、电压源一VDD1、电压源二VDD2、电压源三VDD3、列级总线COL_BUS。
具体实施方式
一种能提高输出信号电压幅度的全局快门像素结构,所述全局快门像素结构由:光电二极管1、传输管2、复位开关3、源极跟随器一4、主采样开关5、负载电流源6、复位信号采样开关7、光信号采样开关8、采样电容一9、采样电容二10、源极跟随器二11和行选开关12组成;所述传输管2、复位开关3、源极跟随器一4、主采样开关5、负载电流源6、复位信号采样开关7、光信号采样开关8、源极跟随器二11和行选开关12均采用NMOS场效应管;
光电二极管1的阳极接地,光电二极管1的阴极与传输管2的源极连接,传输管2的栅极与控制端一TX连接,传输管2的漏极与FD节点连接;
复位开关3的源极与FD节点连接,复位开关3的栅极与控制端二RST连接,复位开关3的漏极与电压源一VDD1连接;
源极跟随器一4的栅极与FD节点连接,源极跟随器一4的源极与主采样开关5的源极连接,源极跟随器一4的漏极与电压源二VDD2;
主采样开关5的栅极与控制端三Sample连接,主采样开关5的漏极与A节点连接;
负载电流源6的漏极与主采样开关5的源极连接,负载电流源6的栅极与控制端四PC连接,负载电流源6的源极接地;
复位信号采样开关7的漏极与A节点连接,复位信号采样开关7的栅极与控制端五Sreset连接,复位信号采样开关7的源极与采样电容一9的一端连接,采样电容一9的另一端接地;
光信号采样开关8的漏极与A节点连接,光信号采样开关8的栅极与控制端六Spho连接,光信号采样开关8的源极与采样电容二10的一端连接,采样电容二10的另一端接地;
源极跟随器二11的栅极与A节点连接,源极跟随器二11的漏极与电压源三VDD3连接,源极跟随器二11的源极与行选开关12的漏极连接;行选开关12的栅极与控制端七SEL连接,行选开关12的源极与列级总线COL_BUS连接。
一种能提高输出信号电压幅度的全局快门像素结构控制方法,所涉及的硬件有:所述全局快门像素结构由:光电二极管1、传输管2、复位开关3、源极跟随器一4、主采样开关5、负载电流源6、复位信号采样开关7、光信号采样开关8、采样电容一9、采样电容二10、源极跟随器二11和行选开关12组成;所述传输管2、复位开关3、源极跟随器一4、主采样开关5、负载电流源6、复位信号采样开关7、光信号采样开关8、源极跟随器二11和行选开关12均采用NMOS场效应管;光电二极管1的阳极接地,光电二极管1的阴极与传输管2的源极连接,传输管2的栅极与控制端一TX连接,传输管2的漏极与FD节点连接;复位开关3的源极与FD节点连接,复位开关3的栅极与控制端二RST连接,复位开关3的漏极与电压源一VDD1连接;源极跟随器一4的栅极与FD节点连接,源极跟随器一4的源极与主采样开关5的源极连接,源极跟随器一4的漏极与电压源二VDD2;主采样开关5的栅极与控制端三Sample连接,主采样开关5的漏极与A节点连接;负载电流源6的漏极与主采样开关5的源极连接,负载电流源6的栅极与控制端四PC连接,负载电流源6的源极接地;复位信号采样开关7的漏极与A节点连接,复位信号采样开关7的栅极与控制端五Sreset连接,复位信号采样开关7的源极与采样电容一9的一端连接,采样电容一9的另一端接地;光信号采样开关8的漏极与A节点连接,光信号采样开关8的栅极与控制端六Spho连接,光信号采样开关8的源极与采样电容二10的一端连接,采样电容二10的另一端接地;源极跟随器二11的栅极与A节点连接,源极跟随器二11的漏极与电压源三VDD3连接,源极跟随器二11的源极与行选开关12的漏极连接;行选开关12的栅极与控制端七SEL连接,行选开关12的源极与列级总线COL_BUS连接;
所述控制方法包括:
初始状态时,传输管2、复位开关3、主采样开关5、负载电流源6、复位信号采样开关7、光信号采样开关8和行选开关12均处于断开状态;
1)驱动传输管2和复位开关3闭合,使光电二极管1复位;光电二极管1复位后,驱动传输管2和复位开关3断开,图像开始曝光;
2)曝光完成前,驱动复位开关3闭合,使FD节点处形成复位信号;然后驱动主采样开关5、负载电流源6和复位信号采样开关7闭合,再驱动驱动复位开关3断开,待FD节点处的复位信号存储到采样电容一9中后,驱动主采样开关5、负载电流源6和复位信号采样开关7断开;
3)步骤2)的操作完成后,驱动传输管2、主采样开关5、负载电流源6和光信号采样开关8闭合,待光电二极管1内的光信号转移至采样电容二10中后,驱动传输管2、主采样开关5、负载电流源6和光信号采样开关8断开,曝光操作结束;
4)步骤3)的操作完成后,驱动复位信号采样开关7和行选开关12闭合,使采样电容一9中的信号传输至列级总线COL_BUS并向外输出;
5)步骤4)的操作完成后,先驱动复位信号采样开关7断开,然后驱动光信号采样开关8闭合,使采样电容二10中的信号传输至列级总线COL_BUS并向外输出,采样电容二10的输出动作结束后,驱动光信号采样开关8和行选开关12断开;
前一帧图像信号控制的曝光操作结束后,后一帧图像信号控制同步开始步骤1)的操作。

Claims (2)

1.一种能提高输出信号电压幅度的全局快门像素结构,其特征在于:所述全局快门像素结构由:光电二极管(1)、传输管(2)、复位开关(3)、源极跟随器一(4)、主采样开关(5)、负载电流源(6)、复位信号采样开关(7)、光信号采样开关(8)、采样电容一(9)、采样电容二(10)、源极跟随器二(11)和行选开关(12)组成;所述传输管(2)、复位开关(3)、源极跟随器一(4)、主采样开关(5)、负载电流源(6)、复位信号采样开关(7)、光信号采样开关(8)、源极跟随器二(11)和行选开关(12)均采用NMOS场效应管;
光电二极管(1)的阳极接地,光电二极管(1)的阴极与传输管(2)的源极连接,传输管(2)的栅极与控制端一(TX)连接,传输管(2)的漏极与FD节点连接;
复位开关(3)的源极与FD节点连接,复位开关(3)的栅极与控制端二(RST)连接,复位开关(3)的漏极与电压源一(VDD1)连接;
源极跟随器一(4)的栅极与FD节点连接,源极跟随器一(4)的源极与主采样开关(5)的源极连接,源极跟随器一(4)的漏极与电压源二(VDD2);
主采样开关(5)的栅极与控制端三(Sample)连接,主采样开关(5)的漏极与A节点连接;
负载电流源(6)的漏极与主采样开关(5)的源极连接,负载电流源(6)的栅极与控制端四(PC)连接,负载电流源(6)的源极接地;
复位信号采样开关(7)的漏极与A节点连接,复位信号采样开关(7)的栅极与控制端五(Sreset)连接,复位信号采样开关(7)的源极与采样电容一(9)的一端连接,采样电容一(9)的另一端接地;
光信号采样开关(8)的漏极与A节点连接,光信号采样开关(8)的栅极与控制端六(Spho)连接,光信号采样开关(8)的源极与采样电容二(10)的一端连接,采样电容二(10)的另一端接地;
源极跟随器二(11)的栅极与A节点连接,源极跟随器二(11)的漏极与电压源三(VDD3)连接,源极跟随器二(11)的源极与行选开关(12)的漏极连接;行选开关(12)的栅极与控制端七(SEL)连接,行选开关(12)的源极与列级总线COL_BUS连接。
2.一种能提高输出信号电压幅度的全局快门像素结构控制方法,其特征在于:所涉及的硬件有:所述全局快门像素结构由:光电二极管(1)、传输管(2)、复位开关(3)、源极跟随器一(4)、主采样开关(5)、负载电流源(6)、复位信号采样开关(7)、光信号采样开关(8)、采样电容一(9)、采样电容二(10)、源极跟随器二(11)和行选开关(12)组成;所述传输管(2)、复位开关(3)、源极跟随器一(4)、主采样开关(5)、负载电流源(6)、复位信号采样开关(7)、光信号采样开关(8)、源极跟随器二(11)和行选开关(12)均采用NMOS场效应管;光电二极管(1)的阳极接地,光电二极管(1)的阴极与传输管(2)的源极连接,传输管(2)的栅极与控制端一(TX)连接,传输管(2)的漏极与FD节点连接;复位开关(3)的源极与FD节点连接,复位开关(3)的栅极与控制端二(RST)连接,复位开关(3)的漏极与电压源一(VDD1)连接;源极跟随器一(4)的栅极与FD节点连接,源极跟随器一(4)的源极与主采样开关(5)的源极连接,源极跟随器一(4)的漏极与电压源二(VDD2);主采样开关(5)的栅极与控制端三(Sample)连接,主采样开关(5)的漏极与A节点连接;负载电流源(6)的漏极与主采样开关(5)的源极连接,负载电流源(6)的栅极与控制端四(PC)连接,负载电流源(6)的源极接地;复位信号采样开关(7)的漏极与A节点连接,复位信号采样开关(7)的栅极与控制端五(Sreset)连接,复位信号采样开关(7)的源极与采样电容一(9)的一端连接,采样电容一(9)的另一端接地;光信号采样开关(8)的漏极与A节点连接,光信号采样开关(8)的栅极与控制端六(Spho)连接,光信号采样开关(8)的源极与采样电容二(10)的一端连接,采样电容二(10)的另一端接地;源极跟随器二(11)的栅极与A节点连接,源极跟随器二(11)的漏极与电压源三(VDD3)连接,源极跟随器二(11)的源极与行选开关(12)的漏极连接;行选开关(12)的栅极与控制端七(SEL)连接,行选开关(12)的源极与列级总线COL_BUS连接;
所述控制方法包括:
初始状态时,传输管(2)、复位开关(3)、主采样开关(5)、负载电流源(6)、复位信号采样开关(7)、光信号采样开关(8)和行选开关(12)均处于断开状态;
1)驱动传输管(2)和复位开关(3)闭合,使光电二极管(1)复位;光电二极管(1)复位后,驱动传输管(2)和复位开关(3)断开,图像开始曝光;
2)曝光完成前,驱动复位开关(3)闭合,使FD节点处形成复位信号;然后驱动主采样开关(5)、负载电流源(6)和复位信号采样开关(7)闭合,再驱动复位开关(3)断开,待FD节点处的复位信号存储到采样电容一(9)中后,驱动主采样开关(5)、负载电流源(6)和复位信号采样开关(7)断开;
3)步骤2)的操作完成后,驱动传输管(2)、主采样开关(5)、负载电流源(6)和光信号采样开关(8)闭合,待光电二极管(1)内的光信号转移至采样电容二(10)中后,驱动传输管(2)、主采样开关(5)、负载电流源(6)和光信号采样开关(8)断开,曝光操作结束;
4)步骤3)的操作完成后,驱动复位信号采样开关(7)和行选开关(12)闭合,使采样电容一(9)中的信号传输至列级总线COL_BUS并向外输出;
5)步骤4)的操作完成后,先驱动复位信号采样开关(7)断开,然后驱动光信号采样开关(8)闭合,使采样电容二(10)中的信号传输至列级总线COL_BUS并向外输出,采样电容二(10)的输出动作结束后,驱动光信号采样开关(8)和行选开关(12)断开;
前一帧图像信号控制的曝光操作结束后,后一帧图像信号控制同步开始步骤1)的操作。
CN201410511555.2A 2014-09-29 2014-09-29 能提高输出信号电压幅度的全局快门像素结构及控制方法 Active CN104243860B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410511555.2A CN104243860B (zh) 2014-09-29 2014-09-29 能提高输出信号电压幅度的全局快门像素结构及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410511555.2A CN104243860B (zh) 2014-09-29 2014-09-29 能提高输出信号电压幅度的全局快门像素结构及控制方法

Publications (2)

Publication Number Publication Date
CN104243860A true CN104243860A (zh) 2014-12-24
CN104243860B CN104243860B (zh) 2017-09-26

Family

ID=52231110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410511555.2A Active CN104243860B (zh) 2014-09-29 2014-09-29 能提高输出信号电压幅度的全局快门像素结构及控制方法

Country Status (1)

Country Link
CN (1) CN104243860B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470742A (zh) * 2018-03-22 2018-08-31 上海晔芯电子科技有限公司 Hdr图像传感器像素结构及成像系统
CN111447384A (zh) * 2020-03-17 2020-07-24 深圳市南北微电子技术有限公司 高动态范围全局快门像素结构及其信号采样读取方法
CN112399108A (zh) * 2019-08-13 2021-02-23 天津大学青岛海洋技术研究院 一种消除8t cmos图像传感器信号衰减的供电结构
CN112449132A (zh) * 2019-08-13 2021-03-05 天津大学青岛海洋技术研究院 一种基于半浮栅的6t全局快门像素结构
WO2021185190A1 (en) * 2020-03-17 2021-09-23 Shenzhen Rgbic Microelectronics Technology Co., Ltd Pixel circuit, image sensor, and image pickup device and method for using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835003A (zh) * 2009-03-12 2010-09-15 索尼公司 固体摄像装置、固体摄像装置的驱动方法以及电子设备
JP2012217058A (ja) * 2011-03-31 2012-11-08 Honda Motor Co Ltd 固体撮像装置
CN103491324A (zh) * 2013-09-29 2014-01-01 长春长光辰芯光电技术有限公司 高速全局快门图像传感器像素及其像素信号的采样方法
CN103533265A (zh) * 2013-09-29 2014-01-22 长春长光辰芯光电技术有限公司 高速全局快门图像传感器像素及其信号转移控制方法
CN103945148A (zh) * 2014-04-02 2014-07-23 长春长光辰芯光电技术有限公司 高速全局快门图像传感器像素及其像素信号采集方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101835003A (zh) * 2009-03-12 2010-09-15 索尼公司 固体摄像装置、固体摄像装置的驱动方法以及电子设备
JP2012217058A (ja) * 2011-03-31 2012-11-08 Honda Motor Co Ltd 固体撮像装置
CN103491324A (zh) * 2013-09-29 2014-01-01 长春长光辰芯光电技术有限公司 高速全局快门图像传感器像素及其像素信号的采样方法
CN103533265A (zh) * 2013-09-29 2014-01-22 长春长光辰芯光电技术有限公司 高速全局快门图像传感器像素及其信号转移控制方法
CN103945148A (zh) * 2014-04-02 2014-07-23 长春长光辰芯光电技术有限公司 高速全局快门图像传感器像素及其像素信号采集方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470742A (zh) * 2018-03-22 2018-08-31 上海晔芯电子科技有限公司 Hdr图像传感器像素结构及成像系统
CN112399108A (zh) * 2019-08-13 2021-02-23 天津大学青岛海洋技术研究院 一种消除8t cmos图像传感器信号衰减的供电结构
CN112449132A (zh) * 2019-08-13 2021-03-05 天津大学青岛海洋技术研究院 一种基于半浮栅的6t全局快门像素结构
CN112399108B (zh) * 2019-08-13 2023-02-03 天津大学青岛海洋技术研究院 一种消除8t cmos图像传感器信号衰减的供电结构
CN111447384A (zh) * 2020-03-17 2020-07-24 深圳市南北微电子技术有限公司 高动态范围全局快门像素结构及其信号采样读取方法
WO2021185190A1 (en) * 2020-03-17 2021-09-23 Shenzhen Rgbic Microelectronics Technology Co., Ltd Pixel circuit, image sensor, and image pickup device and method for using the same
CN111447384B (zh) * 2020-03-17 2022-09-02 深圳市南北微电子技术有限公司 高动态范围全局快门像素结构及其信号采样读取方法
US20230007204A1 (en) * 2020-03-17 2023-01-05 Shenzhen Rgbic Microelectronics Technology Co., Ltd Pixel circuit, image sensor, and image pickup device and method for using the same
US12088938B2 (en) * 2020-03-17 2024-09-10 Shenzhen Rgbic Microelectronics Technology Co., Ltd Pixel circuit, image sensor, and image pickup device and method for using the same

Also Published As

Publication number Publication date
CN104243860B (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
CN104243861A (zh) 高速全局快门像素结构及其信号控制方法
TWI701822B (zh) 用於低暗電流浮動擴散之裝置及方法
CN102970493B (zh) 多重转换增益图像传感器的多电平复位电压
US10205904B2 (en) Image sensor capable of correcting noise caused by dark charge of a floating diffusion portion, control method therefor, and image capturing apparatus
CN104243860A (zh) 能提高输出信号电压幅度的全局快门像素结构及控制方法
CN1909379B (zh) 互补金属氧化物半导体图像传感器中低功耗的模数转换器
CN100502474C (zh) 固态成像装置、驱动固态成像装置的方法和图像拾取设备
CN102780858B (zh) 固态成像设备、其驱动方法及固态成像系统
US8749683B2 (en) Driving method of solid-state imaging device
CN103118236B (zh) 一种图像传感器暗电流补偿装置及补偿方法
CN102572326B (zh) 具有流水线化列模数转换器的图像传感器
CN102523392B (zh) 一种提高图像传感器动态范围的电路及其控制方法
CN104282700B (zh) 图像传感器及其操作方法
CN104159051B (zh) 图像传感器以及包括该图像传感器的装置
CN105933623B (zh) 像素电路及其驱动方法、图像传感器及图像获取装置
CN103491324B (zh) 高速全局快门图像传感器像素及其像素信号的采样方法
CN103873787B (zh) 高动态范围图像传感器像素
KR20160063856A (ko) 이미지 센서, 및 상기 이미지 센서를 포함하는 이미지 처리 시스템
CN108777771B (zh) 图像感测器及成像系统的运作方法
CN109327666A (zh) 像素感应电路及其驱动方法、图像传感器、电子设备
CN111741244B (zh) 图像传感器像素结构
CN110460786B (zh) 像素感应电路、第一偏置电压确定方法、电子设备
CN103053155A (zh) 拍摄装置
KR101158811B1 (ko) 이미지 센서
CN105704401B (zh) 摄像装置的驱动方法以及摄像装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant