CN104242046A - 一种基于石墨烯的锁模激光器 - Google Patents

一种基于石墨烯的锁模激光器 Download PDF

Info

Publication number
CN104242046A
CN104242046A CN201410562235.XA CN201410562235A CN104242046A CN 104242046 A CN104242046 A CN 104242046A CN 201410562235 A CN201410562235 A CN 201410562235A CN 104242046 A CN104242046 A CN 104242046A
Authority
CN
China
Prior art keywords
graphene
laser
mode
locked
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410562235.XA
Other languages
English (en)
Inventor
潘淑娣
孔伟金
刘建华
葛晓辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201410562235.XA priority Critical patent/CN104242046A/zh
Publication of CN104242046A publication Critical patent/CN104242046A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

一种基于石墨烯的锁模激光器,包括泵浦光源、耦合系统、石墨烯-激光增益晶体、激光器谐振腔;所述石墨烯-激光增益晶体是将石墨烯掺杂在激光增益晶体中,并且石墨烯片平面与晶体的通光方向相互垂直;在泵浦光源的泵浦下,石墨烯-激光增益晶体中的激活离子辐射激光光波,摻杂在晶体中的石墨烯对该辐射激光光波进行锁模调制;本发明中的石墨烯-激光增益晶体将石墨烯与激光增益晶体相互结合,增大了锁模激光的效率,同时使激光器结构更加紧凑体积小;是一种新型的石墨烯锁模激光器。

Description

一种基于石墨烯的锁模激光器
技术领域
本发明涉及锁模激光器,是一种以石墨烯为可饱和吸收体的锁模激光器,尤其是一种将石墨烯置于激光增益内部的锁模激光器。
背景技术:
2004年,英国曼切斯特大学的A.Geim和K.Nonoselov教授用塑料胶带粘住石墨薄片的两侧并快速撕开而成功地得到了一个原子厚度的石墨片,即石墨烯(graphene),两人因此获得2010年的诺贝尔物理学奖。石墨烯是由单层碳原子以六边形蜂窝状排列的二维材料,单层石墨烯片的厚度仅为一个碳原子的厚度。石墨烯具有非比寻常的力热电光特性,在晶体管、超高速计算机、纳米生物材料等领域具有广阔的应用前景。近年的研究还发现石墨烯具有宽带可饱和吸收、超快饱和弛豫时间等优异的光电特性,在超快激光领域极具应用前景。描述可饱和吸收体的特征参量包括饱和通量、调制深度、非饱和损耗、恢复时间、吸收带宽等,这些动力学参量决定了超短脉冲的产生、形成和稳定性。对于石墨烯来说,这些特征参量值的大小可以通过它的层数来调节,例如:单层石墨烯对可见光的非饱和吸收率为2.3%,且每增加一层,其吸收率就增加2.3%;三层石墨烯的的非线性调制深度大约66.5%,且随层数的不同而改变。迄今为止,石墨烯已经在半导体激光器、全固态激光器、光纤激光器和波导激光器中实现了锁模调制。人们采用机械剥离法、外延生长法、氧化还原法、或者CVD化学气相沉积法等制备出石墨烯片,将这些石墨烯片敷在玻璃或者金属衬底上制备出石墨烯吸收体,再将这块石墨烯吸收体置于激光谐振腔中,与激光增益晶体和泵浦光源组成锁模激光器,从而获得锁模脉冲激光。在这些锁模激光器中,石墨烯可饱和吸收体和激光增益晶体是两个相互分离的器件,分别处于激光谐振腔中的不同位置。
发明内容:
本发明要解决的问题是:将石墨烯可饱和吸收体和激光增益晶体组成为一个整体,晶体中的激活离子决定激光波长,而石墨烯则对该激光振荡进行锁模调制,这样的结构会导致锁模激光器的效率提高、结构紧凑体积小。
本发明的技术方案为:首先将石墨烯片掺杂在激光增益晶体中,制备出石墨烯-激光增益晶体,其中的石墨烯片平面与晶体的通光方向相互垂直;然后将该晶体与泵浦光源、耦合系统和激光谐振腔组成锁模激光器。
本发明的装置包括泵浦光源、耦合系统、石墨烯-激光增益晶体、激光谐振腔。
附图说明:
图1为本发明的结构示意图,泵浦光源1、耦合系统2、石墨烯-激光增益晶体4、输入镜3、输出镜5;所述的输入镜3和输出镜5组成激光器的谐振腔;所述石墨烯-激光增益晶体4中的石墨烯片数目为3片;泵浦光源1发出的光依次经过耦合系统2、输入镜3,石墨烯-激光增益晶体4、输出镜5;石墨烯-激光增益晶体中的激活离子辐射激光光波,石墨烯对辐射的激光光波进行锁模调制;从输出镜5获得锁模激光脉冲;该装置不仅可以用于锁模激光,也可以用于调Q激光。
图2为本发明实施例2的结构示意图。
具体实施方式:
实施例1:
如图1制作一台10GHz重复频率的1064nm的全固态锁模激光器,泵浦光源为1为波长808nm的半导体激光器,石墨烯-激光增益晶体4为graphene/Nd:YVO4晶体,其中三片石墨烯片叠放在Nd:YVO4中,每片石墨烯片的面积为3*3mm;晶体的尺寸为3*3*6m,通光面镀膜HT808nm&1064nm;输入镜3为曲率半径为30mm的凹面镜,膜镀HT808nm&HR1064nm;输出镜5为平面镜,镀膜T=3%1064nm;输入镜3与输出镜5之间的距离为15mm;由输出镜5可以获得重复频率为10GHz的1064nm锁模激光脉冲。
按照实施例1制作的1064nm全固态锁模激光器,石墨烯-激光增益晶体还可以是graphene-Nd:YAG或graphene-Nd:GdVO4等其它辐射1064nm波长的晶体;石墨烯片的数目还可以根据需要进行改变;输出镜的镀膜参数还可以根据需要进行调节。
实施例2:
如图2制作一台1342nm侧面泵浦的200MHz锁模激光器,泵浦光源2为波长880nm半导体激光器,石墨烯-激光增益晶体3为graphene-Nd:YAG,9片石墨烯片叠放在Nd:YAG中,每片石墨烯片的面积为3*3mm;晶体尺寸为3*3*6m,通光面镀膜HT880nm&1342nm;腔镜1、腔镜4和腔镜5组成激光器的谐振腔;腔镜1的曲率半径为100mm,腔镜4的曲率半径为200mm,腔镜1和腔镜4镀膜为HT880nm&HR1342nm;腔镜5为平面镜,镀膜为T=10%1342nm;腔镜1与腔镜4之间的距离为615mm,腔镜4与腔镜5之间的距离为135mm;由腔镜5可以获得重复频率为200MHz的锁模1342nm脉冲激光。
按照实施例2制作的200MHz重复频率1342nm锁模激光器,激光增益晶体还可以是graphene-Nd:YVO4、graphene-Nd:GdVO4,或者其它辐射1342nm波长的晶体;石墨烯的层数还可以是其它数值;激光器谐振腔还可以根据实际需要进行设计。

Claims (4)

1.一种基于石墨烯的锁模激光器,其特征是首先将石墨烯片摻杂在激光增益晶体中制备出石墨烯-激光增益晶体,并且石墨烯片平面与晶体的通光方向相互垂直;然后将石墨烯-激光增益晶体与泵浦光源、耦合系统和激光器谐振腔组成锁模激光器。
2.根据权利要求1所述的一种基于石墨烯的锁模激光器,其特征是石墨烯片可以是单层的,也可以是多层的。
3.根据权利要求1、2所述的一种基于石墨烯的锁模激光器,其特征是激光器谐振腔的结构可以根据实际需要进行设计,可以是任意结构。
4.根据权利要求1、2、3所述的一种基于石墨烯的锁模激光器,不仅可以用于实现锁模激光,也可以用于实现调Q激光。
CN201410562235.XA 2014-10-22 2014-10-22 一种基于石墨烯的锁模激光器 Pending CN104242046A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410562235.XA CN104242046A (zh) 2014-10-22 2014-10-22 一种基于石墨烯的锁模激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410562235.XA CN104242046A (zh) 2014-10-22 2014-10-22 一种基于石墨烯的锁模激光器

Publications (1)

Publication Number Publication Date
CN104242046A true CN104242046A (zh) 2014-12-24

Family

ID=52229650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410562235.XA Pending CN104242046A (zh) 2014-10-22 2014-10-22 一种基于石墨烯的锁模激光器

Country Status (1)

Country Link
CN (1) CN104242046A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703209A (zh) * 2016-04-26 2016-06-22 芜湖安瑞激光科技有限公司 用石墨烯饱和吸收体锁模的超短脉冲光纤激光器系统
WO2016141125A1 (en) * 2015-03-05 2016-09-09 Corning Incorporated Tunable light modulation using graphene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908713A (zh) * 2010-08-03 2010-12-08 山东大学 石墨烯光学调q开关及应用
CN102104231A (zh) * 2011-01-06 2011-06-22 中国科学院上海光学精密机械研究所 石墨烯拉曼锁模激光器
CN102420385A (zh) * 2011-11-14 2012-04-18 北京工业大学 被动调q微片激光器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908713A (zh) * 2010-08-03 2010-12-08 山东大学 石墨烯光学调q开关及应用
CN102104231A (zh) * 2011-01-06 2011-06-22 中国科学院上海光学精密机械研究所 石墨烯拉曼锁模激光器
CN102420385A (zh) * 2011-11-14 2012-04-18 北京工业大学 被动调q微片激光器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
史瑞平、白杨、祁媚等: "基于石墨烯的1064nm连续锁模超短脉冲激光器", 《应用光学》 *
曹镱、刘佳、刘江、王璞: "基于石墨烯被动调QNd:YAG晶体微片激光器", 《中国激光》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016141125A1 (en) * 2015-03-05 2016-09-09 Corning Incorporated Tunable light modulation using graphene
CN105703209A (zh) * 2016-04-26 2016-06-22 芜湖安瑞激光科技有限公司 用石墨烯饱和吸收体锁模的超短脉冲光纤激光器系统

Similar Documents

Publication Publication Date Title
Woodward et al. 2D saturable absorbers for fibre lasers
Ismail et al. A Q-switched erbium-doped fiber laser with a graphene saturable absorber
Choi et al. All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber
Jiang et al. A graphene Q-switched nanosecond Tm-doped fiber laser at 2 μm
Lin et al. Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser
Cai et al. Graphene saturable absorber for diode pumped Yb: Sc2SiO5 mode-locked laser
Pang et al. GaSb film is a saturable absorber for dissipative soliton generation in a fiber laser
Sobon et al. Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber
Ahmad et al. A black phosphorus-based tunable Q-switched ytterbium fiber laser
Sun et al. 946 nm Nd: YAG double Q-switched laser based on monolayer WSe 2 saturable absorber
Li et al. Graphene actively Q-switched lasers
Zhu et al. Monolayer graphene saturable absorber with sandwich structure for ultrafast solid-state laser
Jin et al. A graphene-based passively Q-switched Ho: YAG laser in-band pumped by a diode-pumped Tm: YLF solid-state laser
Liu et al. Application of transition metal dichalcogenides in mid‐infrared fiber laser
Liu et al. Passively Q-switched dual-wavelength Yb: LSO laser based on tungsten disulphide saturable absorber
Zhang et al. Atomic-layer molybdenum sulfide passively modulated green laser pulses
Sobon Application of 2D materials to ultrashort laser pulse generation
CN104242046A (zh) 一种基于石墨烯的锁模激光器
Shang et al. Layer-to-layer compression and enhanced optical properties of few-layer graphene nanosheet induced by ion irradiation
Gorbachenya et al. Passively Q-switched Er, Yb: GdAl3 (BO3) 4 laser with single-walled carbon nanotube based saturable absorber
Shi et al. A passively mode-locked intracavity frequency doubled Nd: YVO4 femtosecond green laser based on graphene
Han et al. Direct generation of subnanosecond Ince–Gaussian modes in microchip laser
Ma et al. Two-dimensional MoS2 passively Q-switched Nd: GdNbO4 laser under direct pumping
Mateos et al. Single-walled carbon nanotubes oust graphene and semiconductor saturable absorbers in Q-switched solid-state lasers at 2 µm
Woodward et al. Optical nonlinearity of few-layer MoS2 devices and applications in short-pulse laser technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141224