CN104241791B - 一种微带间隙设计在基片集成波导环行器上的应用 - Google Patents

一种微带间隙设计在基片集成波导环行器上的应用 Download PDF

Info

Publication number
CN104241791B
CN104241791B CN201410460536.1A CN201410460536A CN104241791B CN 104241791 B CN104241791 B CN 104241791B CN 201410460536 A CN201410460536 A CN 201410460536A CN 104241791 B CN104241791 B CN 104241791B
Authority
CN
China
Prior art keywords
micro
centerdot
rsqb
lsqb
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410460536.1A
Other languages
English (en)
Other versions
CN104241791A (zh
Inventor
黄陈
朱帅
闫耀
鲁莉娟
罗力兢
汪晓光
邓龙江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201410460536.1A priority Critical patent/CN104241791B/zh
Publication of CN104241791A publication Critical patent/CN104241791A/zh
Application granted granted Critical
Publication of CN104241791B publication Critical patent/CN104241791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Waveguides (AREA)

Abstract

本发明涉及微波器件技术领域,尤其涉及一种微带间隙设计在基片集成波导环行器上的应用。在基片集成波导环行器端口匹配末端微带线上引入微带间隙,改变微带线等效电路电容电感值,使环形器中心结基片集成波导与外部50欧姆微带电路达到良好匹配,同时达到隔离直流的目的。该间隙的引入,作为基片集成波导与微带间隙匹配的补充,通过等效电路的分析,使得匹配更加良好,达到展宽带宽的目的。隔离了系统中的直流部分,具有了避雷的效果。

Description

一种微带间隙设计在基片集成波导环行器上的应用
技术领域
本发明涉及微波器件技术领域,尤其涉及一种微带间隙设计在基片集成波导环行器上的应用。
背景技术
高频率环行器在军事上的雷达及微波多路通信系统中应有非常广泛。随着现代技术的发展,军用器件对于小型化、轻型化、高功率、集成化、高性能的要求越来越高。传统的环形器技术如带状线环行器和微带环行器已经不能满足这些要求。基片集成波导(SIW)作为一种新兴的传输线,它既具有矩形波导高品质因数、低损耗、以及相对较高的功率容量,又具有微带线体积小、易于集成化的优点,因而SIW传输线可以在微波、毫米波环行器中得到广泛应用。
为了方便SIW与其它电路的集成,通常要采用50欧姆微带线与SIW连接。连接方式各有不同,目前为止,所有的设计,都不能同时达到良好反射系数与宽的带宽的要求。
发明内容
针对上述存在问题或不足,本发明提供了一种微带间隙设计在基片集成波导环行器上的应用。其适用于基片集成波导环行器中心结SIW结构与50欧姆微带线匹配的补充,增强了匹配,展宽了带宽,同时能够达到隔离直流的目的,可以使得器件达到避雷的要求。
本发明所采用的技术方案是:
步骤一、设计一种Ka波段环行器,包括中心结,三个外接50欧姆微带端口,50欧姆微带与SIW过渡段,还包括一个微带间隙,该微带间隙位于T型环行器两对称直端口50欧姆微带线末端处,距离端口边缘距离为0<W1≤0.1mm,微带间隙宽度为0<S≤0.01mm,微带介质层厚度为0.4≤h≤1mm,间隙处微带的导带宽度W为50欧姆微带宽度;
步骤二、依据公式
优化上述参数,其中εr为介质板介电常数;
步骤三、确定微带间隙等效电路各集总参数元件值C11,C12,L12,L11,R1,R2,C2,L2其值由以下公式确定:
步骤四、将环行器SIW部分与中心结部分抽出电原理图,将间隙电原理图与其余部分电原理图代入ADS软件优化,可以获得最优匹配电路,使环行器达到最佳性能;由此等效电路,推导出环行器最佳性能时微带间隙的S与W值,最后将此时的微带间隙模型代入HFSS软件中,继续优化得到最好微带间隙模型数值S,W,W1,h。
如图1所示,微带间隙位于T型环行器两直端口50欧姆微带线末端处。如图2所示,间隙宽度为S,间隙处的导带宽度为W,间隙距离环行器边缘距离为W1,介质层厚度为h。微带间隙等效电路如图3所示。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、使得外接50欧姆微带与基片集成波导中心结匹配同时达到良好反射系数与更宽的带宽的要求;
2、隔离了系统中的直流部分,达到避雷的效果。
附图说明
图1基片集成波导环行器中微带间隙结构图
图2为微带间隙结构;
图3为微带间隙结构等效电路;
图4为环行器性能。
附图标记:S为间隙宽度。
具体实施方式
8mm基片集成波导环行器,中心工作频率为36GHz。
8mm环行器中微带间隙设计步骤为:
经过优化后的参数,可以得带如下结果
1、确定微带间隙位置。微带间隙位于T型环行器两对称直端口50欧姆微带线末端处,距离端口边缘距离为W1=0.05mm.
2、确定微带间隙宽度,将微带间隙宽度设计为S=0.004mm。
3、间隙处微带的导带宽度为W=1.36mm,微带介质层厚度为h=0.508mm.8mm基片集成波导环行器中,环行器工作在36GHz。
微带间隙宽度S=0.004mm。微带间隙距离边缘距离W1=0.05mm。间隙处微带导带宽度W=1.36mm。介质厚度为h=0.508mm。
通过以上设计,可以得到环行器的性能如图4所示。环行器回波损耗在20dB以下,带宽可以达到5.5GHz,插入损耗在0.45dB以内,带宽可以达到5.2GHz,隔离在20dB以下,带宽可以达到6GHz,比现有同频段环行器带宽大大展宽。

Claims (2)

1.一种微带间隙设计在基片集成波导环行器上的应用,其技术方案是:
步骤一、设计一种Ka波段环行器,包括中心结,三个外接50欧姆微带端口,50欧姆微带与SIW过渡段,还包括一个微带间隙,该微带间隙位于T型环行器两对称直端口50欧姆微带线末端处,距离端口边缘距离为0<W1≤0.1mm,微带间隙宽度为0<S≤0.01mm,微带介质层厚度为0.4≤h≤1mm,间隙处微带的导带宽度W为50欧姆微带宽度;
步骤二、依据公式
W h = 2 &pi; &lsqb; B - 1 - L n ( 2 B - 1 ) + { L n ( B - 1 ) + 0.39 - 0.61 &epsiv; r } &rsqb;
A = Z 0 60 &epsiv; r + 1 2 + &epsiv; r - 1 &epsiv; r + 1 ( 0.23 + 0.11 &epsiv; r ) , B = 377 &pi; 2 Z 0 &epsiv; r
优化上述参数,其中εr为介质板介电常数;
步骤三、确定微带间隙等效电路各集总参数元件值C11,C12,L12,L11,R1,R2,C2,L2其值由以下公式确定:
c 11 &CenterDot; 25 Z 0 h = &lsqb; 1.125 tanh ( 1.358 W h ) - 0.315 &rsqb; &CenterDot; tanh &lsqb; ( 0.0262 + 0.184 h W ) + ( 0.217 + 0.0619 l n W h ) S h &rsqb;
c 12 &CenterDot; 25 Z 0 h = &lsqb; 6.832 tanh ( 0.0109 W h ) + 0.910 &rsqb; &CenterDot; tanh &lsqb; ( 1.411 + 0.314 h W ) + ( S h ) 1.248 + 0.360 tan - 1 W h &rsqb;
L 12 &CenterDot; 25 hZ 0 = &lsqb; 0.008285 tanh ( 0.5665 W h ) + 0.0103 &rsqb; + &lsqb; 0.1827 + 0.00715 l n W h &rsqb; &CenterDot; exp &lsqb; - 1 &CenterDot; ( 5.207 + 1.283 tanh ( 1.656 h W ) ) &CenterDot; ( S h ) 0.542 + 0.873 tan - 1 W h &rsqb;
L 11 &CenterDot; 25 hZ 0 = &lsqb; 0.134 + 0.0436 l n h W &rsqb; &CenterDot; exp &lsqb; - 1 &CenterDot; ( 3.656 + 0.246 h W ) &CenterDot; ( S h ) 1.739 + 0.390 ln W h &rsqb;
R 1 Z 0 = 1.024 tanh ( 2.025 W h ) &CenterDot; tanh &lsqb; ( 0.01584 + 0.0187 h W ) S h + ( 0.1246 + 0.0394 &CenterDot; sinh ( W h ) ) &rsqb;
c 2 &CenterDot; 25 Z 0 h = &lsqb; 0.1776 + 0.05104 l n ( W h ) &rsqb; h S + &lsqb; 0.574 + 0.3615 h W + 1.156 l n ( W h ) &rsqb; &CenterDot; sec h ( 2.3345 S h )
L 2 &CenterDot; 25 hZ 0 = &lsqb; 0.00228 + 0.0873 7.52 W / h + cosh ( W / h ) &rsqb; &CenterDot; sinh ( 2.3345 S h )
R 2 Z 0 = &lsqb; - 1.78 + 0.749 W h &rsqb; S h + &lsqb; 1.196 - 0.971 l n ( W h ) &rsqb; &CenterDot; sinh ( 2.3345 S h ) ;
步骤四、将环行器SIW部分与中心结部分抽出电原理图,将间隙电原理图与其余部分电原理图代入ADS软件优化,可以获得最优匹配电路,使环行器达到最佳性能;由此等效电路,推导出环行器最佳性能时微带间隙的S与W值,最后将此时的微带间隙模型代入HFSS软件中,继续优化得到最好微带间隙模型数值S,W,W1,h。
2.如权利要求1所述微带间隙设计在基片集成波导环行器上的应用,其特征在于:应用于中心工作频率为36GHz的8mm基片集成波导环行器,所述微带间隙宽度S=0.004mm,微带间隙距离边缘距离W1=0.05mm,间隙处微带导带宽度W=1.36mm,介质厚度为h=0.508mm。
CN201410460536.1A 2014-09-11 2014-09-11 一种微带间隙设计在基片集成波导环行器上的应用 Active CN104241791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410460536.1A CN104241791B (zh) 2014-09-11 2014-09-11 一种微带间隙设计在基片集成波导环行器上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410460536.1A CN104241791B (zh) 2014-09-11 2014-09-11 一种微带间隙设计在基片集成波导环行器上的应用

Publications (2)

Publication Number Publication Date
CN104241791A CN104241791A (zh) 2014-12-24
CN104241791B true CN104241791B (zh) 2017-02-15

Family

ID=52229443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410460536.1A Active CN104241791B (zh) 2014-09-11 2014-09-11 一种微带间隙设计在基片集成波导环行器上的应用

Country Status (1)

Country Link
CN (1) CN104241791B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882656B (zh) * 2015-04-27 2017-12-29 南通大学 一种微带到基片集成波导的平衡式过渡电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2224535A1 (en) * 2007-12-28 2010-09-01 Kyocera Corporation High-frequency transmission line connection structure, wiring substrate, high-frequency module, and radar device
CN102377004A (zh) * 2011-09-30 2012-03-14 电子科技大学 小型化基片集成波导环行器
CN102856617A (zh) * 2012-09-20 2013-01-02 电子科技大学 一种宽带基片集成波导环行器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8258892B2 (en) * 2008-02-19 2012-09-04 The Royal Institution For The Advancement Of Learning/Mcgill University High-speed bandpass serial data link
CN103762406B (zh) * 2014-01-06 2015-11-18 杭州电子科技大学 一种宽带落入式微带铁氧体隔离器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2224535A1 (en) * 2007-12-28 2010-09-01 Kyocera Corporation High-frequency transmission line connection structure, wiring substrate, high-frequency module, and radar device
CN102377004A (zh) * 2011-09-30 2012-03-14 电子科技大学 小型化基片集成波导环行器
CN102856617A (zh) * 2012-09-20 2013-01-02 电子科技大学 一种宽带基片集成波导环行器

Also Published As

Publication number Publication date
CN104241791A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
Deng et al. New Wilkinson power dividers based on compact stepped-impedance transmission lines and shunt open stubs
CN109301416B (zh) 悬置基片集成波导传输线
JP7468937B2 (ja) 印刷リッジギャップ導波路に基づく4次Ka周波数帯バンドパスフィルタ
CN102610880A (zh) 具有宽带外抑制的平面小型化通信带通滤波器
Jun-Yu et al. High-directivity single-and dual-band directional couplers based on substrate integrated coaxial line technology
CN110190371A (zh) 一种波导功分器
Kazemi et al. Design of a wide band eight-way compact SIW power combiner fed by a low loss GCPW-to-SIW transition
Ashiq et al. A novel ultra-broadband DC-36-to-66-GHz hybrid diplexer using waveguide and SSL technology
CN106876855A (zh) 一种小型化微带宽带功合器
Ren et al. Short-circuited stub-embedded ring resonator and its application in diplexer
CN102637930A (zh) 插片式矩形波导带阻滤波器
CN104241791B (zh) 一种微带间隙设计在基片集成波导环行器上的应用
CN104577353A (zh) 一种x波段基片集成波导四元阵列天线
Wang et al. Miniaturized coupled-line couplers using uniplanar synthesized coplanar waveguides
CN105789810A (zh) 一种宽带半模波纹基片集成波导耦合器及其设计方法
CN105720340A (zh) 一种含有低频传输零点的紧凑型带通滤波器
CN110061336A (zh) 封装的集成基片间隙波导四功分器
US20180248243A1 (en) Filtering Unit and Filter
CN202564510U (zh) 低损耗射频平面集成带通滤波器
Cheng et al. A W-band quadrature hybrid coupled substrate integrated waveguide diplexer
KR20190056884A (ko) 마이크로 스트립라인과 도파관 간의 전이 구조
Athanasopoulos et al. A 60 GHz planar diplexer based on substrate integrated waveguide technology
Chiu et al. TE 20 Mode Differential Waveguide Directional Coupler and Wideband Balun by 3-D Printing
Sun et al. Compact multilayer CPW MMIC spiral directional couplers and bandpass filters
Hadjloum et al. Via-hole less broadband conductor-backed coplanar waveguide to coupled microstrip transition up to 40 GHz

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant