CN104237457A - Air quality monitoring method and system - Google Patents

Air quality monitoring method and system Download PDF

Info

Publication number
CN104237457A
CN104237457A CN 201410296018 CN201410296018A CN104237457A CN 104237457 A CN104237457 A CN 104237457A CN 201410296018 CN201410296018 CN 201410296018 CN 201410296018 A CN201410296018 A CN 201410296018A CN 104237457 A CN104237457 A CN 104237457A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
air quality
information
data
module
monitoring
Prior art date
Application number
CN 201410296018
Other languages
Chinese (zh)
Inventor
李岩
Original Assignee
李岩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection
    • Y02A50/20Air quality improvement or preservation
    • Y02A50/24Pollution monitoring
    • Y02A50/242Pollution monitoring characterized by the pollutant
    • Y02A50/25Atmospheric particulate matter [PM] e.g. carbon smoke microparticles, smog, aerosol particles, dust

Abstract

The invention relates to the environment protection field, and in particular relates to an air quality monitoring method and system. The method comprises the steps of acquiring air quality information, uploading the air quality information, calibrating the information, and visually displaying the calibrated information. The system comprises a data acquisition module, a cloud computing module and an application module. According to the air quality monitoring method and system, big cloud data processing and machine technologies are combined, inaccurate sensor equipment at the front end is corrected, and the follow-up data analysis service and a data interface are provided; and PM2.5 data in different times and spaces are analyzed, so that results such as pollutant spreading, diffusion, and quantization can be acquired. The data used in the method and the system are stored in a standard form and is calibrated, so that the follow-up data analysis and processing can be carried out conveniently.

Description

空气质量监测方法与系统 Air quality monitoring system and method

技术领域 FIELD

[0001] 本发明涉及环保领域,尤其涉及一种空气质量监测方法与系统。 [0001] The present invention relates to the field of environmental protection, particularly to a method and system for monitoring air quality.

背景技术 Background technique

[0002]目前的PM2.5监测设备主要分为两大类,一类非常准确的,但是价格及维护费用那个极其昂贵,如国控站使用的天平测量法,或者更加便携的Thermo设备,这类设备部署维护均非常复杂,需要的人力物力成本都极高,不利于大范围的细粒度部署;另一类为市场上常见的个人用设备,其中有准确度较高的Dylos,成本3000元左右,更多的是千元级别的设备,这类设备的问题在于虽然成本较低,但是准确度均较差,设备之间的一致性也存在很大的问题。 [0002] The current PM2.5 monitoring equipment is mainly divided into two categories, very accurate, but the price that is extremely expensive and maintenance costs, such as balance measures the use of French control station, or more portable Thermo equipment, which class equipment maintenance are very complex to deploy, cost of manpower and resources required are very high, is not conducive to large-scale deployment of fine-grained; the other for the common market, personal equipment, including higher accuracy Dylos, costs 3000 yuan so, more of a thousand-level device, the problem is that although this type of equipment is low cost, but are poor accuracy, consistency between devices there is a big problem.

[0003] 其次,目前PM2.5监测室设备之中,除了国控站的设备会定期的上传至网络进行分享,其他的广泛存在的设备均没有一个公共的,并被广泛使用的,可以存储使用的数据中心。 [0003] Second, the current into the PM2.5 monitoring equipment room, in addition to state-controlled device stations periodically uploaded to the network share, other widespread devices are not a public, and widely used, can be stored use of the data center.

发明内容 SUMMARY

[0004] 针对背景技术中出现的问题,本发明提供了一种空气质量监测方法,用于完成空气质量采集与监测,所述方法包括以下步骤: [0004] For background art problems arise, the present invention provides an air quality monitoring method for performing collection and monitoring of air quality, said method comprising the steps of:

借助于数据采集模块进行空气质量信息的采集与上传; By means of a data acquisition module for acquisition and uploading the air quality information;

借助于云端计算模块将所述采集与上传的信息进行校准; Cloud computing means of the calibration module and the collected information is uploaded;

借助于应用模块,将所述校准后的空气质量信息进行可视化展示。 By means of the application module, the air quality of the calibration information for visual display.

[0005] 优选的是,根据权利要求1所述的空气质量监测方法,其特征在于,所述数据采集模块包括公共数据源信息模块、数据采集设备及网络模块。 [0005] Preferably, the air quality monitoring method as recited in claim 1, wherein said data acquisition module comprises a module public data source information, data acquisition equipment and network modules.

[0006] 在上述任一方案中优选的是,所述公共数据源信息模块包括气象数据、公共PM2.5数据、公共监测基站数据信息中至少一种。 [0006] In any of the above preferred embodiment is that the common data source information module including meteorological data, public PM2.5 data, common data monitoring station at least one of information.

[0007] 在上述任一方案中优选的是,所述数据采集设备包括基站式空气质量监测设备、便携式空气质量监测设备、监测基站设备、智能手机设备中至少一种。 [0007] In any of the above preferred embodiment, said data acquisition device comprises at least one base station air quality monitoring device, a portable air quality monitoring device, the monitoring station device, a smart phone devices.

[0008] 在上述任一方案中优选的是,所述网络模块用于传输所述公共数据源信息和所述数据采集设备获得的数据至所述云端计算模块。 [0008] In any of the above preferred embodiment that the network module for transmitting the common data and the data source information obtained by the data acquisition device to the cloud computing module.

[0009] 在上述任一方案中优选的是,所述网络模块使用的网络包括:GPRS、3G、wif1、Ethenet> BLE4.0 中至少一种。 [0009] In any of the above preferred embodiment, said network comprising network modules used: GPRS, 3G, wif1, Ethenet> BLE4.0 least one.

[0010] 在上述任一方案中优选的是,所述云端模块包括校准算法模块和上层接口模块。 [0010] In any of the above preferred embodiment, said module comprising a calibration algorithm module cloud and the upper interface module.

[0011] 在上述任一方案中优选的是,所述校准算法模块使用的方法包括以下步骤: 对原始空气质量采集信息进行信号重构,完成初步的信息处理; [0011] In any of the above preferred embodiment, the method used in the calibration algorithm module comprising the steps of: collecting information on the original air quality reconstructed signal, completion of the initial processing of the information;

对所述初步处理过的信息进行特征提取; The preliminary information processed for feature extraction;

通过ANN神经网络算法和/或高斯推理算法对所述特征进行校准和/或推理,得到精确信息结果。 Calibration and / or characterized by the reasoning ANN neural network algorithms and / or Gaussian inference algorithm to obtain accurate information about the result.

[0012] 在上述任一方案中优选的是,所述上层接口模块包括:时间数据序列接口、GPS空气质量接口、设备校准接口。 [0012] In any of the above preferred embodiment that the upper interface module comprises: a time series data interfaces, GPS quality air interface, device calibration interface.

[0013] 在上述任一方案中优选的是,所述接口模块采用统一的JSON格式进行数据存储。 [0013] In any of the above preferred embodiment, said interface module for data storage unified JSON format.

[0014] 在上述任一方案中优选的是,所述可使化展示包括:数据在线可视化、旅行助手、热成像可视化、手机应用中至少一种。 [0014] In any of the above preferred embodiment, the display of the can comprising: a visual line data, travel assistant, thermal imaging visual, at least one mobile applications.

[0015] 在上述任一方案中优选的是,所述数据包括:PM2.5值、温度、湿度、历史空气质量信息数据中至少一种。 [0015] In any of the above preferred embodiment, said data comprising: PM2.5, temperature, humidity, air quality history information in at least one of the data.

[0016] 在上述任一方案中优选的是,所述旅行助手根据空气质量信息给出合理出行路线,减少空气污染对身体造成的伤害。 [0016] In any of the above preferred embodiment, said helper give reasonable travel the travel route of the air quality information, reduce the damage to the body caused by air pollution.

[0017] 在上述任一方案中优选的是,所述热成像可视化可在地图上展示热成像图。 [0017] In any of the above preferred embodiment, it said thermal imaging visualization can be displayed on the map in FIG thermal imaging.

[0018] 在上述任一方案中优选的是,所述手机应用通过用户输入的信息进行实时空气质量反馈。 [0018] In any of the above preferred embodiment, the real time of the mobile application through the air quality feedback information of the user input.

[0019] 本发明还提供了一种空气质量监测系统,用于完成空气质量采集与监测,所述系统包括以下模块: [0019] The present invention also provides an air quality monitoring system for performing collection and monitoring of air quality, the system comprising the following modules:

数据采集模块,用于空气质量信息采集与上传; Data acquisition module, for collecting air quality information and upload;

云端计算模块,用于对所述采集与上传的信息进行校准; Cloud computing means for the collection and upload information for calibration;

应用模块,用于对所述校准后的空气质量信息进行可视化展示。 Application module for visual display of information on the air quality of the calibration.

[0020] 优选的是,所述数据采集模块包括公共数据源信息模块、数据采集设备及网络模块。 [0020] Preferably, the data acquisition module comprises a module public data source information, data acquisition equipment and network modules.

[0021] 在上述任一方案中优选的是,所述公共数据源信息模块包括气象数据、公共PM2.5数据、公共监测基站数据信息中至少一种。 [0021] In any of the above preferred embodiment is that the common data source information module including meteorological data, public PM2.5 data, common data monitoring station at least one of information.

[0022] 在上述任一方案中优选的是,所述数据采集设备包括基站式空气质量监测设备、便携式空气质量监测设备、监测基站设备、智能手机设备中至少一种。 [0022] In any of the above preferred embodiment, said data acquisition device comprises at least one base station air quality monitoring device, a portable air quality monitoring device, the monitoring station device, a smart phone devices.

[0023] 在上述任一方案中优选的是,所述网络模块用于传输所述公共数据源信息和所述数据采集设备获得的数据至所述云端计算模块。 [0023] In any of the above preferred embodiment that the network module for transmitting the common data and the data source information obtained by the data acquisition device to the cloud computing module.

[0024] 在上述任一方案中优选的是,所述网络模块使用的网络包括:GPRS、3G、wif1、Ethenet、BLE4.0 中至少一种。 [0024] In any of the above preferred embodiment, said network comprising network modules used: GPRS, 3G, wif1, Ethenet, BLE4.0 at least one.

[0025] 在上述任一方案中优选的是,所述云端模块包括校准算法模块和上层接口模块。 [0025] In any of the above preferred embodiment, said module comprising a calibration algorithm module cloud and the upper interface module.

[0026] 在上述任一方案中优选的是,所述校准算法模块使用的方法包括:信号重构、ANN神经网络、高斯过程推理中至少一种。 [0026] In any of the above preferred embodiment, the method of using the calibration algorithm module comprises: a signal reconstruction, on ANN neural network, at least one of a Gaussian process of reasoning.

[0027] 在上述任一方案中优选的是,所述上层接口模块包括:时间数据序列接口、GPS空气质量接口、设备校准接口。 [0027] In any of the above preferred embodiment that the upper interface module comprises: a time series data interfaces, GPS quality air interface, device calibration interface.

[0028] 在上述任一方案中优选的是,所述接口模块采用统一的JSON格式进行数据存储。 [0028] In any of the above preferred embodiment, said interface module for data storage unified JSON format.

[0029] 在上述任一方案中优选的是,所述可使化展示包括:数据在线可视化、旅行助手、热成像可视化、手机应用中至少一种。 [0029] In any of the above preferred embodiment, the display of the can comprising: a visual line data, travel assistant, thermal imaging visual, at least one mobile applications.

[0030] 在上述任一方案中优选的是,所述数据包括:PM2.5值、温度、湿度、历史空气质量信息数据中至少一种。 [0030] In any of the above preferred embodiment, said data comprising: PM2.5, temperature, humidity, air quality history information in at least one of the data.

[0031] 在上述任一方案中优选的是,所述旅行助手根据空气质量信息给出合理出行路线,减少空气污染对身体造成的伤害。 [0031] In any of the above preferred embodiment, said helper give reasonable travel the travel route of the air quality information, reduce the damage to the body caused by air pollution.

[0032] 在上述任一方案中优选的是,所述热成像可视化可在地图上展示热成像图。 [0032] In any of the above preferred embodiment, it said thermal imaging visualization can be displayed on the map in FIG thermal imaging.

[0033] 在上述任一方案中优选的是,所述手机应用通过用户输入的信息进行实时空气质量反馈。 [0033] In any of the above preferred embodiment, the real time of the mobile application through the air quality feedback information of the user input.

[0034] 本发明提供的空气质量监测方法和系统,通过将云端大数据处理与机器技术相结合,校正前端不太准确的传感器设备,并提供后续数据分析服务及提供数据接口的方法和系统,通过对不同时间空间的PM2.5数据进行分析,可以得出诸如污染物传播、扩散及量化等结果。 [0034] The air quality monitoring system of the present invention provides a method and by the large data processing machine cloud technology, the front end of the correction less accurate sensor devices, and to provide subsequent data analysis services and provide a method and a data interface system, PM2.5 by analyzing data from different time and space, can be derived contaminants such as propagation, diffusion and quantization results. 同时本发明提供的方法和系统使用的数据按照标准的格式存储,并对其进行校准,进而方便后续的数据分析处理。 Method and system data while the present invention provides the use of the storage according to a standard format, and subjected to calibration, and thus to facilitate the subsequent data analysis.

附图说明 BRIEF DESCRIPTION

[0035] 图1是本发明一示例性实施例示出的空气质量监测系统框架图。 [0035] FIG. 1 is an air quality monitoring system framework diagram illustrating an exemplary embodiment.

[0036] 图2是根据图1示出的云端算法校准框架图。 [0036] FIG. 2 is a Drive Calibration algorithm according to the frame shown in FIG. 1 to FIG.

[0037] 图3是根据图1示出的数据交互的流程示意图。 [0037] FIG. 3 is a flow chart illustrating data exchange in accordance with FIG.

[0038] 图4是根据图1示出的系统硬件提交数据的格式示意图。 [0038] FIG. 4 is a view showing the format of data submitted in accordance with the hardware system illustrated in FIG.

[0039] 图5是根据图1示出的可视化界面图。 [0039] FIG. 5 is a visual interface shown in FIG. 1 to FIG.

[0040] 图6是根据图1示出的出行路线推荐图。 [0040] FIG. 6 is a recommended travel route shown in FIG. 1 to FIG.

[0041] 图7是根据图1示出的系统界面效果图。 [0041] FIG. 7 is a system diagram illustrating the effect of the interface according to FIG.

[0042] 图8是根据图1示出的得到空气质量监测手机应用的方法流程图。 [0042] FIG 8 is a flowchart to give an air quality monitoring for mobile applications in accordance with method shown in FIG. 1.

具体实施方式 detailed description

[0043] 如图1所示,为本发明一示例性实施例示出的空气质量监测系统框架图,其中数据源对空气质量信息进行收集并通过网络发送至云端分析引擎,所述数据源包括天气数据、PM2.5数据、POIs数据以及便携式空气质量监测终端、基站式空气质量监测终端和网路连接的网络基站,所述信息数据和信息采集设备通过GPRS、3G、wif1、Ethenet、BLE4.0等方式将空气质量信息传送到云端分析引擎,此时的信息仅为初步的原始数据,作为前端不太精确的空气质量信息。 [0043] 1, air quality monitoring system of the present frame diagram illustrating an exemplary embodiment of the invention, wherein the air data source and quality information collected by the analysis engine transmits to the cloud network, said source data comprising weather data network base station, PM2.5 data, and data of POIs of the portable terminal monitoring air quality, air quality monitoring station and a network connection terminal, the information data and the information collection device via GPRS, 3G, wif1, Ethenet, BLE4.0 etc. delivering air quality information to the cloud analysis engine, this time information is preliminary and raw data, as the front end of the air quality information less precise. 云端分析引擎分别通过数据处理模型对前端不太准确的空气质量信息进行数据处理、ANN校准模型进行反向传播算法、高斯推理模型进行贝叶斯高斯分析,并将数据进行归档得到基于静态JSON格式的数据接口,所述接口供应用模块使用。 Drive analysis engine are performed by a data processing model of the front end of the air quality information less accurate data processing, the calibration model on ANN back-propagation algorithm, Bayesian inference model Gaussian Gaussian analysis, archiving and data obtained based on the static JSON format the data interface, for use by said interface module. 所述应用模块包括旅行助手:根据空气质量信息给出合理出行路线,减少空气污染对身体造成的伤害;热成像:可在地图上展示热成像图;手机应用通过用户输入的信息进行实时空气质量反馈。 The module includes a travel assistant application: given in terms of air quality information and reasonable travel routes and reduce damage to the body caused by air pollution; thermal imaging: thermal imaging map can show on the map; information entered by the user via the mobile application for real-time air quality feedback.

[0044] 本实施例,通过将云端大数据处理与机器技术相结合,大数据处理分析了广泛的数据源信息,全面接受空气质量信息,运用神经网络、高斯推理等算法校正前端不太准确的空气质量信息,并提供后续数据分析服务及提供数据接口,应用端通过云端提供的接口完成各种可视化应用,为用户提供服务。 [0044] Examples of the present embodiment, by the large data processing machine cloud technology, large data processing and analysis of a wide data source information, air quality information fully accepted, the use of neural networks, Gaussian reasoning distal less accurate correction algorithm air quality information, and provides subsequent data analysis services and provide interface data interfaces, providing the application side through the cloud complete a variety of visualization applications, provide services for users.

[0045] 如图2所示,是根据图1示出的云端算法校准框架图,主要包括离线训练和在线校准推理两个部分,其中,离线训练模块产生的数据流为学习数据流,在线校准推理部分产生的数据流为推理数据流。 [0045] 2, based on the calibration algorithm Drive frame shown in FIG. 1, including off-line training and on-line calibration inference two portions, wherein the data stream offline training module generates learning data stream, line calibration inferring section generates a data stream is a data stream inference. 如图所示,数据源为气象数据、公共PM2.5数据、POIs数据以及个人传感数据,所述数据均属于前端不太准确的空气质量信息,这些数据经过特征提取后通过神经网络(ANN)校准模块和高斯推理(GP)模块完成校准,得到了统一的基于静态JOSN格式的应用数据接口。 As shown, data source for weather data, public PM2.5 data, personal data, and sensing of POIs of data that belong to the front end of the air quality information less accurate, feature extraction data through the neural network (ANN ) and Gaussian reasoning calibration module (GP) module calibration is complete, the application was based on a unified data interface static JOSN format.

[0046] 本算法校准框图示处理通过云端大数据处理方式,对数据进行算法处理,用不太准确的前端信息得到精确的空气质量数据,同时得到统一接口格式数据JSON格式数据,为后续数据分析服务及提供数据接口,应用端通过云端提供的接口完成各种可视化应用,为用户提供服务。 [0046] The block diagram of the present method the calibration process a large data processing by the cloud, the data processing algorithm, to obtain accurate air quality data with less accurate information about the front end, while the unified interface format data obtained JSON format data for subsequent data analysis service interfaces and data interface, the application side through the cloud to provide complete visualization of various applications for users.

[0047] 如图3所示,是根据图1示出的数据交互的流程示意图,本图给出了数据源到云引擎再到应用的过程中数据信息的交互方式,图中数据源信息主要包含:天气数据,用于提供当天的天气情况信息;公共PM2.5数据,用于提供和人们健康息息相关的PM2.5数据信息;POIs为公共监测基站数据信息,该基站为连接网络的设备,实时上传监测到的空气质量信息;AQM(监测终端)/miniAQM(便携式监测终端):提供节点终端数据实时的空气质量信息;其它监测基站:提供其它监测数据信息。 [0047] FIG. 3 is a schematic flow chart illustrating interaction data, this figure shows the data source to the engine and then to interactively process the cloud application data information according to Figure 1, the primary data source information include: weather data, providing weather information for the day; public PM2.5 data, and to provide for people's health are closely related to PM2.5 data; POIs public monitoring station data, the base station is connected to the network device, to upload real-time monitoring of the air quality information; the AQM (monitoring terminal) / miniAQM (portable monitoring terminal): the terminal nodes to provide real-time information on air quality data; other monitoring station: monitoring data to provide additional information. 此时,得到的数据为原始数据,数据流通过云引擎的算法模块即:数据处理、推理模块、校准模块,将数据处理并归档得到统一接口。 In this case, the data obtained as the original data, the data flow through the engine algorithm module i.e. the cloud: data processing logic module, calibration module, and archive the data processing to obtain a uniform interface. 所述接口包括时间数据接口:对不同时间空间的PM2.5数据进行分析,可以得出诸如污染物传播、扩散及量化等结果;GPS空气质量接口:得到基于个人的实时健康记录。 The interface comprises a data interface time: time for different spatial PM2.5 data were analyzed, contaminants such as propagation can be drawn, and diffusion quantization results; Air Quality the GPS Interface: obtained in real time based on personal health records. 通过所述接口,进一步可以得到热成像应用、旅行助手应用。 Via the interface, thermal imaging can be further applied, traveling helper application.

[0048] 本实施例中,由最初的原始数据得到了丰富众多的精确应用,帮助人们更加合理的工作、生活。 [0048] In this embodiment, it has been enriched by the many precise application of the original raw data, to help people more reasonable working life.

[0049] 如图4所示,是根据图1示出的系统硬件提交数据的格式示意图,本实施例中在元数据部分包括:设备ID为A1FC405103E80118,读取内容为pm2.5数据,读取结果颗粒物浓度为2.5微克,数据来源名称为空气质量监测设备,设备为基站式终端,所处位置为北京市,海淀区,维度39.8经度111.9。 [0049] As shown, a schematic view of the format of data submitted in accordance with the hardware system illustrated in FIG. 14, in the present embodiment, the metadata portion comprises: a device ID is A1FC405103E80118, read the contents of pm2.5 data read results particle concentration of 2.5 micrograms, the data source name air quality monitoring device, the device is a base station terminal, the location of Beijing, Haidian District, longitude 39.8 111.9 dimension. 参数部分:时区中国北京,计量单位为微克每立方米,读取类型为双精度。 Parameters section: Time Zone, Beijing, China, measurement micrograms per cubic meter, read type double precision. 数据部分包括:用户ID为531009f0-143b-lle3-8bdb-fc4dd43c0901,读数值为1351043674000 和120。 Data portion comprises: a user ID is 531009f0-143b-lle3-8bdb-fc4dd43c0901, and reading the value 1351043674000 120.

[0050] 本实施例中,数据格式为统一的JSON格式,JSON格式为目前网络通讯领域常用的数据格式,这种格式易于阅读,易于扩展,同时包含不同种类的信息:地理位置信息、设备编号信息、具体的设备读数信息。 [0050] embodiment, the data format is uniform JSON format, JSON format is a data format commonly used communications network, the present embodiment this format is easy to read, easy to expand, it contains different kinds of information: location information, device number information, specific information reading device.

[0051] 如图5所示,是根据图1示出的可视化界面图,PM2.5颗粒物浓度实时显示为22微克每立方米,温度33.99摄氏度,湿度12.6。 [0051] As shown in FIG 5, based on the visual interface shown in FIG. FIG. 1, PM2.5 particulate matter concentration in real time is displayed as 22 micrograms per cubic meter, a temperature of 33.99 degrees C, humidity 12.6. 应用中给出了PM2.5颗粒物浓度在不同时间段的值,如图所示,横坐标为时间信息,起始时间为13:30,结束时间为15:00,纵坐标为颗粒物浓度值,从O至40。 Application of the PM2.5 given concentration values ​​of different time periods, as shown, the abscissa is time information, the start time 13:30 and ends at 15:00, the ordinate is the particle concentration, from O to 40. 所述应用还提供了空气质量监测信息的历史数据,其中时间段精度可以选择为Ih (I小时)、ld (I天)、lm (I个月)、ly (I年)、A11 (所有统计数据),本实施例中选择了I天的实时监测数据,从图中明显可以看出在18:00时值最高,用户可以根据分析图结合自身实际情况合理安排出行。 The application also provides historical data of air quality monitoring information, the accuracy of which the time period can be selected as Ih (I h), ld (I day), lm (I month), ly (I years), A11 (all statistics data), the present embodiment the real-time monitoring data I selected days for apparent from FIG highest, the user can analyze its own actual situation according to FIG 18:00 travel time when reasonable arrangements.

[0052] 如图6所示,是根据图1示出的旅行助手出行路线推荐图,本实施例中起始地点选择中关村地铁站,结束地点选择知春路地铁站,点击生成(Generate )按钮,系统将自动计算出出行的最佳路径,并显示相应空气质量信息为0.08000克。 6 [0052], is the view of the travel route recommended travel helper shown in FIG. 1, the present embodiment example, the initial location selection Zhongguancun subway station, subway station Zhichunlu selected end point, generates a click (the Generate) button, the system will automatically calculate the optimal path of travel, and displays the corresponding air quality information to 0.08000 g.

[0053] 本发明提供的空气质量监测系统,能够实时的计算出用户选择出行的合理路径,对用户的健康起到积极作用。 [0053] The air quality monitoring system of the present invention provides can be calculated in real time the user selects the travel route is reasonable for the user's health play an active role.

[0054] 如图7所示,是根据图1示出的系统界面效果图,在界面A中显示:用户可发送当前实时位置信息至服务器,将得到用户所处位置的空气质量信息,如果发送城市名称信息,则会返回该城市的全天平均空气质量信息,如果输入信息为城市名称+最佳地点,则系统会返回全是空气质量最佳的地区给用户。 [0054] 7, is a system diagram illustrating the effect of the interface in FIG. 1, the interface A: The user can send the current location information to the server in real time, and the resulting air mass information of the user's location, if the transmitter city ​​name information, will be returned the day average air quality information to the city, if the input information for the city name + the best location, the system will return all the best regional air quality to the user. 在图B中显示,系统更新时间为2014-03-2820:00,用户输入信息为中国北京市海淀区中关村海淀大街2号邮政编码100086,系统返回的信息为:您当前地点为“中国北京市海淀区中关村海淀大街2号邮政编码100086”,空气质量实时指数为“ 150”,更新日期2014-03-28 20:00,平均空气质量指数为“ 160”,城市“北京”。 Shown in Figure B, the system updates the time 2014-03-2820: 00, the user enters information into China Haidian District, Beijing Zhongguancun Street, Haidian 2 postal code 100086, the system returns the information is: your current location as "China Beijing Haidian District, Haidian street, zip code 100086 2 ", real-time air quality index is" 150 ", updated 2014-03-28 20:00 average air quality index is" 160 ", city" Beijing. " 图C中显示,用户输入信息为beijing,系统返回信息为您所在城市为北京,空气质量指数为160,更新日期2014-03-28 20:00,用户输入信息bei jingbest,此时系统返回信息为当前城市最佳空气质量地点为延庆县,空气质量指数为130,更新时间2014-03-28 20:00。 Figure C shows the user input information to beijing, the system returns the information to your city to Beijing, the air quality index of 160, updated 2014-03-28 20:00 user input information bei jingbest, then the system returns information The current urban air quality best location for Yanqing County, the air quality index of 130, updated 2014-03-28 20:00. 通过良好的界面以及人机交互,用户能够得到自己当前地点以及所处城市空气质量最优地点的信息。 Through good interface and human-computer interaction, the user can get information about their current location and the best place in which urban air quality.

[0055] 如图8所示,是根据图1示出的得到空气质量监测手机应用的方法流程图,步骤801为数据采集设备对空气质量信息进行采集,所述采集设备包括基站式空气质量监测设备、便携式空气质量监测设备、监测基站设备、智能手机设备中至少一种,所述信息为初步的不太准确的前端信息,在步骤802中,网络模块将所述前端初始的不太准确的信息发送至云端进行处理,步骤803为初步数据处理步骤,所述数据再分别经过步骤804神经网络校准和步骤805高斯推理校准,步骤806为生成基于静态接口的JSON格式的数据,所述JSON格式的数据为统一格式数据,便于接口的扩展,步骤807为开发人员根据所述JSON格式的接口完成手机应用的开发,提供用户使用。 [0055] As shown in FIG 8 is obtained according to the illustrated method of FIG. 1 is a flowchart air quality monitoring mobile applications, step 801, the data acquisition device to collect air quality information, the base station apparatus comprising the collecting air quality monitoring device, a portable air quality monitoring device, the monitoring station, smartphones, at least one device, the less accurate information is preliminary information leading end, in step 802, the network module to the front end of the original less accurate processing information is transmitted to the cloud, the process of step 803 is a step preliminary data, the data are then calibrated through step 804 and step 805, the neural network inference Gaussian calibration step 806 to generate a static interface data based on JSON format, said format JSON the unified data format data, scalable interface, step 807 is completed by the developer based on the development of mobile applications JSON format interface, providing the user.

[0056] 本发明提供的空气质量监测方法和系统,通过将云端大数据处理与机器技术相结合,校正前端不太准确的传感器设备,并提供后续数据分析服务及提供数据接口的方法和系统,通过对不同时间空间的PM2.5数据进行分析,可以得出诸如污染物传播、扩散及量化等结果。 [0056] The air quality monitoring system of the present invention provides a method and by the large data processing machine cloud technology, the front end of the correction less accurate sensor devices, and to provide subsequent data analysis services and provide a method and a data interface system, PM2.5 by analyzing data from different time and space, can be derived contaminants such as propagation, diffusion and quantization results. 同时本发明提供的方法和系统使用的数据按照标准的格式存储,并对其进行校准,进而方便后续的数据分析处理。 Method and system data while the present invention provides the use of the storage according to a standard format, and subjected to calibration, and thus to facilitate the subsequent data analysis.

Claims (10)

  1. 1.空气质量监测方法,用于完成空气质量采集与监测,其特征在于,所述方法包括以下步骤: 借助于数据采集模块进行空气质量信息的采集与上传; 借助于云端计算模块将所述采集与上传的信息进行校准; 借助于应用模块,将所述校准后的空气质量信息进行可视化展示。 1. Air quality monitoring method for performing collection and monitoring of air quality, characterized in that the method comprises the steps of: by means of a data acquisition module for acquisition and uploading the air quality information; cloud computing means of the acquisition module calibration information uploaded; by means of the application module, said air quality information for calibrating the visual display.
  2. 2.根据权利要求1所述的空气质量监测方法,其特征在于,所述数据采集模块包括公共数据源信息模块、数据采集设备及网络模块。 2. The method of monitoring the air quality according to claim 1, wherein said data acquisition module comprises a module public data source information, data acquisition equipment and network modules.
  3. 3.根据权利要求2所述的空气质量监测方法,其特征在于,所述公共数据源信息模块包括气象数据、公共PM2.5数据、公共监测基站数据信息中至少一种。 3. The method of monitoring the air quality according to claim 2, wherein the common information data source module comprises at least one of weather data, public PM2.5 data, the base station monitoring the common data information.
  4. 4.根据权利要求2所述的空气质量监测方法,其特征在于,所述数据采集设备包括基站式空气质量监测设备、便携式空气质量监测设备、监测基站设备、智能手机设备中至少一种。 4. The method of monitoring the air quality according to claim 2, wherein said data acquisition device comprises at least one base station air quality monitoring device, a portable air quality monitoring device, the monitoring station device, a smart phone devices.
  5. 5.根据权利要求2所述的空气质量监测方法,其特征在于,所述网络模块用于传输所述公共数据源信息和所述数据采集设备获得的数据至所述云端计算模块。 The air quality monitoring method as recited in claim 2, wherein the means for data transmission to said network common data source information obtained by the data acquisition device to the cloud computing module.
  6. 6.根据权利要求5所述的空气质量监测方法,其特征在于,所述网络模块使用的网络包括:GPRS、3G、wif1、Ethenet、BLE4.0 中至少一种。 The air quality monitoring method as claimed in claim 5, wherein said network comprises a network module: GPRS, 3G, wif1, Ethenet, BLE4.0 at least one.
  7. 7.根据权利要求1所述的空气质量监测方法,其特征在于,所述云端模块包括校准算法模块和上层接口模块。 The air quality monitoring method according to claim 1, wherein said module comprises a calibration algorithm module cloud and the upper interface module.
  8. 8.根据权利要求7所述的空气质量监测方法,其特征在于,所述校准算法模块使用的方法包括以下步骤: 对原始空气质量采集信息进行信号重构,完成初步的信息处理; 对所述初步处理过的信息进行特征提取; 通过ANN神经网络算法和/或高斯推理算法对所述特征进行校准和/或推理,得到精确信息结果。 The air quality monitoring method as recited in claim 7, characterized in that the method using the calibration algorithm module comprises the steps of: collecting information on the original air quality reconstructed signal, completion of the initial processing of the information; the preliminary information processed for feature extraction; calibration and / or characterized by the reasoning ANN neural network algorithms and / or Gaussian inference algorithm to obtain accurate information about the result.
  9. 9.空气质量监测系统,用于完成空气质量采集与监测,其特征在于,所述系统包括以下模块: 数据采集模块,用于空气质量信息采集与上传; 云端计算模块,用于对所述采集与上传的信息进行校准; 应用模块,用于对所述校准后的空气质量信息进行可视化展示。 9. The air quality monitoring system for performing collection and monitoring of air quality, characterized in that the system comprises the following modules: a data acquisition module, for collecting air quality information and upload; cloud computing means for collecting the calibration information uploaded; application module for visual display of information on the air quality of the calibration.
  10. 10.根据权利要求9所述的空气质量监测系统,其特征在于,所述数据采集模块包括公共数据源信息模块、数据采集设备及网络模块。 The air quality monitoring system according to claim 9, wherein said data acquisition module comprises a module public data source information, data acquisition equipment and network modules.
CN 201410296018 2014-05-27 2014-06-27 Air quality monitoring method and system CN104237457A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410227090 2014-05-27
CN 201410296018 CN104237457A (en) 2014-05-27 2014-06-27 Air quality monitoring method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410296018 CN104237457A (en) 2014-05-27 2014-06-27 Air quality monitoring method and system

Publications (1)

Publication Number Publication Date
CN104237457A true true CN104237457A (en) 2014-12-24

Family

ID=52225950

Family Applications (5)

Application Number Title Priority Date Filing Date
CN 201410296018 CN104237457A (en) 2014-05-27 2014-06-27 Air quality monitoring method and system
CN 201410296380 CN104237459A (en) 2014-05-27 2014-06-27 Portable air quality monitoring method and a portable air quality monitoring system
CN 201420350769 CN204044127U (en) 2014-05-27 2014-06-27 Simple air quality monitoring system
CN 201410296346 CN104237458A (en) 2014-05-27 2014-06-27 Base station type air quality monitoring method and base station type air quality monitoring system
CN 201410296322 CN104240109A (en) 2014-05-27 2014-06-27 Air quality monitoring information visualization method and system

Family Applications After (4)

Application Number Title Priority Date Filing Date
CN 201410296380 CN104237459A (en) 2014-05-27 2014-06-27 Portable air quality monitoring method and a portable air quality monitoring system
CN 201420350769 CN204044127U (en) 2014-05-27 2014-06-27 Simple air quality monitoring system
CN 201410296346 CN104237458A (en) 2014-05-27 2014-06-27 Base station type air quality monitoring method and base station type air quality monitoring system
CN 201410296322 CN104240109A (en) 2014-05-27 2014-06-27 Air quality monitoring information visualization method and system

Country Status (1)

Country Link
CN (5) CN104237457A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640083A (en) * 2015-01-15 2015-05-20 小米科技有限责任公司 Method and device for sending message
CN105181898A (en) * 2015-09-07 2015-12-23 李岩 Atmospheric pollution monitoring and management method as well as system based on high-density deployment of sensors
CN105301183A (en) * 2015-09-11 2016-02-03 小米科技有限责任公司 Air quality detecting method and device
CN105548478A (en) * 2015-12-23 2016-05-04 四川长虹网络科技有限责任公司 An indoor air quality monitoring system and a method thereof
CN106352914A (en) * 2016-08-01 2017-01-25 孙扬 Device for managing regional air quality
CN106706854A (en) * 2016-12-30 2017-05-24 浙江嘉科信息科技有限公司 Air detection system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104598537A (en) * 2014-12-30 2015-05-06 小米科技有限责任公司 Target object information recommendation method and device
CN104484848A (en) * 2014-12-30 2015-04-01 辽宁工程技术大学 Environmental assessment system
CN105823508B (en) * 2015-01-09 2018-06-26 青岛海尔空调器有限总公司 Temperature and humidity detection system and method for detecting temperature and humidity
CN104897535A (en) * 2015-05-20 2015-09-09 安庆师范学院 Real-time monitoring system for industrial ambient air quality based on Internet of Things and bluetooth technology and control method of real-time monitoring system
CN104931652A (en) * 2015-06-03 2015-09-23 维融集团有限公司 Method and device for air assessment
CN104864915A (en) * 2015-06-04 2015-08-26 上海卓易科技股份有限公司 Method and system for detecting environment of mobile terminal
CN105092781B (en) * 2015-07-01 2017-10-20 北京奇虎科技有限公司 A method and apparatus for generating data for air
CN104990847A (en) * 2015-07-08 2015-10-21 苏州经贸职业技术学院 PM2.5 real-time data monitoring system and method based on mobile terminal dynamically with position
CN105099790A (en) * 2015-09-02 2015-11-25 苏州环职安信息科技有限公司 Environmental security management method based on mobile internet and interactive system thereof
CN106814640A (en) * 2015-11-27 2017-06-09 英业达科技有限公司 Environment quality recording system and environment quality recording method
CN105574144A (en) * 2015-12-15 2016-05-11 北京奇虎科技有限公司 Information pushing method and device
CN105784942B (en) * 2016-04-02 2017-08-29 李佩东 An air quality monitoring system
CN105910644A (en) * 2016-04-15 2016-08-31 乐视控股(北京)有限公司 Environment state monitoring system
CN105933422A (en) * 2016-04-29 2016-09-07 乐视控股(北京)有限公司 Push content determining method and apparatus
EP3242278B1 (en) 2016-05-04 2018-09-26 Honeywell International Inc. Module and method for detecting air quality

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020038353A1 (en) * 2000-09-22 2002-03-28 Nec Corporation Weather information delivery system and method thereof
CN202351878U (en) * 2011-12-05 2012-07-25 复旦大学附属中山医院 Auxiliary modularized cardio-pulmonary function monitoring system applying cloud computing technology
CN102647471A (en) * 2012-04-10 2012-08-22 上海复济生物科技有限公司 Remote diagnosis system based on automatic particulate matter (PM) 2.5 air quality monitoring
CN103096034A (en) * 2012-12-24 2013-05-08 天津市亚安科技股份有限公司 Self-regulation video monitoring device and self-regulation monitoring method based on meteorological condition monitoring
CN103167414A (en) * 2013-03-18 2013-06-19 南京信息工程大学 Meteorological information service system based on intelligent mobile phone participating in perception and implementing method thereof
CN103354020A (en) * 2013-05-31 2013-10-16 成都佳锂科技有限公司 Cloud technology based air quality remote monitoring system
CN203259533U (en) * 2013-05-09 2013-10-30 厦门奥林特环保科技有限公司 Automatic air quality monitoring and control system
CN103558132A (en) * 2013-11-04 2014-02-05 南通恒力医药设备有限公司 Prewarning system for dust pollution in air
CN103607490A (en) * 2013-10-19 2014-02-26 广东欧珀移动通信有限公司 Mobile terminal, server and method for testing air quality
US20140077969A1 (en) * 2012-09-19 2014-03-20 The Boeing Company Forest Sensor Deployment and Monitoring System

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2519936A4 (en) * 2009-12-29 2017-10-18 The Regents of The University of California Multimodal climate sensor network
CN101881762B (en) * 2010-07-06 2013-08-14 西安交通大学 Large-range carbon dioxide monitoring system based on wireless sensor network
CN102540989A (en) * 2010-12-18 2012-07-04 西安迅腾科技有限责任公司 Networking on-line monitoring system for urban air quality
CN102798698A (en) * 2011-05-26 2012-11-28 北京中立格林控制技术有限公司 Internet of things gas monitoring and warning device
CN202141709U (en) * 2011-06-23 2012-02-08 邯郸派瑞电器有限公司 Air quality monitor based on mobile phone interface
CN103529167B (en) * 2012-07-04 2016-03-02 中国移动通信集团公司 Air quality monitoring method based on a mobile terminal, system and apparatus
CN203101358U (en) * 2013-01-09 2013-07-31 广州天通传输技术有限公司 Air quality detector and air quality detecting system
CN203133059U (en) * 2013-04-11 2013-08-14 哈尔滨室康环境技术有限公司 Remote on-line indoor environment monitoring and controlling system
CN103295376A (en) * 2013-05-17 2013-09-11 成都佳锂科技有限公司 Remote air quality monitoring system
CN103412086A (en) * 2013-06-19 2013-11-27 成都佳锂科技有限公司 Air quality remote monitoring and purifying system in cloud technology

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020038353A1 (en) * 2000-09-22 2002-03-28 Nec Corporation Weather information delivery system and method thereof
CN202351878U (en) * 2011-12-05 2012-07-25 复旦大学附属中山医院 Auxiliary modularized cardio-pulmonary function monitoring system applying cloud computing technology
CN102647471A (en) * 2012-04-10 2012-08-22 上海复济生物科技有限公司 Remote diagnosis system based on automatic particulate matter (PM) 2.5 air quality monitoring
US20140077969A1 (en) * 2012-09-19 2014-03-20 The Boeing Company Forest Sensor Deployment and Monitoring System
CN103096034A (en) * 2012-12-24 2013-05-08 天津市亚安科技股份有限公司 Self-regulation video monitoring device and self-regulation monitoring method based on meteorological condition monitoring
CN103167414A (en) * 2013-03-18 2013-06-19 南京信息工程大学 Meteorological information service system based on intelligent mobile phone participating in perception and implementing method thereof
CN203259533U (en) * 2013-05-09 2013-10-30 厦门奥林特环保科技有限公司 Automatic air quality monitoring and control system
CN103354020A (en) * 2013-05-31 2013-10-16 成都佳锂科技有限公司 Cloud technology based air quality remote monitoring system
CN103607490A (en) * 2013-10-19 2014-02-26 广东欧珀移动通信有限公司 Mobile terminal, server and method for testing air quality
CN103558132A (en) * 2013-11-04 2014-02-05 南通恒力医药设备有限公司 Prewarning system for dust pollution in air

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104640083A (en) * 2015-01-15 2015-05-20 小米科技有限责任公司 Method and device for sending message
CN104640083B (en) * 2015-01-15 2018-09-04 小米科技有限责任公司 Method and apparatus for transmitting information
CN105181898A (en) * 2015-09-07 2015-12-23 李岩 Atmospheric pollution monitoring and management method as well as system based on high-density deployment of sensors
CN105301183A (en) * 2015-09-11 2016-02-03 小米科技有限责任公司 Air quality detecting method and device
CN105548478A (en) * 2015-12-23 2016-05-04 四川长虹网络科技有限责任公司 An indoor air quality monitoring system and a method thereof
CN106352914A (en) * 2016-08-01 2017-01-25 孙扬 Device for managing regional air quality
CN106352914B (en) * 2016-08-01 2018-10-12 孙扬 Means a regional air quality governance
CN106706854A (en) * 2016-12-30 2017-05-24 浙江嘉科信息科技有限公司 Air detection system

Also Published As

Publication number Publication date Type
CN104237459A (en) 2014-12-24 application
CN104237458A (en) 2014-12-24 application
CN204044127U (en) 2014-12-24 grant
CN104240109A (en) 2014-12-24 application

Similar Documents

Publication Publication Date Title
Miller A study of the filling of Hurricane Donna (1960) over land
Senay et al. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields
Kwizak et al. A semi-implicit scheme for grid point atmospheric models of the primitive equations
Morisette et al. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century
Chaix et al. An interactive mapping tool to assess individual mobility patterns in neighborhood studies
Post et al. Synchronization of animal population dynamics by large-scale climate
Milly et al. Global pattern of trends in streamflow and water availability in a changing climate
Beebe et al. A mechanism for assisting in the release of convective instability
Miller Modelling accessibility using space-time prism concepts within geographical information systems
Janowiak et al. CAMS–OPI: A global satellite–rain gauge merged product for real-time precipitation monitoring applications
US20090089149A1 (en) Systems, techniques, and methods for providing location assessments
Wang et al. Temporal stability of land use regression models for traffic-related air pollution
Thompson et al. The economic utility of weather forecasts
Tizzoni et al. On the use of human mobility proxies for modeling epidemics
US20150149091A1 (en) Apparatus and Method for Determining the Quality or Accuracy of Reported Locations
CA2528795A1 (en) Mapping and quality control system and method for the distribution of flyers, circulars and the like
Shuman Numerical methods in weather prediction: I. The balance equation
Magarey et al. Decision support systems: quenching the thirst
Mao et al. Development of a unified web-based national HIV/AIDS information system in China
Miller et al. A revised technique for forecasting hurricane movement by statistical methods
US20140195530A1 (en) Apparatus and method for profiling users
Rowell Simulating SST teleconnections to Africa: What is the state of the art?
Chang et al. Impact of climate change on ambient ozone level and mortality in southeastern United States
Kang et al. Towards estimating urban population distributions from mobile call data
Hunt Experiments with a stratospheric general circulation model III. Large-scale diffusion of ozone including photochemistry

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)