CN104233415A - Technology of pre-electroplating zinc-nickel-copper alloy and then electroplating chromium on surface of magnesium alloy - Google Patents

Technology of pre-electroplating zinc-nickel-copper alloy and then electroplating chromium on surface of magnesium alloy Download PDF

Info

Publication number
CN104233415A
CN104233415A CN201310228222.4A CN201310228222A CN104233415A CN 104233415 A CN104233415 A CN 104233415A CN 201310228222 A CN201310228222 A CN 201310228222A CN 104233415 A CN104233415 A CN 104233415A
Authority
CN
China
Prior art keywords
electroplating
nickel
chromium
zinc
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310228222.4A
Other languages
Chinese (zh)
Inventor
钱永清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUXI XISHAN DISTRICT EHU TOWN DANGKOU QINGDANG METAL PRODUCT FACTORY
Original Assignee
WUXI XISHAN DISTRICT EHU TOWN DANGKOU QINGDANG METAL PRODUCT FACTORY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUXI XISHAN DISTRICT EHU TOWN DANGKOU QINGDANG METAL PRODUCT FACTORY filed Critical WUXI XISHAN DISTRICT EHU TOWN DANGKOU QINGDANG METAL PRODUCT FACTORY
Priority to CN201310228222.4A priority Critical patent/CN104233415A/en
Publication of CN104233415A publication Critical patent/CN104233415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

The invention relates to a technology of pre-electroplating zinc-nickel-copper alloy and then electroplating chromium on a surface of magnesium alloy. The technology comprises the following steps of washing with alkali-washing with acid-activating-immersing zinc-electroplating the zinc-nickel-copper alloy-electroplating chromium. The technology adopts a zinc-nickel-copper electroplating process to carry out pretreatment of electroplating chromium, simplifies a plurality of procedures of pre-plating copper, electroplating semi-bright nickel, high-sulfur nickel and bright nickel in the prior art into one step. Besides, the prepared alloy pre-electroplated layer has excellent quality, and can provide good basis for plating a chromium layer. Through adjustment of a plating solution for electroplating zinc-nickel-copper and a plating solution for electroplating chromium, no component with toxicity or high pollution is adopted, so that the plating technology is environment-friendly and safe; the prepared plated layer has high corrosion resistance, beautiful appearance, and high adhesion between a substrate and the plated layer.

Description

A kind of Mg alloy surface electrodeposited chromium technique of pre-galvanized copper-nickel
Technical field
The present invention relates to electroplating technology field, particularly relate to a kind of Mg alloy surface electrodeposited chromium technique of pre-galvanized copper-nickel.
Background technology
Magnesium alloy, as a kind of lightweight engineered structured material, has high specific strength, high specific stiffness and superior damping performance, and have a wide range of applications in fields such as traffic, communication, Aeronautics and Astronautics field.But magnesium alloy chemical activity is high, and electropotential is low, surface film oxide loosens, and causes barrier propterty low, constrains the application and development of magnesium alloy.Cause the concern of people to magnesium alloy part surface corrosion and protection thus, large quantifier elimination has been carried out in Mg alloy surface anodic oxidation, chemical conversion film, organic coating, coating surface etc., particularly employing method for electroplating nickel is low as a kind of cost, technique simple, the surface coating technique of easy handling, has become the important research direction of people to magnesium alloy surface protective.
At present, the electro-plating method of magnesium alloy is mainly and could starts to electroplate other metal after zinc-plated, copper pre-plating in advance, and major part is for containing cyanogen plating.Such as, what both at home and abroad generally adopt now is the standard method of the plated metal Ni that U.S. ASTM recommends, and be the leaching zinc plating method of Dow company exploitation, its pre-treatment have employed leaching zinc and cyanide copper plating technique.But this complex technical process, repeatability is poor, and use prussiate, plating solution is poisonous, contaminate environment, and the bright property of coating and the stability of plating solution also need further improvement.
In order to overcome the shortcoming of complex process, software engineering researchers invent has gone out direct electroless nickel method, as adopted chromic anhydride in JP2003073843, etch is carried out to magnesium alloy, chemical nickel plating is carried out after fluorochemical activation, chemical nickel-plating liquid is regulated to make it be weakly alkaline with ammoniacal liquor, once bonding force was obtained good, the chemical Ni-plating layer that solidity to corrosion is high, Li De is high adopt in patent CN1699634A magnesium alloy plating method go wadding → electrochemical deoiling → bright dipping → in and the zincincation of → activation → in advance obtain reasonable pre-zinc coating, and pre-galvanizing flux is without cyanogen, nontoxic, harmless, the people such as Yang Noboru are in patent CN1737205A, by Direct Electroplating aluminium after dense hydrofluoric acid (11%) used for magnesium alloy pickling, obtain reasonable aluminium coat, Chinese patent CN1641075A is to magnesium, the surface of magnesium alloy or activating treatment process and plated surface method did detailed description, although these techniques have all departed from prussiate plating, but the treatment process before plating is mostly based on the improvement of the technique to DOW.
Summary of the invention
The object of the invention is to the Mg alloy surface electrodeposited chromium technique proposing a kind of pre-galvanized copper-nickel, this technique adopts electro-galvanizing ambrose alloy technique to carry out electrodeposited chromium pre-treatment, by copper pre-plating of the prior art, electroplate the multistep operations such as half light nickel, high-sulfur nickel, bright nickel and be reduced to a step operation, and the alloy pre-plating layer good quality of preparation, can be the basis that chromium coating provides good.And by the adjustment to electro-galvanizing ambrose alloy plating solution and electrodeposited chromium bath composition, do not adopt poisonous, pollute high component, make plating technic Environmental Safety, and the corrosion-resistant height of coating of preparation, appearance looks elegant, matrix and binding force of cladding material high.
For reaching this object, the present invention by the following technical solutions:
A Mg alloy surface electrodeposited chromium technique for pre-galvanized copper-nickel, described technique comprises the steps: alkali cleaning → pickling → activation → leaching zinc → electro-galvanizing ambrose alloy → electrodeposited chromium, wherein
Electro-galvanizing ambrose alloy: wherein the plating solution of electro-galvanizing corronel consists of: zinc sulfate 32-36g/L, pyrosulfuric acid copper 14-18g/L, single nickel salt 10-12g/L, sodium sulfate 43-47g/L, K 4p 2o 73H 2o164-168g/L, KF18-20g/L, C 6h 17o 7n 332-36g/L, phytic acid 0.4-0.6g/L, H 2cSNH 2: 4-6g/L, brightening agent WZ11218-10g/L, brightening agent WZ-11222-3g/L, surplus is water; Technique is: take stainless steel as anode, electroplating temperature: 35-45 DEG C, electroplating time 35-45min, current density: 1.5-2.5A/dm2;
Electrodeposited chromium: plating solution consists of: chromium sulphate 160-170g/L, sodium sulfate 270-280g/L; Brometo de amonio 0.6-0.8mol/L; Boric acid 1.5-1.7mol/L; Inferior sodium phosphate 0.6-0.8mol/L; Oxalic acid 1.2-1.4mol/L; Sodium lauryl sulphate 0.03-0.05mol/L, ferrous sulfate 0.05-0.07mol/L, surplus is water; Electroplating technology: pH value 2.3-3.6; Technological temperature 45-55 DEG C, cathode current density 21-23A/dm 2, electroplating time 20-30 minute.
The advantage that the present invention has:
This technique adopts electro-galvanizing ambrose alloy technique to carry out electrodeposited chromium pre-treatment, by copper pre-plating of the prior art, electroplate the multistep operations such as half light nickel, high-sulfur nickel, bright nickel and be reduced to a step operation, and the alloy pre-plating layer good quality of preparation, can be the basis that chromium coating provides good.And by the adjustment to electro-galvanizing ambrose alloy plating solution and electrodeposited chromium bath composition, do not adopt poisonous, pollute high component, make plating technic Environmental Safety, and the corrosion-resistant height of coating of preparation, appearance looks elegant, matrix and binding force of cladding material high.
Embodiment
Embodiment one
A Mg alloy surface electrodeposited chromium technique for pre-galvanized copper-nickel, described technique comprises the steps: alkali cleaning → pickling → activation → leaching zinc → electro-galvanizing ambrose alloy → electrodeposited chromium, wherein
Electro-galvanizing ambrose alloy: wherein the plating solution of electro-galvanizing corronel consists of: zinc sulfate 32g/L, pyrosulfuric acid copper 18g/L, single nickel salt 10g/L, sodium sulfate 47g/L, K 4p 2o 73H 2o164g/L, KF20g/L, C 6h 17o 7n 332g/L, phytic acid 0.6g/L, H 2cSNH 2: 4g/L, brightening agent WZ112110g/L, brightening agent WZ-11222g/L, surplus is water; Technique is: take stainless steel as anode, electroplating temperature: 35-45 DEG C, electroplating time 35min, current density: 1.5-2.5A/dm 2;
Electrodeposited chromium: plating solution consists of: chromium sulphate 160g/L, sodium sulfate 280g/L; Brometo de amonio 0.6mol/L; Boric acid 1.7mol/L; Inferior sodium phosphate 0.6mol/L; Oxalic acid 1.4mol/L; Sodium lauryl sulphate 0.03mol/L, ferrous sulfate 0.07mol/L, surplus is water; Electroplating technology: pH value 2.3-3.6; Technological temperature 45-55 DEG C, cathode current density 21-23A/dm 2, electroplating time 20 minutes.
Embodiment two
A Mg alloy surface electrodeposited chromium technique for pre-galvanized copper-nickel, described technique comprises the steps: alkali cleaning → pickling → activation → leaching zinc → electro-galvanizing ambrose alloy → electrodeposited chromium, wherein
Electro-galvanizing ambrose alloy: wherein the plating solution of electro-galvanizing corronel consists of: zinc sulfate 36g/L, pyrosulfuric acid copper 14g/L, single nickel salt 12g/L, sodium sulfate 43g/L, K 4p 2o 73H 2o168g/L, KF18g/L, C 6h 17o 7n 336g/L, phytic acid 0.4g/L, H 2cSNH 2: 6g/L, brightening agent WZ11218g/L, brightening agent WZ-11223g/L, surplus is water; Technique is: take stainless steel as anode, electroplating temperature: 35-45 DEG C, electroplating time 45min, current density: 1.5-2.5A/dm 2;
Electrodeposited chromium: plating solution consists of: chromium sulphate 170g/L, sodium sulfate 270g/L; Brometo de amonio 0.8mol/L; Boric acid 1.5mol/L; Inferior sodium phosphate 0.8mol/L; Oxalic acid 1.2mol/L; Sodium lauryl sulphate 0.05mol/L, ferrous sulfate 0.05mol/L, surplus is water; Electroplating technology: pH value 2.3-3.6; Technological temperature 45-55 DEG C, cathode current density 21-23A/dm 2, electroplating time 30 minutes.
Embodiment three
A Mg alloy surface electrodeposited chromium technique for pre-galvanized copper-nickel, described technique comprises the steps: alkali cleaning → pickling → activation → leaching zinc → electro-galvanizing ambrose alloy → electrodeposited chromium, wherein
Electro-galvanizing ambrose alloy: wherein the plating solution of electro-galvanizing corronel consists of: zinc sulfate 34g/L, pyrosulfuric acid copper 16g/L, single nickel salt 11g/L, sodium sulfate 45g/L, K 4p 2o 73H 2o166g/L, KF19g/L, C 6h 17o 7n 334g/L, phytic acid 0.5g/L, H 2cSNH 2: 5g/L, brightening agent WZ11219g/L, brightening agent WZ-11222.5g/L, surplus is water; Technique is: take stainless steel as anode, electroplating temperature: 35-45 DEG C, electroplating time 40min, current density: 1.5-2.5A/dm2;
Electrodeposited chromium: plating solution consists of: chromium sulphate 165g/L, sodium sulfate 275g/L; Brometo de amonio 0.7mol/L; Boric acid 1.6mol/L; Inferior sodium phosphate 0.7mol/L; Oxalic acid 1.3mol/L; Sodium lauryl sulphate 0.04mol/L, ferrous sulfate 0.06mol/L, surplus is water; Electroplating technology: pH value 2.3-3.6; Technological temperature 45-55 DEG C, cathode current density 21-23A/dm 2, electroplating time 25 minutes.

Claims (1)

1. a Mg alloy surface electrodeposited chromium technique for pre-galvanized copper-nickel, is characterized in that, described technique comprises the steps: alkali cleaning → pickling → activation → leaching zinc → electro-galvanizing ambrose alloy → electrodeposited chromium, wherein
Electro-galvanizing ambrose alloy: wherein the plating solution of electro-galvanizing corronel consists of: zinc sulfate 32-36g/L, pyrosulfuric acid copper 14-18g/L, single nickel salt 10-12g/L, sodium sulfate 43-47g/L, K 4p 2o 73H 2o164-168g/L, KF18-20g/L, C 6h 17o 7n 332-36g/L, phytic acid 0.4-0.6g/L, H 2cSNH 2: 4-6g/L, brightening agent WZ1121 8-10g/L, brightening agent WZ-11222-3g/L, surplus is water; Technique is: take stainless steel as anode, electroplating temperature: 35-45 DEG C, electroplating time 35-45min, current density: 1.5-2.5A/dm 2;
Electrodeposited chromium: plating solution consists of: chromium sulphate 160-170g/L, sodium sulfate 270-280g/L; Brometo de amonio 0.6-0.8mol/L; Boric acid 1.5-1.7mol/L; Inferior sodium phosphate 0.6-0.8mol/L; Oxalic acid 1.2-1.4mol/L; Sodium lauryl sulphate 0.03-0.05mol/L, ferrous sulfate 0.05-0.07mol/L, surplus is water; Electroplating technology: pH value 2.3-3.6; Technological temperature 45-55 DEG C, cathode current density 21-23A/dm 2, electroplating time 20-30 minute.
CN201310228222.4A 2013-06-08 2013-06-08 Technology of pre-electroplating zinc-nickel-copper alloy and then electroplating chromium on surface of magnesium alloy Pending CN104233415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310228222.4A CN104233415A (en) 2013-06-08 2013-06-08 Technology of pre-electroplating zinc-nickel-copper alloy and then electroplating chromium on surface of magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310228222.4A CN104233415A (en) 2013-06-08 2013-06-08 Technology of pre-electroplating zinc-nickel-copper alloy and then electroplating chromium on surface of magnesium alloy

Publications (1)

Publication Number Publication Date
CN104233415A true CN104233415A (en) 2014-12-24

Family

ID=52222286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310228222.4A Pending CN104233415A (en) 2013-06-08 2013-06-08 Technology of pre-electroplating zinc-nickel-copper alloy and then electroplating chromium on surface of magnesium alloy

Country Status (1)

Country Link
CN (1) CN104233415A (en)

Similar Documents

Publication Publication Date Title
CN100387757C (en) Method for electroplating magnesium and magnesium alloy
CN105386089A (en) Trivalent chromium hard chromium electroplating solution and application of trivalent chromium hard chromium electroplating solution in hard chromium electroplating
CN102605393B (en) Ni-W-Fe-Co alloy electroplating liquid and electroplating process thereof
CN111058068A (en) Processing technology of zinc-plated nickel alloy
CN204918772U (en) A high corrosion resistance cadmium plating layer for aerospace spare part
CN103898505B (en) A kind of Electroless Ni-P alloy plating on magnesium alloy of pre-galvanized admiro
CN103898585A (en) Surface chromium electroplating technique of magnesium alloy die casting
CN212103011U (en) Coating structure of aluminum alloy die casting environment-friendly gilding
CN101435098B (en) Cyanideless nickel layer electroplating method for magnesium alloy surface
CN218642831U (en) Coating structure of black tin-nickel alloy of aluminum alloy piece plating gun
CN104233383A (en) Combined solution for pre-electroplating zinc-nickel-copper alloy and electroplating chromium on surface of magnesium alloy
CN101435097B (en) Cyanideless metallic layer electroplating method for magnesium alloy surface
CN103898575A (en) Pre-electrogalvanizing nickel alloy process for chemical plating of nickel on surface of magnesium alloy
CN104233415A (en) Technology of pre-electroplating zinc-nickel-copper alloy and then electroplating chromium on surface of magnesium alloy
CN103938236A (en) Process for electroplating chromium on surface of magnesium alloy
CN104233419A (en) Technology for electroplating zinc-nickel alloy on surface of magnesium alloy
CN104213166A (en) Magnesium alloy surface chromium electroplating technology adopting pre-electroplating of zinc-nickel alloy
CN104233387A (en) Plating solution for electroplating zinc-nickel-copper alloy on surface of magnesium alloy
CN103898586A (en) Magnesium alloy surface electrochromism combination solution for pre-electroplated zinc-nickel alloy
CN104213155A (en) Secondary zinc plating pretreatment composite solution for electroplating nickel on magnesium alloy surface
CN210420165U (en) Potassium chloride cyanide-free cadmium-titanium alloy plating and army green passivated plating layer structure
CN103938240A (en) Combined plating solution for electroplating chromium on surface of magnesium alloy die casting
CN103898588A (en) Magnesium alloy surface chemical nickel-plating combination solution for pre-electroplated zinc-nickel alloy
CN104213167A (en) Magnesium alloy surface chromium electroplating combination solution
CN103898587A (en) Secondary galvanizing pretreatment process for electroplating nickel on surface of magnesium alloy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141224