CN104232584A - 一种乳腺癌体外三维细胞模型的建立及其在药物耐药机制、逆转剂筛选研究中的应用 - Google Patents
一种乳腺癌体外三维细胞模型的建立及其在药物耐药机制、逆转剂筛选研究中的应用 Download PDFInfo
- Publication number
- CN104232584A CN104232584A CN201410471270.0A CN201410471270A CN104232584A CN 104232584 A CN104232584 A CN 104232584A CN 201410471270 A CN201410471270 A CN 201410471270A CN 104232584 A CN104232584 A CN 104232584A
- Authority
- CN
- China
- Prior art keywords
- cell model
- vitro
- mcf
- cell
- breast cancer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
本发明涉及一种乳腺癌体外三维细胞模型的建立及其在药物耐药机制、逆转剂筛选研究中的应用。运用“3D no base and embedded”方法将一定量的人乳腺癌MCF-7细胞种植在Millicell细胞培养小室上,通过培养形成厚度约为40μm,层数达到10~12层的人乳腺癌MCF-7细胞的三维多层细胞模型。在MCF-7多层细胞模型上单用及联用P-GP抑制剂LY335979对化疗药物阿霉素的转运动力学及摄取行为考察证明其在培养过程中发生耐药现象;并将其应用于阿霉素耐药逆转剂人参皂苷20(S)-Rh2的筛选。
Description
技术领域
本发明涉及肿瘤体外模型技术领域,具体涉及一种乳腺癌体外三维细胞模型的建立及其在药物耐药机制、逆转剂筛选研究中的应用。
背景技术
单层细胞模型作为现今主流的体外研究模型,却存在着与在体实体瘤很大的差异,直接导致了药物筛选与预测的失败。三维细胞培养技术是介于单层细胞培养与动物实验之间的一种技术,可用于研究细胞与细胞之间、细胞与细胞基质之间的相互作用及肿瘤微环境对于细胞分化、增殖、凋亡及基因表达的影响。它与传统的二维平面细胞培养相比,能够更真实的模拟实体瘤的结构,弥补了体外细胞培养与在体研究的差异。
现有的三维细胞模型包括多层细胞模型(multicellular layers,MCL)及多球体细胞模型(multicellular spheroid,MCS)。常用的培养方法包括自发性细胞聚集、基质涂布培养、转瓶法、支架辅助培养法、旋转细胞生物反应器等。多层细胞模型与球体细胞模型相比,能够直接定量的测定药物的转运动力学行为而不受药物需要荧光标记的限制等优点。运用三维多层细胞模型来研究药物的转运、分布特征,为新药筛选、抗肿瘤药物的新机制研究提供指导作用。
多药耐药(MDR)往往是导致临床化疗治疗失败的主要原因之一。MDR有两种不同的表型,一种是对第一次化疗就产生耐药,称天然性耐药(Natural resistance)或称内源性耐药(Intrinsic resistance);另一种是在化疗过程中产生耐药,故称获得性耐药(Aquired resistance)。与单层细胞相比,肿瘤细胞培养形成多细胞三维模型时,往往表现的更为耐药,此现象又被称为“多细胞耐药(Multi-cellular resistance)”。这一现象发生的机制是多方面的,包括药物转运外排泵的高表达而导致细胞动力学改变;细胞周期的改变;抗凋亡作用;一些生长因子及蛋白的高表达;缺氧或pH值低等肿瘤微环境的改变。
近年来国内外对天然药物逆转肿瘤耐药的研究取得了一定的进展,一些植物多酚、黄酮、萜类等成分都具有逆转肿瘤耐药的功效。中药逆转肿瘤耐药具有毒副作用小,作用靶点多,在逆转肿瘤耐药的同时,往往还具有直接抗肿瘤、调节免疫功能等多种活性,更能从多角度综合治疗肿瘤,提高化疗的整体治疗水平。因此,从传统中药中筛选出活性成分开发成肿瘤化疗增敏剂,具有很好的临床开发前景。人参皂苷20(S)-Rh2是由日本学者Kitagawa在 1983年首次从红参中分离得到并确定分子式的,含量极低,提取率仅为0.001%。20(S)-Rh2具有达玛烷结构,属于原人参二醇型皂苷。前期实验研究结果表明人参皂苷20(S)-Rh2为外排转运体P-GP的非竞争性抑制剂。
发明内容
本发明的目的是建立一种人乳腺癌三维细胞模型,证明其在培养过程中发生耐药,基于该模型对抗肿瘤药物的转运动力学进行研究,并将其应用于耐药逆转剂的筛选。运用“3D no base and embedded”方法将一定量的人乳腺癌MCF-7细胞种植在Millicell细胞培养小室上,通过培养形成厚度约为40μm,层数达到10~12层的人乳腺癌MCF-7细胞的三维多层细胞模型。在MCF-7单层细胞上,单用阿霉素组及联用P-GP特异性抑制剂LY335979组的转运动力学曲线及阿霉素的药物摄取量并没有差异。而在MCF-7多层细胞上,联用P-GP特异性抑制剂LY335979组转运曲线明显低于单用阿霉素组,并且多层细胞对于阿霉素的摄取量显著性减少并被LY335979有效逆转。上述结果证明多层细胞培养过程中发生耐药。进一步,将构建的MCF-7多层细胞运用于阿霉素耐药逆转剂人参皂苷20(S)-Rh2的筛选,联用20(S)-Rh2组与单用阿霉素组相比,转运曲线明显降低且对阿霉素的摄取量显著性增加。
附图说明
图1;人参皂苷20(S)-Rh2的结构式。
图2;A,MCF-7单层细胞HE染色形态图。B,MCF-7多层细胞HE染色形态图。
图3;A,阿霉素联用LY335979在MCF-7单层细胞转运动力学曲线。B,阿霉素联用LY335979在MCF-7多层细胞转运动力学曲线。C,阿霉素联用LY335979在MCF-7单层细胞及多层细胞上的摄取。
图4;A,阿霉素联用人参皂苷Rh2在MCF-7多层细胞转运动力学曲线。B,阿霉素联用人参皂苷20(S)-Rh2在MCF-7多层细胞上的摄取。
具体实施方式
实施例1:构建乳腺癌MCF-7三维多层细胞转运模型
实验材料:
人乳腺癌细胞MCF-7细胞由天津血液病研究所提供,于37℃,5%CO2条件下常规培养,培养基为含10%小牛血清(PAA)的RPMI1640(Gibeo)。胎牛血清(Fetal bovine serum)购于Hyclone(Logan,Utah,USA);胰蛋白酶(Trypsin)购于Amersco(Solon,Ohio,USA);青 霉素、链霉素购于南京生兴生物工程公司(江苏);Matrigel购于BD Biosciences(USA),Millicell细胞培养小室购于Millipore(Merck Millipore,USA).盐酸阿霉素粉末(纯度>99%)购于南京盛林化工(江苏);LY335979购于Selleck Chemicals(USA);人参皂苷20(S)-Rh2(纯度>98%)购自吉林大学药学院有机化学教研室(吉林,中国)。
实验方法:
MCF-7细胞消化、计数,用含6%Matrigel的预冷无血清RPMI1640培养基重悬细胞。以2*105 cells/孔的密度接种于24孔Millicell细胞培养小室中。冰上静置30min后放入37℃,5%CO2的孵箱中培养4h。待胶液凝固后,内外室分别补加400ul及600ul 10%含血清的RPMI1640培养基继续培养十天,并隔天换液。
实施例2:构建乳腺癌MCF-7单层细胞转运模型
实验材料:同实施例一
实验方法:
MCF-7细胞消化、计数,用10%含血清的RPMI1640培养基重悬细胞。以2*105cells/孔的密度、400ul的体积接种于24孔Millicell细胞培养小室内室中。外室补加600ul10%含血清的RPMI1640培养基继续培养至细胞形成致密单层,并隔天换液。
实施例3:转运动力学及摄取实验
实验材料:同实施例一
实验方法:
1.MCF-7多层细胞转运模型及单层细胞转运模型构建方法同实施例1及实施例2中的实验方法
2.转运动力学实验
Millicell细胞培养小室辅助培养的MCF-7多层细胞及单层细胞培养成熟后,细胞培养小室用PBS液清洗两次。上、下室分别加入400ul、600ul Hank's平衡盐溶液(HBSS)37℃平衡10min。分为三组进行预给药:0.1%DMSO组;LY335979(1μM)组及20(S)-Rh2(10μM),37℃温孵1h。撤去上室的预给液后,上室分三组进行给药:ADR(10μM)单用组,ADR(10μM)与LY335979(1μM)联用组及ADR(10μM)与20(S)-Rh2(10μM)联用组给药体积均为400ul。37℃摇床温孵不同时间(15,30,45,60,90min),取下室HBSS液100ul,并及时补齐下室体积,保持转运过程中下室体积不改变。采用直接沉淀蛋白法提取样品,用LC-MS/MS(AB Science,USA)进行浓度测定。
3.摄取实验
转运终点(90min)时,取出Millicell细胞培养小室的中层插片,用1ml超纯水刮取细胞,反复冻融三次,定量取出100ul,采用直接沉淀蛋白法提取样品,用LC-MS/MS(AB Science,USA)进行浓度测定。并用Bradford法定蛋白进行蛋白校准。
Claims (3)
1.一种体外人乳腺癌MCF-7三维多层细胞模型,其特征在于:运用“3D no base and embedded”方法将一定量的人乳腺癌MCF-7细胞种植在Millicell细胞培养小室上,通过十天的培养形成厚度约为40μm,层数达到10~12层的人乳腺癌MCF-7细胞的三维多层细胞模型。
2.如权利要求1所述的体外人乳腺癌MCF-7三维多层细胞模型对抗肿瘤药物的转运动力学及摄取行为的评价,其特征在于:多层细胞在培养过程中发生耐药。
3.如权利要求2所述的体外人乳腺癌MCF-7三维多层细胞模型的转运动力学及摄取研究在抗肿瘤药物耐药逆转剂筛选的应用,其特征在于:联用耐药逆转剂组与单用抗肿瘤药物组相比,转运曲线明显降低且对抗肿瘤药物的摄取量显著性增加。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410471270.0A CN104232584B (zh) | 2014-09-15 | 2014-09-15 | 一种乳腺癌体外三维细胞模型的建立及其在药物耐药机制、逆转剂筛选研究中的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410471270.0A CN104232584B (zh) | 2014-09-15 | 2014-09-15 | 一种乳腺癌体外三维细胞模型的建立及其在药物耐药机制、逆转剂筛选研究中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104232584A true CN104232584A (zh) | 2014-12-24 |
CN104232584B CN104232584B (zh) | 2017-05-10 |
Family
ID=52221487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410471270.0A Expired - Fee Related CN104232584B (zh) | 2014-09-15 | 2014-09-15 | 一种乳腺癌体外三维细胞模型的建立及其在药物耐药机制、逆转剂筛选研究中的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104232584B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106997423A (zh) * | 2016-07-22 | 2017-08-01 | 中国药科大学 | 一种基于三维细胞模型的药物穿透动力学模型的构建及其在药物评价中的应用 |
CN107693528A (zh) * | 2017-10-09 | 2018-02-16 | 中国药科大学 | 人参皂苷Rh2促进药物在实体瘤内穿透的新用途 |
CN111944757A (zh) * | 2020-08-31 | 2020-11-17 | 四川大学华西医院 | 一种工程化卵巢癌体外模型及其应用 |
CN114525251A (zh) * | 2022-02-21 | 2022-05-24 | 广东粤微食用菌技术有限公司 | 一种3d乳腺癌细胞的体外快速培养方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100260731A1 (en) * | 2007-09-03 | 2010-10-14 | Braspenning Adrianus J C M | Propagation of primary cells and the use thereof |
CN103898058A (zh) * | 2014-04-02 | 2014-07-02 | 中国人民解放军第三军医大学第一附属医院 | 一种新型胶质瘤干细胞的三维培养方法及其应用 |
-
2014
- 2014-09-15 CN CN201410471270.0A patent/CN104232584B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100260731A1 (en) * | 2007-09-03 | 2010-10-14 | Braspenning Adrianus J C M | Propagation of primary cells and the use thereof |
CN103898058A (zh) * | 2014-04-02 | 2014-07-02 | 中国人民解放军第三军医大学第一附属医院 | 一种新型胶质瘤干细胞的三维培养方法及其应用 |
Non-Patent Citations (5)
Title |
---|
HARPREET K DHIMAN等: "Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen", 《BIOMATERIALS》 * |
LEI CHEN等: "The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs", 《BIOMATERIALS》 * |
LIYUAN LI等: "Optimizing a 3D Culture System to Study the Interaction between Epithelial Breast Cancer and Its Surrounding Fibroblasts", 《JOURNAL OF CANCER》 * |
MARK W. TIBBITT等: "Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture", 《BIOTECHNOL BIOENG》 * |
方杰: "丹参素对乳腺癌MCF细胞株的作用", 《中国老年学杂志》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106997423A (zh) * | 2016-07-22 | 2017-08-01 | 中国药科大学 | 一种基于三维细胞模型的药物穿透动力学模型的构建及其在药物评价中的应用 |
CN106997423B (zh) * | 2016-07-22 | 2022-03-11 | 中国药科大学 | 一种基于三维细胞模型的药物穿透动力学模型的构建及其在药物评价中的应用 |
CN107693528A (zh) * | 2017-10-09 | 2018-02-16 | 中国药科大学 | 人参皂苷Rh2促进药物在实体瘤内穿透的新用途 |
CN111944757A (zh) * | 2020-08-31 | 2020-11-17 | 四川大学华西医院 | 一种工程化卵巢癌体外模型及其应用 |
CN114525251A (zh) * | 2022-02-21 | 2022-05-24 | 广东粤微食用菌技术有限公司 | 一种3d乳腺癌细胞的体外快速培养方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104232584B (zh) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Cancer-on-a-chip systems at the frontier of nanomedicine | |
CN104232584A (zh) | 一种乳腺癌体外三维细胞模型的建立及其在药物耐药机制、逆转剂筛选研究中的应用 | |
Wang et al. | Emerging role of the Hippo pathway in autophagy | |
Li et al. | Ergosterol peroxide activates Foxo3-mediated cell death signaling by inhibiting AKT and c-Myc in human hepatocellular carcinoma cells | |
Kang et al. | Alantolactone induces apoptosis through ROS-mediated AKT pathway and inhibition of PINK1-mediated mitophagy in human HepG2 cells | |
Zuchowska et al. | Studies of anticancer drug cytotoxicity based on long‐term HepG2 spheroid culture in a microfluidic system | |
CN103976956B (zh) | 一种靶向抗肝癌纳米粒子及其制备方法和应用 | |
Hu et al. | Targeting of MCT1 and PFKFB3 influences cell proliferation and apoptosis in bladder cancer by altering the tumor microenvironment | |
Fan et al. | Mechanism of modulation through PI3K-AKT pathway about Nepeta cataria L.’s extract in non-small cell lung cancer | |
Wu et al. | Scale-out production of extracellular vesicles derived from natural killer cells via mechanical stimulation in a seesaw-motion bioreactor for cancer therapy | |
CN104434942A (zh) | 一种硝呋太尔制霉素阴道软胶囊剂及其制备工艺 | |
Shao et al. | Organ-on-a-chip for dynamic tumor drug resistance investigation | |
Ko et al. | Physalin A, 13, 14-Seco-16, 24-Cyclo-Steroid, inhibits stemness of breast cancer cells by regulation of Hedgehog signaling pathway and Yes-associated protein 1 (YAP1) | |
Gao et al. | Synergistic anticancer effects of everolimus (RAD001) and Rhein on gastric cancer cells via phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway | |
Gallegos-Martínez et al. | Culture of cancer spheroids and evaluation of anti-cancer drugs in 3D-printed miniaturized continuous stirred tank reactors (mCSTRs) | |
Király et al. | Shikonin causes an apoptotic effect on human kidney cancer cells through Ras/MAPK and PI3K/AKT pathways | |
Yang et al. | Ginseng-derived nanoparticles inhibit lung cancer cell epithelial mesenchymal transition by repressing pentose phosphate pathway activity | |
Wang et al. | Antitumor and apoptotic effects of cucurbitacin a in A-549 lung carcinoma cells is mediated via G2/M cell cycle arrest and M-TOR/PI3K/Akt signalling pathway | |
CN103055048B (zh) | 一种从蔓荆子中提取总黄酮的方法 | |
Ye et al. | Preparation, antidermatophyte activity, and mechanism of methylphloroglucinol derivatives | |
CN109692178A (zh) | 川楝素在制备抗乳腺癌化疗增效药物中的应用 | |
Routt et al. | Potentiation of metalloenediyne cytotoxicity by hyperthermia | |
CN102363044A (zh) | 靶向线粒体的三种蒽醌类物质作为鼻咽癌放射增敏剂的用途 | |
CN110882236B (zh) | 一种抗肿瘤组合物、治疗癌症的药物制剂及其应用 | |
CN105582006A (zh) | 白术内酯在制备抗抑郁药物中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170510 Termination date: 20170915 |
|
CF01 | Termination of patent right due to non-payment of annual fee |