CN104217255A - Electrical power system multi-target overhaul optimization method under market environment - Google Patents
Electrical power system multi-target overhaul optimization method under market environment Download PDFInfo
- Publication number
- CN104217255A CN104217255A CN201410442784.3A CN201410442784A CN104217255A CN 104217255 A CN104217255 A CN 104217255A CN 201410442784 A CN201410442784 A CN 201410442784A CN 104217255 A CN104217255 A CN 104217255A
- Authority
- CN
- China
- Prior art keywords
- unit
- maintenance
- variable
- formula
- initialization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000005457 optimization Methods 0.000 title claims abstract description 37
- 238000012423 maintenance Methods 0.000 claims abstract description 146
- 238000010248 power generation Methods 0.000 claims abstract description 33
- 230000001419 dependent effect Effects 0.000 claims abstract description 11
- 230000005611 electricity Effects 0.000 claims description 12
- 230000002068 genetic effect Effects 0.000 claims description 6
- 230000035772 mutation Effects 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims 1
- 238000007689 inspection Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 8
- 230000010365 information processing Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- 102220472090 Protein ENL_D20C_mutation Human genes 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000011423 initialization method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种市场环境下电力系统多目标检修优化方法。本发明包括步骤如下:获取各个发电商数据;建立市场环境下电网多目标检修优化模型;对模型的机组出力变量和机组检修变量进行实数编码,对模型中的机组在线状态变量和机组启动状态变量进行0-1二进制编码,并将其从自变量转化成为由机组出力变量和机组检修变量所表示的因变量;对机组出力变量和机组检修变量进行初始化;将得到的变量初始化值作为快速非支配排序法的种群初始化输入进行求解,得到最优解集;采用多目标决策方法从得到的最优解集中确定最终的机组检修及出力方案。本发明执行简单、可扩展性强,可用于求解不同目标函数和约束条件的多目标检修优化模型。
The invention discloses a multi-objective maintenance optimization method for electric power system under market environment. The present invention includes the following steps: obtaining data of each power generation provider; establishing a multi-objective maintenance optimization model of the power grid in a market environment; encoding the unit output variables and unit maintenance variables in the model with real numbers, and encoding the unit online state variables and unit start-up state variables in the model Carry out 0-1 binary coding, and transform it from an independent variable into a dependent variable represented by the unit output variable and the unit maintenance variable; initialize the unit output variable and the unit maintenance variable; use the obtained variable initialization value as a fast non-dominated The population initialization input of the sorting method is solved to obtain the optimal solution set; the final unit maintenance and output plan is determined from the optimal solution set obtained by using the multi-objective decision-making method. The invention has simple execution and strong expandability, and can be used to solve multi-objective maintenance optimization models of different objective functions and constraint conditions.
Description
技术领域technical field
本发明属于电力系统优化技术领域,具体涉及一种电力系统多目标检修优化方法。The invention belongs to the technical field of power system optimization, and in particular relates to a multi-objective maintenance optimization method of a power system.
背景技术Background technique
电力市场环境下,发电机组检修计划的安排与传统的发电机检修计划安排有着很大的不同。电力市场环境下,各个发电商追求自己利益的最大化,同时,系统运行机构,如电力调度中心,需要保证系统的安全可靠。发电商希望将自己的机组安排在低电价时段进行检修,而系统运行机构则希望在低负荷时段安排机组检修,由于低电价时段与低负荷时段并不完全一致,故而发电商和系统运行机构在安排机组检修时段方面存在着冲突关系;另一方面,由于低负荷时段能够安排的最大检修机组数以及检修容量是有限的,故而各个发电商之间的利益也存在着冲突关系。现有的检修计划调整机制一般为:各个发电商向系统运行机构提交检修计划方案,系统运行机构通过一定机制,如激励/惩罚机制,意愿支付机制等,来修改发电商的检修计划以达到系统安全可靠与发电商利益之间的折衷。这种机制能够达成一个让各方,含发电商和系统运行机构,都满意的检修方案,但忽略了对各方之间的冲突关系的研究,没能全面地了解各方之间的关系。Under the electricity market environment, the arrangement of the generator maintenance plan is very different from the traditional generator maintenance plan. In the electricity market environment, each power generation company pursues the maximization of its own interests. At the same time, the system operating organization, such as the power dispatching center, needs to ensure the safety and reliability of the system. Power generators want to arrange their units to be overhauled during low power price periods, while system operators hope to arrange unit overhauls during low-load periods. Since low-power price periods and low-load periods are not exactly the same, power producers and system operators are in the same position. There is a conflict relationship in arranging unit maintenance time slots; on the other hand, because the maximum number of maintenance units and maintenance capacity that can be arranged in low-load periods is limited, there are also conflicts in the interests of various power producers. The existing maintenance plan adjustment mechanism is generally as follows: each power generation company submits the maintenance plan plan to the system operation organization, and the system operation organization uses certain mechanisms, such as incentive/punishment mechanisms, willingness to pay mechanisms, etc., to modify the maintenance plans of power generation companies to achieve system A compromise between safety and reliability and the interests of generators. This mechanism can reach a maintenance plan that satisfies all parties, including power generators and system operators, but it ignores the research on the conflict relationship between the parties and fails to fully understand the relationship between the parties.
发明内容Contents of the invention
本发明的目的是针对现有技术的不足,提供一种市场环境下电力系统多目标检修优化方法。The purpose of the present invention is to provide a multi-objective maintenance optimization method for electric power system under the market environment in view of the deficiencies in the prior art.
本发明解决其技术问题所采用的技术方案如下:The technical solution adopted by the present invention to solve its technical problems is as follows:
步骤(1)获取各个发电商发电费用系数数据C0ij,C1ij,C2ij,单位是$/MW;检修费用系数数据单位是$/MW;机组启动费用数据单位是$;机组容量数据单位是MW;负荷数据PD(t,s),单位是MW,及市场电价数据λ(t,s),单位是$/MWh;Step (1) Obtain the power generation cost coefficient data C 0ij , C 1ij , C 2ij of each power generation company, the unit is $/MW; the maintenance cost coefficient data The unit is $/MW; unit start-up cost data The unit is $; unit capacity data The unit is MW; the load data P D (t,s), the unit is MW, and the market electricity price data λ(t,s), the unit is $/MWh;
步骤(2)建立市场环境下电网多目标检修优化模型;Step (2) establishing a multi-objective maintenance optimization model of the power grid under the market environment;
步骤(3)对步骤(2)中所述模型的机组出力变量和机组检修变量进行实数编码,对所述模型中的机组在线状态变量和机组启动状态变量进行0-1二进制编码,然后将机组在线状态变量和机组启动状态变量从自变量转化成为由机组出力变量和机组检修变量所表示的因变量;Step (3) Carry out real number encoding to the unit output variable and the unit maintenance variable of the model described in step (2), carry out 0-1 binary encoding to the unit online state variable and the unit start-up state variable in the described model, and then the unit The on-line state variables and unit start-up state variables are transformed from independent variables into dependent variables represented by unit output variables and unit maintenance variables;
步骤(4)对多目标检修优化模型中的机组出力变量和机组检修变量进行初始化;Step (4) initialize the unit output variable and the unit maintenance variable in the multi-objective maintenance optimization model;
步骤(5)采用步骤(4)中得到的变量初始化值作为快速非支配排序法的种群初始化输入,并采用NSGA-II对上述多目标检修优化模型进行求解,得到最优解集;Step (5) using the variable initialization value obtained in step (4) as the population initialization input of the fast non-dominated sorting method, and using NSGA-II to solve the above-mentioned multi-objective maintenance optimization model to obtain the optimal solution set;
步骤(6)采用多目标决策方法,从得到的最优解集中确定最终的机组检修及出力方案。Step (6) adopts the multi-objective decision-making method to determine the final unit maintenance and output plan from the obtained optimal solution set.
步骤(2)所述优化模型的目标函数包括以下3类:各个发电商的收益最大化函数、系统可靠性最大化函数、系统总发电费用最小化函数;The objective function of the optimization model in step (2) includes the following three categories: the revenue maximization function of each power generation company, the system reliability maximization function, and the system total power generation cost minimization function;
所述优化模型的约束条件包括以下5类:系统备用高于系统所需的最小备用值、发电机组总出力与系统负荷平衡、同时检修机组数小于上限值、发电机组出力处于其额定出力范围内、机组不可同时处于检修和在线两种状态;The constraints of the optimization model include the following five categories: the system reserve is higher than the minimum reserve value required by the system, the total output of the generator set is balanced with the system load, the number of units under maintenance at the same time is less than the upper limit, and the output of the generator set is within its rated output range The inside and the unit cannot be in the inspection and online states at the same time;
第i个发电商的收益目标函数表示为pf(i),其表达式如式(1)所示:The revenue objective function of the i-th power producer is expressed as pf(i), and its expression is shown in formula (1):
式(1)中,Gi表示第i个发电商的机组集合;表示第i个发电商的第j台机组在时段t子时段s的有功出力;T(t,s)表示时段t子时段s的时间长,单位是小时;yij(t,s)表示机组的启动状态,若yij(t,s)=1表示第i个发电商的第j台机组在时段t子时段s的开始时刻启动,若yij(t,s)=0则无启动;xij表示第i个发电商的第j台机组检修开始周;Dij表示第i个发电商的第j台机组连续检修时长,单位是周;表示第i个发电商的第j台机组的最大容量;∨表示逻辑或;其中i和j为自然数;m为整数;T表示总的时段数;N表示总的子时段数;In formula (1), G i represents the unit set of the i-th generator; Indicates the active output of the j unit of the i-th generator in the sub-period s of the period t; T(t,s) indicates the length of the sub-period s of the period t, in hours; y ij (t,s) indicates the unit , if y ij (t, s) = 1, it means that the j unit of the i-th generator starts at the beginning of the period t sub-period s, and if y ij (t, s) = 0, there is no start; x ij indicates the starting week of the inspection of unit j of the i-th generator; D ij indicates the continuous inspection duration of unit j of the i-th generator, in weeks; Indicates the maximum capacity of the jth unit of the i-th generator; ∨ indicates logical or; where i and j are natural numbers; m is an integer; T indicates the total number of periods; N indicates the total number of sub-periods;
时段t子时段s的可靠性指标I(t,s)表示为净备用除以毛备用,毛备用由所有机组的容量和减去系统负荷得到,净备用由毛备用减去检修中机组的容量得到,如式(2)所示,系统可靠性目标函数由所有子时段的可靠性指标I(t,s)取平均得到,如式(3)所示;The reliability index I(t,s) of period t and sub-period s is expressed as the net reserve divided by the gross reserve, the gross reserve is obtained by subtracting the system load from the sum of the capacities of all units, and the net reserve is obtained by subtracting the capacity of the units under maintenance from the gross reserve Obtained, as shown in formula (2), the system reliability objective function is obtained by averaging the reliability indicators I(t, s) of all sub-periods, as shown in formula (3);
式(2)中,PD(t,s)表示时段t子时段s的系统负荷;In formula (2), P D (t, s) represents the system load in sub-period s of time period t;
系统总发电费用目标函数表示为tc,其表达式如式(4)所示:The objective function of the total power generation cost of the system is expressed as tc, and its expression is shown in formula (4):
系统备用约束条件如式(5)所示:The system backup constraints are shown in formula (5):
式(5)中,Rmin(t,s)表示时段t子时段s系统所需的最小备用;In formula (5), R min (t,s) represents the minimum backup required by the system in sub-period s of time period t;
最大同时检修机组数约束条件如式(6)所示:The constraints on the maximum number of simultaneous maintenance units are shown in formula (6):
式(6)中,Ni(t)表示第i个发电商在时段t所允许的最大同时检修机组数;In formula (6), N i (t) represents the maximum number of simultaneous maintenance units allowed by the i-th generator in time period t;
机组出力约束条件如式(7)所示:The unit output constraints are shown in formula (7):
式(7)中,表示机组在线时的出力下限,vij(t,s)表示在线状态变量,在线为1,不在线为0;In formula (7), Indicates the lower limit of the output of the unit when it is online, v ij (t, s) indicates the online state variable, 1 for online and 0 for offline;
机组检修时不可在线约束如式(8)所示:When the unit is overhauled, the online constraints are not allowed as shown in formula (8):
系统功率平衡约束条件如式(9)所示:The system power balance constraints are shown in formula (9):
步骤(3)具体包括如下步骤:Step (3) specifically comprises the following steps:
3-1.机组出力变量采用实数编码;3-1. Unit output variable Using real code;
3-2.机组检修变量xij采用实数编码,然后取整,xij代表第i个发电商的第j台机组检修开始周,检修持续时长由Dij表示;3-2. Unit maintenance variables x ij are coded by real numbers and then rounded to integers. x ij represents the start week of unit maintenance of unit j of the i-th generator, and the maintenance duration is represented by D ij ;
3-3.机组在线状态变量vij(t,s)由机组出力变量表示,由自变量转化成为因变量,如式(10)所示:3-3. The unit online state variable v ij (t, s) is represented by the unit output variable, which is transformed from an independent variable into a dependent variable, as shown in formula (10):
3-4.机组启动状态变量yij(t,s)可由在线状态变量vij(t,s)表示,由自变量转化成为因变量,如式(11)所示:3-4. The start-up state variable y ij (t, s) of the unit can be represented by the online state variable v ij (t, s), which is transformed from an independent variable into a dependent variable, as shown in formula (11):
yij(t+1,1)=vij(t+1,1)-vij(t,N)y ij (t+1,1)=v ij (t+1,1)-v ij (t,N)
(11)。(11).
yij(t,s+1)=vij(t,s+1)-vij(t,s)y ij (t,s+1)=v ij (t,s+1)-v ij (t,s)
步骤(4)所述的初始化方案如下:The initialization scheme described in step (4) is as follows:
4-1.机组检修初始化子程序由以下6个步骤组成:4-1. Unit maintenance initialization subroutine consists of the following 6 steps:
4-1-1.输入数据np和gidx,令t=0,j=0;其中np为所有发电商的机组数之和,数组gidx为机组按照最大容量值从大到小排序得到的机组编号顺序;4-1-1. Input the data np and gidx, let t=0, j=0; where np is the sum of the number of units of all generators, and the array gidx is the number of the units sorted according to the maximum capacity value from large to small order;
4-1-2.假设机组gidx[j]处于检修,判断式(5)所示的备用约束及式(6)所示的最大同时检修机组数约束是否同时满足;若式(5)和式(6)同时都成立,则令机组gidx[j]进行检修;若式(5)和式(6)至少有一个不成立,则令机组gidx[j]不进行检修;4-1-2. Assuming that the unit gidx[j] is under maintenance, judge whether the spare constraint shown in formula (5) and the maximum number of simultaneous maintenance units shown in formula (6) are satisfied at the same time; if formula (5) and formula (6) If both are true at the same time, then the unit gidx[j] will be overhauled; if at least one of formula (5) and formula (6) is not true, then the unit gidx[j] will not be overhauled;
4-1-3.令j=j+1;4-1-3. Let j=j+1;
4-1-4.判断j<np是否成立,若不成立则跳转执行步骤4-1-6;若成立则令t=t+1;4-1-4. Determine whether j<np is true, if not, jump to step 4-1-6; if true, set t=t+1;
4-1-5.判断t<T是否成立,若成立则执行步骤4-1-2;若不成立则执行步骤4-1-6;其中T为检修计划考虑的总周数;4-1-5. Determine whether t<T is true, if true, execute step 4-1-2; if not, execute step 4-1-6; where T is the total number of weeks considered in the maintenance plan;
4-1-6.返回子检修方案,结束检修初始子程序;4-1-6. Return to the sub-maintenance program, and end the initial subroutine for maintenance;
4-2.机组出力初始化子程序由以下6个步骤组成:4-2. The unit output initialization subroutine consists of the following 6 steps:
4-2-1.令所有机组出力为0,令j=0;4-2-1. Let the output of all units be 0, let j=0;
4-2-2.令k=0;4-2-2. Let k=0;
4-2-3.做判断,若机组pinc[k]处于检修中,则执行步骤4-2-4;若机组pinc[k]不处于检修中,则执行步骤4-2-5;4-2-3. Make a judgment, if the unit pinc[k] is under inspection, then execute step 4-2-4; if the unit pinc[k] is not under inspection, then execute step 4-2-5;
4-2-4.令k=k+1;做判断,若k<ng成立则跳转执行步骤4-2-3,若k<ng不成立则执行步骤4-2-6;4-2-4. Make k=k+1; make a judgment, if k<ng is established, then jump to step 4-2-3, if k<ng is not established, then execute step 4-2-6;
4-2-5.假设机组pinc[k]的出力处于其出力上限,做判断,若所有机组出力和大于负荷,则减小机组pinc[k]使得式(9)所示的功率平衡约束得到满足,执行步骤4-2-6;若所有机组出力和不大于负荷,则使机组pinc[k]处于其出力上限,执行步骤4-2-4;4-2-5. Assuming that the output of the unit pinc[k] is at the upper limit of its output, make a judgment, if the output sum of all units is greater than the load, then reduce the unit pinc[k] so that the power balance constraint shown in formula (9) is obtained If it is satisfied, go to step 4-2-6; if the output sum of all units is not greater than the load, then make the unit pinc[k] at its output upper limit, go to step 4-2-4;
4-2-6.j=j+1;做判断,若j<nday成立,则跳转执行步骤4-2-2;若j<nday不成立,则返回机组出力方案,结束机组出力初始化子程序;4-2-6.j=j+1; make a judgment, if j<nday is established, then jump to step 4-2-2; if j<nday is not established, return to the unit output plan, and end the unit output initialization subroutine ;
其中,nday为检修计划考虑的总天数,其值为T乘以7;数组pinc为机组按照机组平均能耗值从小到大排序得到的机组编号顺序;Among them, nday is the total number of days considered in the maintenance plan, and its value is T multiplied by 7; the array pinc is the number sequence of the units obtained by sorting the units according to the average energy consumption value of the units from small to large;
4-3.得到机组检修初始化方案和机组出力初始化方案由以下7个步骤组成:4-3. Obtaining the unit maintenance initialization plan and unit output initialization plan consists of the following 7 steps:
4-3-1.对1到I进行排列组合,则排列组合方案数共有种,对每一种排列组合方案执行步骤4-3-2到步骤4-3-6;4-3-1. Permutation and combination of 1 to I, the total number of permutations and combinations Kinds, execute step 4-3-2 to step 4-3-6 for each permutation and combination scheme;
4-3-2.将排列组合方案记为(i1,i2,…,ik,…,iI),ik表示第ik个发电商;4-3-2. Record the permutation and combination scheme as (i 1 ,i 2 ,…,i k ,…,i I ), where i k represents the i kth generator;
4-3-3.令k=1;4-3-3. Let k=1;
4-3-4.记第ik个发电商拥有的机组数为np,将这些机组按照机组最大容量值从大到小进行排序,得到的机组编号顺序放在数组gidx中;调用机组检修初始化子程序,记录得到的机组检修初始化方案;4-3-4. Record the number of units owned by the i kth generator as np, sort these units according to the maximum capacity of the units from large to small, and put the obtained unit numbers in the array gidx; call unit maintenance initialization Subroutine, record the unit maintenance initialization scheme obtained;
4-3-5.令k=k+1;做判断,若k≤I,跳转执行步骤4-3-4;若k>I,则执行步骤4-3-6;4-3-5. Make k=k+1; Make a judgment, if k≤I, jump to execute step 4-3-4; if k>I, then execute step 4-3-6;
4-3-6.将步骤4-3-4得到的I个机组检修初始化方案合并得到所有机组的检修初始化方案;4-3-6. merging the maintenance initialization scheme of 1 unit that step 4-3-4 obtains obtains the maintenance initialization scheme of all units;
4-3-7.调用机组出力初始化子程序,得到机组出力初始化方案。4-3-7. Call the unit output initialization subroutine to get the unit output initialization scheme.
步骤(5)所述的快速非支配排序法,包括以下7个步骤:The fast non-dominated sorting method described in step (5) comprises the following 7 steps:
5-1.生成初始化种群,种群中个体数为Npop,该初始化种群由两部分组成,第一部分为步骤(4)中所述的种机组检修及出力初始化方案;第二部分随机生成:将机组检修变量设为1到T-1间的随机生成的一个整数,将机组出力变量设为机组出力下限和机组出力上限间随机生成的一个实数;5-1. Generate an initialization population, the number of individuals in the population is N pop , the initialization population consists of two parts, the first part is the one described in step (4) A unit maintenance and output initialization scheme; the second part of random generation: set the unit maintenance variable as a randomly generated integer between 1 and T-1, and set the unit output variable as a randomly generated value between the lower limit of the unit output and the upper limit of the unit output a real number;
5-2.用当前种群Pg通过选择、交叉和变异这3个遗传算子生成子代种群Qg,合并当前种群Pg和子代种群Qg得到混合种群Rg=Pg∪Qg;5-2. Use the current population P g to generate the offspring population Q g through the three genetic operators of selection, crossover and mutation, and combine the current population P g and the offspring population Q g to obtain the mixed population R g = P g ∪ Q g ;
5-3.对Rg采用表1所示的快速非支配排序法得到一系列帕累托前沿,记为F={F1,F2,F3,…,Fn};5-3. Use the fast non-dominated sorting method shown in Table 1 for R g to obtain a series of Pareto fronts, denoted as F={F 1 ,F 2 ,F 3 ,…,F n };
5-4.从Rg中通过如下方式选择Npop个个体作为下一代种群Pg+1:若帕累托前沿F1中元素个数小于Npop,则F1中的所有元素都放入Pg+1中;接着比较下一个帕累托前沿F2,若集合Pg+1∪F2中的元素个数小于Npop,则F2中的所有元素也都放入Pg+1;以此类推,直至出现一个帕累托前沿Fk,其中k∈{1,2,3,…,n},使集合Pg+1∪Fk中的元素个数大于Npop,则如表2所示计算Fk中每个元素的拥挤度I,对所以的拥挤度I从大到小排列,排列结果置于F′k中,取F′k中的前Npop-|Pg+1|个元素放入Pg+1中,即Pg+1=Pg+1∪F′k[1:(Npop-|Pg+1|)];5-4. Select N pop individuals from R g as the next generation population P g+1 in the following way: if the number of elements in the Pareto front F 1 is less than N pop , then all the elements in F 1 are put into In P g+1 ; then compare the next Pareto front F 2 , if the number of elements in the set P g+1 ∪ F 2 is less than N pop , then all the elements in F 2 will also be placed in P g+1 ; and so on, until there is a Pareto frontier F k , where k∈{1,2,3,…,n}, so that the number of elements in the set P g+1 ∪F k is greater than N pop , then as Calculate the congestion degree I of each element in F k as shown in Table 2, arrange all the congestion degrees I from large to small, put the arrangement result in F′ k , and take the first N pop -|P g in F′ k +1 | elements are put into P g+1 , that is, P g+1 =P g+1 ∪F′ k [1:(N pop -|P g+1 |)];
5-5.用下一代种群Pg+1通过选择、交叉和变异这3个遗传算子生成下一代子代种群Qg+1,合并下一代种群Pg+1和下一代子代种群Qg+1,得到下一代混合种群Rg+1=Pg+1∪Qg+1;5-5. Use the next-generation population P g+1 to generate the next-generation offspring population Q g+1 through the three genetic operators of selection, crossover, and mutation, and merge the next-generation population P g+1 and the next-generation offspring population Q g+1 , get the next generation mixed population R g+1 =P g+1 ∪Q g+1 ;
5-6.循环执行步骤5-3到5-5,直至达到最大循环次数;5-6. Repeat steps 5-3 to 5-5 until the maximum number of cycles is reached;
5-7.输出最大循环次数时的种群Pg+1,即为最优解集;5-7. Output the population P g+1 at the maximum number of cycles, which is the optimal solution set;
其中,|Pg|表示集合Pg中元素的个数,Pg+1∪Fi表示Pg+1与Fi的并集;Among them, |P g | represents the number of elements in the set P g , and P g+1 ∪ F i represents the union of P g+1 and F i ;
表1快速非支配排序法程序伪码表Table 1 Pseudo-code list of fast non-dominated sorting method
表1中,符号<的说明,以多目标最小化为例,即目标函数越小越好:q<p成立的条件是,当且仅当对任一个i∈{1,2,…,Nobj}都有且至少存在一个j∈{1,2,…,Nobj}使 In Table 1, the description of the symbol < takes multi-objective minimization as an example, that is, the smaller the objective function, the better: the condition for q<p to be established is, if and only if for any i∈{1,2,…,N obj } have And there exists at least one j∈{1,2,…,N obj } such that
表2计算拥挤度程序伪码表Table 2 Pseudo-code table for calculating congestion degree program
步骤(6)所述的多目标决策方法采用逼近于理想值的排序方法,具体分为5个步骤:The multi-objective decision-making method described in step (6) adopts a sorting method approaching the ideal value, and is specifically divided into 5 steps:
6-1.首先,计算标幺化的加权决策矩阵vij:6-1. First, calculate the per-unit weighted decision matrix v ij :
vij=ωi(fi +-fij)/(fi +-fi -),i=1,2,3,…Nobj,j=1,2,3,…J (12)v ij = ω i (f i + -f ij )/(f i + -f i - ), i=1,2,3,...Nobj,j=1,2,3,...J (12)
其中,fij为最优解集中的第j个解的第i个目标函数值, Nobj为多目标优化中目标的个数,J为最优解集中解的个数,
6-2.分别计算最理想点和最不理想点
6-3.分别计算每一个最优解到最理想点的距离D+和到最不理想点的距离D-:
6-4.计算每个最优解的距离比
6-5.将Rj最大的最优解选择为最终的机组检修及出力方案。6-5. Select the optimal solution with the largest R j as the final unit maintenance and output plan.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明提出了一种市场环境下电力系统多目标检修优化方法。电力市场下的检修是一个多目标优化问题,若采用单目标优化算法,需要根据经验给出各个目标的权重,然后求得一个最优解,通过改变各个目标的权重,然后得到另一个最优解,如此多次计算方可得到一系列帕累托(Pareto)最优解;而多目标优化方法,如NSGA-II,在求解多目标优化问题时无需给定各个目标的权重值,通过一次计算便可得到所有的帕累托最优解,有利于研究电力市场下各个发电商的利益以及系统可靠性之间的关系,通过最后的决策可得到一个令各方均满意的检修及出力方案。本发明提出的多目标优化方法能够很好地解决电力市场环境下发电机组检修计划问题,具有以下优点:(1)对所述模型的机组出力变量和机组检修变量进行实数编码,并将机组在线状态变量和机组启动状态变量从自变量转化成为由机组出力变量和机组检修变量所表示的因变量,所述变量的编码及转化处理能够更好地满足模型中的约束条件;(2)对NSGA-II进行的种群初始化,能更有效地求解所述多目标检修优化模型,得到更优的可行解;(3)无需给定各个目标的权重,通过一次计算便可得到所有的帕累托最优解;(4)通过最后的决策方法可得到一个令各方均满意的检修及出力方案;(5)所述方法执行简单、可扩展性强,可用于求解不同目标函数和约束条件的多目标检修优化模型。The invention proposes a multi-objective maintenance optimization method for electric power systems in a market environment. Maintenance under the electricity market is a multi-objective optimization problem. If a single-objective optimization algorithm is used, it is necessary to give the weights of each objective based on experience, and then obtain an optimal solution. By changing the weights of each objective, another optimal solution can be obtained. solution, a series of Pareto (Pareto) optimal solutions can be obtained after so many calculations; while multi-objective optimization methods, such as NSGA-II, do not need to give the weight values of each objective when solving multi-objective optimization problems, and pass a All the Pareto optimal solutions can be obtained through calculation, which is conducive to the study of the relationship between the interests of each power generation company and the reliability of the system in the power market, and a maintenance and output plan that satisfies all parties can be obtained through the final decision . The multi-objective optimization method proposed by the present invention can well solve the problem of generator set maintenance planning under the power market environment, and has the following advantages: (1) carry out real number encoding on the unit output variable and unit maintenance variable of the model, and set the unit online The state variables and unit start-up state variables are transformed from independent variables into dependent variables represented by unit output variables and unit maintenance variables. The coding and conversion processing of the variables can better meet the constraints in the model; (2) NSGA The population initialization performed by -II can solve the multi-objective maintenance optimization model more effectively and obtain a better feasible solution; (3) without giving the weights of each objective, all Pareto optimal models can be obtained through one calculation (4) A maintenance and output plan that satisfies all parties can be obtained through the final decision-making method; (5) The method described is simple to implement and has strong scalability, and can be used to solve multiple problems with different objective functions and constraints. Target overhaul optimization model.
附图说明Description of drawings
图1是本发明使用的机组检修及出力方案初始化程序流程图。Fig. 1 is a flow chart of the unit maintenance and output program initialization program used in the present invention.
图2是本发明使用的机组检修初始化子程序流程图。Fig. 2 is a flow chart of the unit maintenance initialization subroutine used in the present invention.
图3是本发明使用的机组出力初始化子程序流程图。Fig. 3 is a flow chart of the unit output initialization subroutine used in the present invention.
图4是本发明使用的NSGA-II主循环流程图。Fig. 4 is a flowchart of the NSGA-II main loop used in the present invention.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.
一种市场环境下电力系统多目标检修优化方法,具体包括如下步骤:A multi-objective maintenance optimization method for power systems in a market environment, specifically comprising the following steps:
步骤(1)获取各个发电商发电费用系数数据C0ij,C1ij,C2ij,单位是$/MW;检修费用系数数据单位是$/MW;机组启动费用数据单位是$;机组容量数据单位是MW;负荷数据PD(t,s),单位是MW,及市场电价数据λ(t,s),单位是$/MWh。Step (1) Obtain the power generation cost coefficient data C 0ij , C 1ij , C 2ij of each power generation company, the unit is $/MW; the maintenance cost coefficient data The unit is $/MW; unit start-up cost data The unit is $; unit capacity data The unit is MW; the load data PD (t,s), the unit is MW, and the market electricity price data λ(t,s), the unit is $/MWh.
步骤(2)建立市场环境下电网多目标检修优化模型;Step (2) establishing a multi-objective maintenance optimization model of the power grid under the market environment;
所述优化模型的目标函数包括以下3类:各个发电商的收益最大化函数、系统可靠性最大化函数、系统总发电费用最小化函数;The objective function of the optimization model includes the following three categories: the revenue maximization function of each power generation company, the system reliability maximization function, and the system total power generation cost minimization function;
所述优化模型的约束条件包括以下5类:系统备用高于系统所需的最小备用值、发电机组总出力与系统负荷平衡、同时检修机组数小于上限值、发电机组出力处于其额定出力范围内、机组不可同时处于检修和在线两种状态;The constraints of the optimization model include the following five categories: the system reserve is higher than the minimum reserve value required by the system, the total output of the generator set is balanced with the system load, the number of units under maintenance at the same time is less than the upper limit, and the output of the generator set is within its rated output range The inside and the unit cannot be in the inspection and online states at the same time;
第i个发电商的收益目标函数表示为pf(i),其表达式如式(1)所示:The revenue objective function of the i-th power producer is expressed as pf(i), and its expression is shown in formula (1):
式(1)中,Gi表示第i个发电商的机组集合;表示第i个发电商的第j台机组在时段t子时段s的有功出力;T(t,s)表示时段t子时段s的时间长,单位是小时;yij(t,s)表示机组的启动状态,若yij(t,s)=1表示第i个发电商的第j台机组在时段t子时段s的开始时刻启动,若yij(t,s)=0则无启动;xij表示第i个发电商的第j台机组检修开始周;Dij表示第i个发电商的第j台机组连续检修时长,单位是周;表示第i个发电商的第j台机组的最大容量;∨表示逻辑或;其中i和j为自然数;m为整数;T表示总的时段数;N表示总的子时段数。In formula (1), G i represents the unit set of the i-th generator; Indicates the active output of the j unit of the i-th generator in the sub-period s of the period t; T(t,s) indicates the length of the sub-period s of the period t, in hours; y ij (t,s) indicates the unit , if y ij (t, s) = 1, it means that the j unit of the i-th generator starts at the beginning of the period t sub-period s, and if y ij (t, s) = 0, there is no start; x ij indicates the starting week of the inspection of unit j of the i-th generator; D ij indicates the continuous inspection duration of unit j of the i-th generator, in weeks; Indicates the maximum capacity of the jth unit of the i-th generator; ∨ indicates logical or; where i and j are natural numbers; m is an integer; T indicates the total number of periods; N indicates the total number of sub-periods.
时段t子时段s的可靠性指标I(t,s)表示为净备用除以毛备用,毛备用由所有机组的容量和减去系统负荷得到,净备用由毛备用减去检修中机组的容量得到,如式(2)所示,系统可靠性目标函数由所有子时段的可靠性指标I(t,s)取平均得到,如式(3)所示。The reliability index I(t,s) of period t and sub-period s is expressed as the net reserve divided by the gross reserve, the gross reserve is obtained by subtracting the system load from the sum of the capacities of all units, and the net reserve is obtained by subtracting the capacity of the units under maintenance from the gross reserve Obtained, as shown in formula (2), the system reliability objective function is obtained by averaging the reliability indicators I(t, s) of all sub-periods, as shown in formula (3).
式(2)中,PD(t,s)表示时段t子时段s的系统负荷。In formula (2), P D (t, s) represents the system load of period t sub-period s.
系统总发电费用目标函数表示为tc,其表达式如式(4)所示:The objective function of the total power generation cost of the system is expressed as tc, and its expression is shown in formula (4):
系统备用约束条件如式(5)所示:The system backup constraints are shown in formula (5):
式(5)中,Rmin(t,s)表示时段t子时段s系统所需的最小备用。In formula (5), R min (t, s) represents the minimum backup required by the system in sub-period s of time period t.
最大同时检修机组数约束条件如式(6)所示:The constraints on the maximum number of simultaneous maintenance units are shown in formula (6):
式(6)中,Ni(t)表示第i个发电商在时段t所允许的最大同时检修机组数。In formula (6), N i (t) represents the maximum number of simultaneous maintenance units allowed by the i-th generator in time period t.
机组出力约束条件如式(7)所示:The unit output constraints are shown in formula (7):
式(7)中,表示机组在线时的出力下限,vij(t,s)表示在线状态变量,在线为1,不在线为0;In formula (7), Indicates the lower limit of the output of the unit when it is online, v ij (t, s) indicates the online state variable, 1 for online and 0 for offline;
机组检修时不可在线约束如式(8)所示:When the unit is overhauled, the online constraint is not allowed as shown in formula (8):
系统功率平衡约束条件如式(9)所示:The system power balance constraints are shown in formula (9):
步骤(3)对步骤(2)中所述模型的机组出力变量和机组检修变量进行实数编码,对所述模型中的机组在线状态变量和机组启动状态变量进行0-1二进制编码,然后将机组在线状态变量和机组启动状态变量从自变量转化成为由机组出力变量和机组检修变量所表示的因变量;具体步骤如下:Step (3) Carry out real number encoding to the unit output variable and the unit maintenance variable of the model described in step (2), carry out 0-1 binary encoding to the unit online state variable and the unit start-up state variable in the described model, and then the unit The online state variables and unit start-up state variables are transformed from independent variables into dependent variables represented by unit output variables and unit maintenance variables; the specific steps are as follows:
3-1.机组出力变量采用实数编码;3-1. Unit output variable Using real code;
3-2.机组检修变量xij采用实数编码,然后取整,xij代表第i个发电商的第j台机组检修开始周,检修持续时长由Dij表示;3-2. Unit maintenance variables x ij are coded by real numbers and then rounded to integers. x ij represents the start week of unit maintenance of unit j of the i-th generator, and the maintenance duration is represented by D ij ;
3-3.机组在线状态变量vij(t,s)由机组出力变量表示,由自变量转化成为因变量,如式(10)所示:3-3. The unit online state variable v ij (t, s) is represented by the unit output variable, which is transformed from an independent variable into a dependent variable, as shown in formula (10):
3-4.机组启动状态变量yij(t,s)可由在线状态变量vij(t,s)表示,由自变量转化成为因变量,如式(11)所示:3-4. The start-up state variable y ij (t, s) of the unit can be represented by the online state variable v ij (t, s), which is transformed from an independent variable into a dependent variable, as shown in formula (11):
yij(t+1,1)=vij(t+1,1)-vij(t,N)y ij (t+1,1)=v ij (t+1,1)-v ij (t,N)
(11) (11)
yij(t,s+1)=vij(t,s+1)-vij(t,s)y ij (t,s+1)=v ij (t,s+1)-v ij (t,s)
步骤(4)对多目标检修优化模型中的机组出力变量和机组检修变量进行初始化。初始化方案如下:Step (4) Initialize the unit output variables and unit maintenance variables in the multi-objective maintenance optimization model. The initialization scheme is as follows:
这里首先描述机组检修初始化子程序,然后描述机组出力初始化子程序,最后描述利用前两个子程序得到机组检修初始化方案和机组出力初始化方案。Here we first describe the unit maintenance initialization subroutine, then describe the unit output initialization subroutine, and finally describe the unit maintenance initialization scheme and unit output initialization scheme obtained by using the first two subroutines.
如图1所示,机组检修初始化子程序由以下6个步骤组成:As shown in Figure 1, the unit maintenance initialization subroutine consists of the following six steps:
4-1-1.输入数据np和gidx,令t=0,j=0;其中np为所有发电商的机组数之和,数组gidx为机组按照最大容量值从大到小排序得到的机组编号顺序;4-1-1. Input the data np and gidx, let t=0, j=0; where np is the sum of the number of units of all generators, and the array gidx is the number of the units sorted according to the maximum capacity value from large to small order;
4-1-2.假设机组gidx[j]处于检修,判断式(5)所示的备用约束及式(6)所示的最大同时检修机组数约束是否同时满足;若式(5)和式(6)同时都成立,则令机组gidx[j]进行检修;若式(5)和式(6)至少有一个不成立,则令机组gidx[j]不进行检修;4-1-2. Assuming that the unit gidx[j] is under maintenance, judge whether the spare constraint shown in formula (5) and the maximum number of simultaneous maintenance units shown in formula (6) are satisfied at the same time; if formula (5) and formula (6) If both are true at the same time, then the unit gidx[j] will be overhauled; if at least one of formula (5) and formula (6) is not true, then the unit gidx[j] will not be overhauled;
4-1-3.令j=j+1;4-1-3. Let j=j+1;
4-1-4.判断j<np是否成立,若不成立则跳转执行步骤4-1-6;若成立则令t=t+1;4-1-4. Determine whether j<np is true, if not, jump to step 4-1-6; if true, set t=t+1;
4-1-5.判断t<T是否成立,若成立则执行步骤4-1-2;若不成立则执行步骤4-1-6;其中T为检修计划考虑的总周数;4-1-5. Determine whether t<T is true, if true, execute step 4-1-2; if not, execute step 4-1-6; where T is the total number of weeks considered in the maintenance plan;
4-1-6.返回子检修方案,结束检修初始子程序;4-1-6. Return to the sub-maintenance program, and end the initial subroutine for maintenance;
如图2所示,机组出力初始化子程序由以下6个步骤组成:As shown in Figure 2, the unit output initialization subroutine consists of the following six steps:
4-2-1.令所有机组出力为0,令j=0;4-2-1. Let the output of all units be 0, let j=0;
4-2-2.令k=0;4-2-2. Let k=0;
4-2-3.做判断,若机组pinc[k]处于检修中,则执行步骤4-2-4;若机组pinc[k]不处于检修中,则执行步骤4-2-5;4-2-3. Make a judgment, if the unit pinc[k] is under inspection, then execute step 4-2-4; if the unit pinc[k] is not under inspection, then execute step 4-2-5;
4-2-4.令k=k+1;做判断,若k<ng成立则跳转执行步骤4-2-3,若k<ng不成立则执行步骤4-2-6;4-2-4. Make k=k+1; make a judgment, if k<ng is established, then jump to step 4-2-3, if k<ng is not established, then execute step 4-2-6;
4-2-5.假设机组pinc[k]的出力处于其出力上限,做判断,若所有机组出力和大于负荷,则减小机组pinc[k]使得式(9)所示的功率平衡约束得到满足,执行步骤4-2-6;若所有机组出力和不大于负荷,则使机组pinc[k]处于其出力上限,执行步骤4-2-4;4-2-5. Assuming that the output of the unit pinc[k] is at the upper limit of its output, make a judgment, if the output sum of all units is greater than the load, then reduce the unit pinc[k] so that the power balance constraint shown in formula (9) is obtained If it is satisfied, go to step 4-2-6; if the output sum of all units is not greater than the load, then make the unit pinc[k] at its output upper limit, go to step 4-2-4;
4-2-6.j=j+1;做判断,若j<nday成立,则跳转执行步骤4-2-2;若j<nday不成立,则返回机组出力方案,结束机组出力初始化子程序;4-2-6.j=j+1; make a judgment, if j<nday is established, then jump to step 4-2-2; if j<nday is not established, return to the unit output plan, and end the unit output initialization subroutine ;
其中,nday为检修计划考虑的总天数,其值为T乘以7;数组pinc为机组按照机组平均能耗值从小到大排序得到的机组编号顺序。Among them, nday is the total number of days considered in the maintenance plan, and its value is T multiplied by 7; the array pinc is the unit number sequence obtained by sorting the units according to the average energy consumption value of the units from small to large.
如图3所示,得到机组检修初始化方案和机组出力初始化方案的方法由以下7个步骤组成:As shown in Figure 3, the method of obtaining the unit maintenance initialization scheme and the unit output initialization scheme consists of the following seven steps:
4-3-1.对1到I进行排列组合,则排列组合方案数共有种,对每一种排列组合方案执行步骤4-3-2到步骤4-3-6;4-3-1. Permutation and combination of 1 to I, the total number of permutations and combinations Kinds, execute step 4-3-2 to step 4-3-6 for each permutation and combination scheme;
4-3-2.将排列组合方案记为(i1,i2,…,ik,…,iI),ik表示第ik个发电商;4-3-2. Record the permutation and combination scheme as (i 1 ,i 2 ,…,i k ,…,i I ), where i k represents the i kth generator;
4-3-3.令k=1;4-3-3. Let k=1;
4-3-4.记第ik个发电商拥有的机组数为np,将这些机组按照机组最大容量值从大到小进行排序,得到的机组编号顺序放在数组gidx中;调用机组检修初始化子程序,记录得到的机组检修初始化方案;4-3-4. Record the number of units owned by the i kth generator as np, sort these units according to the maximum capacity of the units from large to small, and put the obtained unit numbers in the array gidx; call unit maintenance initialization Subroutine, record the unit maintenance initialization scheme obtained;
4-3-5.令k=k+1;做判断,若k≤I,跳转执行步骤4-3-4;若k>I,则执行步骤4-3-6;4-3-5. Make k=k+1; Make a judgment, if k≤I, jump to execute step 4-3-4; if k>I, then execute step 4-3-6;
4-3-6.将步骤4-3-4得到的I个机组检修初始化方案合并得到所有机组的检修初始化方案;4-3-6. merging the maintenance initialization scheme of 1 unit that step 4-3-4 obtains obtains the maintenance initialization scheme of all units;
4-3-7.调用机组出力初始化子程序,得到机组出力初始化方案。4-3-7. Call the unit output initialization subroutine to get the unit output initialization scheme.
图3所示的机组检修及出力方案初始化程序先后调用了图1所示的机组检修初始化子程序和图2所示的机组出力初始化子程序。The unit maintenance and output scheme initialization program shown in Figure 3 calls the unit maintenance initialization subroutine shown in Figure 1 and the unit output initialization subroutine shown in Figure 2 successively.
步骤(5)采用步骤(4)中得到的变量初始化值作为快速非支配排序法(NSGA-II)的种群初始化输入,并采用NSGA-II对上述多目标检修优化模型进行求解,得到最优解集:Step (5) Use the variable initialization value obtained in step (4) as the population initialization input of the fast non-dominated sorting method (NSGA-II), and use NSGA-II to solve the above multi-objective maintenance optimization model to obtain the optimal solution set:
如图4所示,NSGA-II包括以下7个步骤:As shown in Figure 4, NSGA-II includes the following seven steps:
5-1.生成初始化种群,种群中个体数为Npop,该初始化种群由两部分组成,第一部分为步骤(4)中所述的种机组检修及出力初始化方案;第二部分随机生成:将机组检修变量设为1到T-1间的随机生成的一个整数,将机组出力变量设为机组出力下限和机组出力上限间随机生成的一个实数。5-1. Generate an initialization population, the number of individuals in the population is N pop , the initialization population consists of two parts, the first part is the one described in step (4) A unit maintenance and output initialization scheme; the second part of random generation: set the unit maintenance variable as a randomly generated integer between 1 and T-1, and set the unit output variable as a randomly generated value between the lower limit of the unit output and the upper limit of the unit output a real number.
5-2.用当前种群Pg通过选择、交叉和变异这3个遗传算子生成子代种群Qg,合并当前种群Pg和子代种群Qg得到混合种群Rg=Pg∪Qg。5-2. Use the current population P g to generate the offspring population Q g through the three genetic operators of selection, crossover and mutation, and combine the current population P g and the offspring population Q g to obtain the mixed population R g = P g ∪ Q g .
5-3.对Rg采用表1所示的快速非支配排序法得到一系列帕累托前沿(Pareto front),记为F={F1,F2,F3,…,Fn}。5-3. Use the fast non-dominated sorting method shown in Table 1 to obtain a series of Pareto fronts for R g , denoted as F={F 1 , F 2 , F 3 ,...,F n }.
5-4.从Rg中通过如下方式选择Npop个个体作为下一代种群Pg+1:若帕累托前沿F1中元素个数小于Npop,则F1中的所有元素都放入Pg+1中;接着比较下一个帕累托前沿F2,若集合Pg+1∪F2中的元素个数小于Npop,则F2中的所有元素也都放入Pg+1;以此类推,直至出现一个帕累托前沿Fk,其中k∈{1,2,3,…,n},使集合Pg+1∪Fk中的元素个数大于Npop,则如表2所示计算Fk中每个元素的拥挤度I,对所以的拥挤度I从大到小排列,排列结果置于F′k中,取F′k中的前Npop-|Pg+1|个元素放入Pg+1中,即Pg+1=Pg+1∪F′k[1:(Npop-|Pg+1|)]。5-4. Select N pop individuals from R g as the next generation population P g+1 in the following way: if the number of elements in the Pareto front F 1 is less than N pop , then all the elements in F 1 are put into In P g+1 ; then compare the next Pareto front F 2 , if the number of elements in the set P g+1 ∪ F 2 is less than N pop , then all the elements in F 2 will also be placed in P g+1 ; and so on, until there is a Pareto frontier F k , where k∈{1,2,3,…,n}, so that the number of elements in the set P g+1 ∪F k is greater than N pop , then as Calculate the congestion degree I of each element in F k as shown in Table 2, arrange all the congestion degrees I from large to small, put the arrangement result in F′ k , and take the first N pop -|P g in F′ k +1 |elements are put into P g+1 , that is, P g+1 =P g+1 ∪F′ k [1:(N pop -|P g+1 |)].
5-5.用下一代种群Pg+1通过选择、交叉和变异这3个遗传算子生成下一代子代种群Qg+1,合并下一代种群Pg+1和下一代子代种群Qg+1,得到下一代混合种群Rg+1=Pg+1∪Qg+1。5-5. Use the next-generation population P g+1 to generate the next-generation offspring population Q g+1 through the three genetic operators of selection, crossover, and mutation, and merge the next-generation population P g+1 and the next-generation offspring population Q g+1 , to get the next generation mixed population R g+1 =P g+1 ∪Q g+1 .
5-6.循环执行步骤5-3到5-5,直至达到最大循环次数。5-6. Repeat steps 5-3 to 5-5 until the maximum number of cycles is reached.
5-7.输出最大循环次数时的种群Pg+1,即为最优解集。5-7. Output the population P g+1 at the maximum number of cycles, which is the optimal solution set.
其中,|Pg|表示集合Pg中元素的个数,Pg+1∪Fi表示Pg+1与Fi的并集。Among them, |P g | represents the number of elements in the set P g , and P g+1 ∪ F i represents the union of P g+1 and F i .
表1快速非支配排序法程序伪码表Table 1 Pseudo-code list of fast non-dominated sorting method
表1中,符号<的说明,以多目标最小化为例,即目标函数越小越好:q<p成立的条件是,当且仅当对任一个i∈{1,2,…,Nobj}都有且至少存在一个j∈{1,2,…,Nobj}使 In Table 1, the description of the symbol < takes multi-objective minimization as an example, that is, the smaller the objective function, the better: the condition for q<p to be established is, if and only if for any i∈{1,2,…,N obj } have And there exists at least one j∈{1,2,…,N obj } such that
表2计算拥挤度程序伪码表Table 2 Pseudo-code table for calculating congestion degree program
步骤(6)采用多目标决策方法,从得到的最优解集中确定最终的机组检修及出力方案。所述的多目标决策方法采用逼近于理想值的排序方法(Technique for Order Preference by Similarity to Ideal Solution,TOPSIS)。TOPSIS可分为5个步骤:Step (6) adopts the multi-objective decision-making method to determine the final unit maintenance and output plan from the obtained optimal solution set. The multi-objective decision-making method adopts a sorting method (Technique for Order Preference by Similarity to Ideal Solution, TOPSIS) approaching the ideal value. TOPSIS can be divided into 5 steps:
6-1.首先,计算标幺化的加权决策矩阵vij:6-1. First, calculate the per-unit weighted decision matrix vi j :
vij=ωi(fi +-fij)/(fi +-fi -),i=1,2,3,…Nobj,j=1,2,3,…J (12)v ij = ω i (f i + -f ij )/(f i + -f i - ), i=1,2,3,...Nobj,j=1,2,3,...J (12)
其中,fij为最优解集中的第j个解的第i个目标函数值, Nobj为多目标优化中目标的个数,J为最优解集中解的个数,
6-2.分别计算最理想点和最不理想点
6-3.分别计算每一个最优解到最理想点的距离D+和到最不理想点的距离D-:
6-4.计算每个最优解的距离比
6-5.将Rj最大的最优解选择为最终的机组检修及出力方案。6-5. Select the optimal solution with the largest R j as the final unit maintenance and output plan.
步骤(7)电力调度中心根据步骤(6)中最终的机组检修及出力方案,通过信息处理及通信装置将每台机组的检修状态及出力值下达至电厂分散控制系统从而自动控制发电机组的运行状态并调节其出力。Step (7) According to the final unit maintenance and output plan in step (6), the power dispatching center sends the maintenance status and output value of each unit to the decentralized control system of the power plant through the information processing and communication device to automatically control the operation of the generator set state and adjust its output.
为以下叙述方便先简要介绍两个概念:电厂分散控制系统和自动发电控制。电厂分散控制系统(Distributed Control System,DCS)是以微机为基础,根据系统控制的概念,融合了计算机技术、控制技术、通信技术和图形显示技术,实现集中管理,分散控制。DCS系统已成为电厂控制、监视的主要设备。自动发电控制(Automatic Generation Control,AGC),它是能量管理系统的重要组成部分。按电网调度中心的控制目标将指令发送给有关发电厂或机组,通过电厂或机组的自动控制调节装置,实现对机组功率的自动控制。For the convenience of the following description, first briefly introduce two concepts: power plant distributed control system and automatic power generation control. Power plant distributed control system (Distributed Control System, DCS) is based on microcomputer, according to the concept of system control, it integrates computer technology, control technology, communication technology and graphic display technology to realize centralized management and decentralized control. DCS system has become the main equipment of power plant control and monitoring. Automatic Generation Control (AGC), which is an important part of the energy management system. According to the control target of the power grid dispatching center, the command is sent to the relevant power plant or unit, and the automatic control of the power of the unit is realized through the automatic control and adjustment device of the power plant or unit.
在电厂网络监控系统中,经常采用信息处理及通信装置D200。到目前为止,在全国超过200个电厂,包括超过65%的大型电厂采用D200实现调度对电厂的AGC控制和远动功能。其中包括众多的600MW机组的电厂,例如浙江嘉兴电厂、宁海电厂、三门峡电厂等。电力调度中心可直接通过信息处理及通信装置D200发AGC命令至DCS系统,以实现对机组出力调节。In the power plant network monitoring system, the information processing and communication device D200 is often used. So far, more than 200 power plants in the country, including more than 65% of large power plants, have adopted D200 to realize the AGC control and telecontrol functions of dispatching power plants. These include many power plants with 600MW units, such as Zhejiang Jiaxing Power Plant, Ninghai Power Plant, Sanmenxia Power Plant and so on. The power dispatching center can directly send AGC commands to the DCS system through the information processing and communication device D200, so as to realize the output adjustment of the unit.
电力调度中心根据步骤(6)中最终的机组检修及出力方案,通过信息处理及通信装置D200将每台机组的检修状态及出力值下达至DCS系统从而自动控制发电机组的运行状态并调节其出力。若机组需要检修,电力调度中心通过信息处理及通信装置D200将自动停机信号以AGC命令下达至发电厂的计算机监控系统,电厂计算机监控系统接收到调度AGC命令后,向机组发出停机检修的指令。若机组不需要检修,电力调度中心可直接通过信息处理及通信装置D200将每台机组的出力值以AGC命令的形式下达至发电机组的DCS系统,以实现对发电机组出力的自动控制。具体如下:电力调度中心得到每台发电机组出力值,通过信息处理及通信装置D200以AGC指令下达至每个发电厂;发电厂D200的主CPU板先接收到调度中心下达的AGC指令,然后经过规约信息处理将AGC指令数值化并发送给D20C组合板的CPU板;D20C组合板将收到的数值化的AGC指令转化成发电机组0~100%出力对应的码值,并根据此码值输出4~20mA的直流模拟量至发电机组的DCS系统,从而调节发电机组的出力。According to the final unit maintenance and output plan in step (6), the power dispatching center sends the maintenance status and output value of each unit to the DCS system through the information processing and communication device D200, so as to automatically control the operating status of the generator set and adjust its output . If the unit needs to be overhauled, the power dispatching center will send the automatic shutdown signal to the computer monitoring system of the power plant as an AGC command through the information processing and communication device D200. If the unit does not need maintenance, the power dispatching center can directly send the output value of each unit to the DCS system of the generator set in the form of AGC commands through the information processing and communication device D200, so as to realize automatic control of the output of the generator set. The details are as follows: the power dispatching center obtains the output value of each generating set, and sends it to each power plant with an AGC command through the information processing and communication device D200; the main CPU board of the power plant D200 first receives the AGC command issued by the dispatching center, and then passes The protocol information processing digitizes the AGC command and sends it to the CPU board of the D20C combination board; the D20C combination board converts the received numerical AGC command into the code value corresponding to the 0-100% output of the generator set, and outputs according to this code value The 4-20mA DC analog quantity is sent to the DCS system of the generator set to adjust the output of the generator set.
实施例1Example 1
本专利假设电力市场中共有3个发电商,则根据排列组合,按照确定发电商机组检修方案的先后顺序不同,可以有种,即(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2)和(3,2,1)这6种。(1,2,3)表示的是先确定发电商1的机组检修方案,再确定发电商2的机组检修方案,最后确定发电商3的机组检修方案的流程图。将机组安排在低电价时段检修其机会成本较低,由于每个时段同时检修的机组容量和机组总数是有限的,故如果首先确定发电商1的机组检修方案,则发电商1的收益将较大;而如果首先确定发电商2的机组检修方案,则发电商2的收益将较大。本专利中共得到6种机组检修及出力初始化方案。This patent assumes that there are 3 power generators in the electricity market, and according to the arrangement and combination, and according to the sequence of determining the maintenance plans of the power generators, there can be species, namely (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1) These 6 kinds. (1,2,3) represents the flow chart of first determining the unit maintenance plan of generator 1, then determining the unit maintenance plan of generator 2, and finally determining the unit maintenance plan of generator 3. The opportunity cost of arranging unit maintenance during low electricity price periods is low. Since the capacity and total number of units to be overhauled at each time period are limited, if the unit maintenance plan of generator 1 is determined first, generator 1’s income will be relatively low. is large; and if the unit maintenance plan of generator 2 is determined first, the revenue of generator 2 will be larger. In this patent, a total of 6 kinds of unit maintenance and output initialization schemes are obtained.
实施例2Example 2
以某电力市场环境下电力系统中取得的各个发电商发电费用、检修费用、启停机费用、机组容量以及未来52周,即T=52,市场每周平均电价等数据为本发明中所用到的数据。其它参数设置如下,Rmin(t,s)取为时段t子时段s系统负荷的0.05倍,Ni(t)取为3,子时段N=7,发电商个数3个,共有机组32台,即np=32,目标函数个数Nobj取为5,NSGA-II中的最大迭代次数设为1500,种群中总个体数Npop设为1200。The data used in the present invention are based on the power generation costs, maintenance costs, start-up and shutdown costs, unit capacity, and the next 52 weeks, that is, T=52, the market weekly average electricity price and other data obtained in the power system of a certain power market environment. data. Other parameters are set as follows, R min (t, s) is taken as 0.05 times of the system load in period t and sub-period s, N i (t) is taken as 3, sub-period N=7, the number of power suppliers is 3, and there are 32 generating units in total Set, that is, np=32, the number of objective functions N obj is set to 5, the maximum number of iterations in NSGA-II is set to 1500, and the total number of individuals N pop in the population is set to 1200.
首先,为了验证本发明中步骤(3)中所述的编码转化处理方法和步骤(4)中所述的初始化方法对使用所述的NSGA-II算法求解所述的电力市场环境下发电机组检修计划问题的有效性,我们做了如表3所示的四个对比实验,其求解结果如表4所示。First of all, in order to verify the encoding conversion processing method described in step (3) and the initialization method described in step (4) in the present invention, use the described NSGA-II algorithm to solve the generator set maintenance under the described power market environment To check the effectiveness of planning problems, we have done four comparative experiments as shown in Table 3, and the solution results are shown in Table 4.
表3四个对比实验的设置Table 3 Settings of four comparative experiments
表4四个对比实验的结果Table 4 The results of four comparative experiments
表4中目标函数f1,f2和f3分别表示发电商1,2和3的收益,收益越大表示方案越好,所以目标函数f1,f2和f3须采用了最大化优化,由于NSGA-II只能处理最小化优化,所以在NSGA-II求解过程中,我们将f1,f2和f3取负值,即最小化-f1,-f2和-f3。目标函数f5表示系统可靠性目标函数,该函数表示系统备用值,系统备用越高表明系统稳定性越好,故目标函数f5也须采用最大化优化,类似于f1,f2和f3的处理方式,我们将f5取负值,即最小化-f5。目标函数f4表示系统总发电费用,总发电费用越低越好,故目标函数f4须采用最小化优化,无需特殊处理。In Table 4, the objective functions f1, f2 and f3 represent the revenues of generators 1, 2 and 3, respectively. The greater the revenue, the better the scheme. Therefore, the objective functions f1, f2 and f3 must be optimized by maximization. Since NSGA-II only Can handle minimization optimization, so in the NSGA-II solution process, we take negative values of f1, f2 and f3, that is, minimize -f1, -f2 and -f3. The objective function f5 represents the system reliability objective function. This function represents the system reserve value. The higher the system reserve value, the better the system stability. Therefore, the objective function f5 must also be optimized by maximization, which is similar to the processing methods of f1, f2 and f3. We take f5 negative, i.e. minimize -f5. The objective function f4 represents the total power generation cost of the system, and the lower the total power generation cost, the better, so the objective function f4 must be minimized and optimized without special treatment.
从表4中我们可以看到,NSGA-II-1及NSGA-II-2中未采用步骤(3)中所示的编码处理方法,无法得到可行解;NSGA-II-3及NSGA-II-4中均采用了步骤(3)中所示的编码处理方法,能够顺利地得到最优解集,这个最优解集中每个目标函数的最优值如表4中所示。这表明步骤(3)中所示的编码处理方法对于问题的顺利求解起着非常重要的作用。From Table 4 we can see that NSGA-II-1 and NSGA-II-2 did not use the encoding processing method shown in step (3), and could not obtain a feasible solution; NSGA-II-3 and NSGA-II- In 4, the encoding processing method shown in step (3) is adopted, and the optimal solution set can be obtained smoothly. The optimal value of each objective function in this optimal solution set is shown in Table 4. This shows that the encoding processing shown in step (3) plays a very important role in the smooth solution of the problem.
NSGA-II-4与NSGA-II-3相比,前者含步骤(4)中的初始化而后者未含。表4中的结果显示前者获得的目标函数f1,f2,f3和f5的最大值均比后者获得的对应最大值大;前者获得的目标函数f4的最小值比后者获得的最小值小。这表明步骤(4)中所示的初始化有利于得到更好的解。经过验证,NSGA-II-3和NSGA-II-4求得的最优解集中所有的解均满足约束条件,即均为可行解。Comparing NSGA-II-4 with NSGA-II-3, the former includes the initialization in step (4) but the latter does not. The results in Table 4 show that the maximum values of the objective functions f1, f2, f3 and f5 obtained by the former are larger than those obtained by the latter; the minimum value of the objective function f4 obtained by the former is smaller than that obtained by the latter. This shows that the initialization shown in step (4) is beneficial for better solutions. After verification, all the solutions in the optimal solution set obtained by NSGA-II-3 and NSGA-II-4 satisfy the constraint conditions, that is, they are all feasible solutions.
为表述方便,我们称采用多目标决策方法TOPSIS从步骤(5)中得到的最优解集中确定的最终的机组检修及出力方案为最终解。表5给出了最终解的各个目标函数值,表6给出了最终解的机组检修方案,最终解的机组出力数据量较大,有32×364=11648个数据,故未给出。综上所述,本发明中提出的一种多目标优化方法NSAG-II用于求解电力市场环境下发电机组检修计划是行之有效的。For the convenience of expression, we call the final unit maintenance and output plan determined from the optimal solution set obtained in step (5) by using the multi-objective decision-making method TOPSIS as the final solution. Table 5 shows the values of each objective function of the final solution, and Table 6 shows the unit maintenance plan of the final solution. The output data of the unit in the final solution is relatively large, with 32×364=11648 data, so it is not given. To sum up, NSAG-II, a multi-objective optimization method proposed in the present invention, is effective for solving the maintenance plan of generating units in the electricity market environment.
表5最终解的各个目标函数值Table 5 Each objective function value of the final solution
表6最终解的机组检修方案Table 6 The unit maintenance plan of the final solution
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410442784.3A CN104217255B (en) | 2014-09-02 | 2014-09-02 | A kind of power system multiple target optimized maintenance method under market environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410442784.3A CN104217255B (en) | 2014-09-02 | 2014-09-02 | A kind of power system multiple target optimized maintenance method under market environment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104217255A true CN104217255A (en) | 2014-12-17 |
CN104217255B CN104217255B (en) | 2017-06-13 |
Family
ID=52098715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410442784.3A Active CN104217255B (en) | 2014-09-02 | 2014-09-02 | A kind of power system multiple target optimized maintenance method under market environment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104217255B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106503466A (en) * | 2016-11-04 | 2017-03-15 | 中国电力科学研究院 | Electric boiler and the place capacity collocation method and device of solar association heating system |
CN107886174A (en) * | 2017-11-14 | 2018-04-06 | 贵州电网有限责任公司电力调度控制中心 | A kind of maintenance for generation companies arrangement method and device |
CN109872012A (en) * | 2019-03-18 | 2019-06-11 | 上海大学 | Determination method of multi-objective optimization of thermal power plant operation based on working condition division |
CN110071532A (en) * | 2019-06-04 | 2019-07-30 | 苏州工业职业技术学院 | AGC power distribution control device and method based on DSP |
CN113837494A (en) * | 2021-10-29 | 2021-12-24 | 国网江苏省电力有限公司电力科学研究院 | A multi-objective unit maintenance scheduling optimization method and device |
CN114239372A (en) * | 2021-12-15 | 2022-03-25 | 华中科技大学 | Multi-target unit maintenance double-layer optimization method and system considering unit combination |
CN114595633A (en) * | 2022-03-12 | 2022-06-07 | 北京工业大学 | A multi-constraint-based multi-objective flexible job shop energy-saving scheduling method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101251836A (en) * | 2008-04-07 | 2008-08-27 | 昆明理工大学 | An optimization method for transmission line maintenance plan considering the hidden loss of power outage |
US20080215512A1 (en) * | 2006-09-12 | 2008-09-04 | New York University | System, method, and computer-accessible medium for providing a multi-objective evolutionary optimization of agent-based models |
US20080234979A1 (en) * | 2007-03-19 | 2008-09-25 | United Technologies Corporation | Process and system for multi-objective global optimization of maintenance schedules |
CN102243734A (en) * | 2010-11-08 | 2011-11-16 | 华北电力大学 | Intelligent optimization method for maintenance plan with consideration of multi-constraint and multi-target conditions |
US20130024014A1 (en) * | 2011-07-20 | 2013-01-24 | Nec Laboratories America, Inc. | Optimal energy management of a rural microgrid system using multi-objective optimization |
CN103150685A (en) * | 2013-02-04 | 2013-06-12 | 中国电力科学研究院 | System and method of intelligent repair schedule optimization compilation |
-
2014
- 2014-09-02 CN CN201410442784.3A patent/CN104217255B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080215512A1 (en) * | 2006-09-12 | 2008-09-04 | New York University | System, method, and computer-accessible medium for providing a multi-objective evolutionary optimization of agent-based models |
US20080234979A1 (en) * | 2007-03-19 | 2008-09-25 | United Technologies Corporation | Process and system for multi-objective global optimization of maintenance schedules |
CN101251836A (en) * | 2008-04-07 | 2008-08-27 | 昆明理工大学 | An optimization method for transmission line maintenance plan considering the hidden loss of power outage |
CN102243734A (en) * | 2010-11-08 | 2011-11-16 | 华北电力大学 | Intelligent optimization method for maintenance plan with consideration of multi-constraint and multi-target conditions |
US20130024014A1 (en) * | 2011-07-20 | 2013-01-24 | Nec Laboratories America, Inc. | Optimal energy management of a rural microgrid system using multi-objective optimization |
CN103150685A (en) * | 2013-02-04 | 2013-06-12 | 中国电力科学研究院 | System and method of intelligent repair schedule optimization compilation |
Non-Patent Citations (2)
Title |
---|
罗斌: "基于NSGA_II的含风电场电力系统多目标调度计划研究", 《中国优秀硕士学位论文全文数据库 工程科技辑II》 * |
谢昶: "电网检修计划优化编制方法研究及应用", 《中国博士学位论文全文数据库 工程科技辑II》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106503466A (en) * | 2016-11-04 | 2017-03-15 | 中国电力科学研究院 | Electric boiler and the place capacity collocation method and device of solar association heating system |
CN106503466B (en) * | 2016-11-04 | 2022-03-18 | 中国电力科学研究院 | Equipment capacity configuration method and device of electric boiler and solar combined heating system |
CN107886174A (en) * | 2017-11-14 | 2018-04-06 | 贵州电网有限责任公司电力调度控制中心 | A kind of maintenance for generation companies arrangement method and device |
CN109872012A (en) * | 2019-03-18 | 2019-06-11 | 上海大学 | Determination method of multi-objective optimization of thermal power plant operation based on working condition division |
CN110071532A (en) * | 2019-06-04 | 2019-07-30 | 苏州工业职业技术学院 | AGC power distribution control device and method based on DSP |
CN110071532B (en) * | 2019-06-04 | 2023-07-21 | 苏州工业职业技术学院 | DSP-based AGC power distribution control device and method |
CN113837494A (en) * | 2021-10-29 | 2021-12-24 | 国网江苏省电力有限公司电力科学研究院 | A multi-objective unit maintenance scheduling optimization method and device |
CN113837494B (en) * | 2021-10-29 | 2025-02-07 | 国网江苏省电力有限公司电力科学研究院 | A multi-objective unit maintenance scheduling optimization method and device |
CN114239372A (en) * | 2021-12-15 | 2022-03-25 | 华中科技大学 | Multi-target unit maintenance double-layer optimization method and system considering unit combination |
CN114239372B (en) * | 2021-12-15 | 2024-07-19 | 华中科技大学 | Multi-objective unit maintenance double-layer optimization method and system considering unit combination |
CN114595633A (en) * | 2022-03-12 | 2022-06-07 | 北京工业大学 | A multi-constraint-based multi-objective flexible job shop energy-saving scheduling method |
CN114595633B (en) * | 2022-03-12 | 2024-03-26 | 北京工业大学 | Multi-constraint-based multi-target flexible job shop energy-saving scheduling method |
Also Published As
Publication number | Publication date |
---|---|
CN104217255B (en) | 2017-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104217255B (en) | A kind of power system multiple target optimized maintenance method under market environment | |
Yi et al. | Coordinated operation strategy for a virtual power plant with multiple DER aggregators | |
CN110956266B (en) | Multi-power-supply power system multi-target optimal scheduling method based on analytic hierarchy process | |
Gjorgiev et al. | A multi-objective optimization based solution for the combined economic-environmental power dispatch problem | |
Gu et al. | GAN-based model for residential load generation considering typical consumption patterns | |
Shukla et al. | Clustering based unit commitment with wind power uncertainty | |
CN104715293A (en) | Two-level optimized dispatching method for price type flexible load | |
CN107067281A (en) | The double-deck price competing method of micro-capacitance sensor electricity market based on multiple agent and game method | |
CN103489044B (en) | A kind of generation risk control method of bidding of smart grid-oriented | |
CN106786801B (en) | A Microgrid Operation Method Based on Bidding Equilibrium | |
Liu et al. | Research on bidding strategy of thermal power companies in electricity market based on multi-agent deep deterministic policy gradient | |
CN114897346A (en) | Robust optimal scheduling method for virtual power plants considering uncertainty and demand response | |
Pu et al. | A novel GRU-TCN network based Interactive Behavior Learning of multi-energy Microgrid under incomplete information | |
CN112001578A (en) | Generalized energy storage resource optimization scheduling method and system | |
CN110889598B (en) | Distributed power generation project optimal configuration method | |
CN110826763B (en) | Middle-long term contract electric quantity decomposition method based on guided learning strategy | |
Si et al. | Mapping constrained optimization problems to algorithms and constraint handling techniques | |
Fu et al. | Comparison of modeling methods of dynamic economic dispatch with stochastic wind power integration | |
CN110310184B (en) | Power generation market bidding simulation method based on multi-agent game with memory function | |
CN118411226A (en) | Power demand response bidding strategy analysis method | |
Zhang et al. | Source-load Flexible Coordination Power Dispatch Based on Learning Optimization Method | |
Ye et al. | Physics-Guided Safe Policy Learning with Enhanced Perception for Real-Time Dynamic Security Constrained Optimal Power Flow | |
Lu et al. | Multi-Agent LSTM Optimal Strategy of Microgrid-Distribution Layered Network Considering High Proportion of Renewable Energy | |
Yang et al. | Forecasting of market clearing price by using GA based neural network | |
CN116205760A (en) | A method and system for optimal control of an electric-heat collaborative energy network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |