CN104215259B - A kind of ins error bearing calibration based on earth magnetism modulus gradient and particle filter - Google Patents
A kind of ins error bearing calibration based on earth magnetism modulus gradient and particle filter Download PDFInfo
- Publication number
- CN104215259B CN104215259B CN201410416153.4A CN201410416153A CN104215259B CN 104215259 B CN104215259 B CN 104215259B CN 201410416153 A CN201410416153 A CN 201410416153A CN 104215259 B CN104215259 B CN 104215259B
- Authority
- CN
- China
- Prior art keywords
- mrow
- modulus gradient
- earth magnetism
- geomagnetic
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
- G01C25/005—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Navigation (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明属于水下地磁辅助导航定位领域,具体涉及到一种基于地磁模量梯度和粒子滤波的惯导误差校正方法。本发明包括:惯导系统根据潜艇上加速度计信息解算载体所在的位置;根据地磁模量梯度/惯性组合导航系统的状态方程预测载体的位置误差;潜艇水下航行时由其上地磁模量梯度测量装置实时获取潜艇在真实位置处的地磁模量梯度测量值;得到预测模量梯度值和观测模量梯度值之间的差值;基于质点动力学拟态物理优化的粒子滤波估计算法对系统状态进行估计:对惯导系统进行误差补偿。本发明根据估计结果校正载体航迹,同时对惯导陀螺漂移进行估计和补偿。为水下载体实现精确自主导航提供一种理想途径。
The invention belongs to the field of underwater geomagnetic aided navigation and positioning, and in particular relates to an inertial navigation error correction method based on geomagnetic modulus gradient and particle filter. The invention includes: the inertial navigation system calculates the position of the carrier according to the accelerometer information on the submarine; predicts the position error of the carrier according to the state equation of the geomagnetic modulus gradient/inertial integrated navigation system; The gradient measurement device obtains the measured value of the geomagnetic modulus gradient of the submarine at the real position in real time; obtains the difference between the predicted modulus gradient value and the observed modulus gradient value; the particle filter estimation algorithm based on particle dynamics mimic physics optimization optimizes the system Estimation of the state: error compensation for the inertial navigation system. The invention corrects the carrier track according to the estimation result, and at the same time estimates and compensates the drift of the inertial navigation gyro. It provides an ideal way for underwater vehicles to realize precise autonomous navigation.
Description
技术领域technical field
本发明属于水下地磁辅助导航定位领域,具体涉及到一种基于地磁模量梯度和粒子滤波的惯导误差校正方法。The invention belongs to the field of underwater geomagnetic aided navigation and positioning, and in particular relates to an inertial navigation error correction method based on geomagnetic modulus gradient and particle filter.
背景技术Background technique
为保证水下载体正常作业,载体必须具备长时间水下高精度导航定位能力,这对水下导航技术提出了很高的要求。作为水下导航系统的核心设备,惯性导航系统定位误差是随时间累积的,必须进行重调和校正。地磁场是地球固有物理场,水下地磁导航定位具有无源、无辐射、全天时、全地域等特点,是实现水下潜航器实时、连续、精确的水下自主导航的理想途径之一,水下地磁导航理论与技术的研究具有重要意义和实际价值。In order to ensure the normal operation of the underwater carrier, the carrier must have long-term underwater high-precision navigation and positioning capabilities, which puts forward high requirements for underwater navigation technology. As the core equipment of the underwater navigation system, the positioning error of the inertial navigation system accumulates over time and must be readjusted and corrected. The geomagnetic field is the inherent physical field of the earth. Underwater geomagnetic navigation and positioning has the characteristics of passive, non-radiation, all-time, and all-regional. It is one of the ideal ways to realize real-time, continuous and accurate underwater autonomous navigation of underwater vehicles. , the research on underwater geomagnetic navigation theory and technology is of great significance and practical value.
近年来,国内外研究机构和学者们开展了对惯导系统误差校正方法的广泛研究。目前比较成功的水下惯导误差校正方法主要分为两大类型,即航迹几何匹配算法和卡尔曼滤波估计方法。航迹几何匹配算法诸如相关匹配,ICCP等都要求小的初始位置误差,不能适应大初始误差的要求。卡尔曼滤波估计惯导误差方法需要精确量测方程,且量测方程在非线性较强情况下,在量测点进行线性近似时会导致较大误差。其他滤波方法存在也都需要量测方程。In recent years, research institutions and scholars at home and abroad have carried out extensive research on error correction methods for inertial navigation systems. At present, the relatively successful underwater inertial navigation error correction methods are mainly divided into two types, namely track geometry matching algorithm and Kalman filter estimation method. Track geometry matching algorithms such as correlation matching, ICCP, etc. all require small initial position errors, and cannot meet the requirements of large initial errors. The Kalman filter method for estimating inertial navigation error requires precise measurement equations, and the measurement equations are highly nonlinear, which will lead to large errors when performing linear approximation at the measurement points. Other filtering methods exist that also require measurement equations.
本发明提出一种基于地磁模量梯度和粒子滤波的惯导误差校正方法,利用地磁异常数据构建水下地磁模量梯度基准图并存储于组合导航计算机中,潜艇水下航行时由其上地磁模量梯度测量装置实时获取所经海域的地磁模量梯度实测值,利用事先存储于计算机中的地磁模量梯度基准图获得预测值,地磁模量梯度实测值与预测值与之间的差作为观测信息,通过粒子滤波技术对观测信息进行惯导误差估计,根据估计结果对惯导系统进行误差补偿。本发明不需要量测方程,解决实用的地磁梯度模型及量测方程无法建立,匹配滤波算法在大初始位置误差的可用性等诸多问题,实现对惯导系统误差的高精度补偿。The present invention proposes an inertial navigation error correction method based on the geomagnetic modulus gradient and particle filter. The geomagnetic anomaly data is used to construct the underwater geomagnetic modulus gradient reference map and stored in the integrated navigation computer. When the submarine sails underwater, the geomagnetic The modulus gradient measurement device obtains the measured value of the geomagnetic modulus gradient in the sea area it passes in real time, and obtains the predicted value by using the geomagnetic modulus gradient reference map stored in the computer in advance, and the difference between the measured value and the predicted value of the geomagnetic modulus gradient is used as Observation information, the inertial navigation error estimation is performed on the observation information through the particle filter technology, and the error compensation is performed on the inertial navigation system according to the estimation result. The invention does not need measurement equations, solves many problems such as the inability to establish practical geomagnetic gradient models and measurement equations, the usability of matching filter algorithms in large initial position errors, and realizes high-precision compensation for inertial navigation system errors.
发明内容Contents of the invention
本发明的目的在于提供一种基于地磁模量梯度和粒子滤波的惯导误差校正方法。The purpose of the present invention is to provide an inertial navigation error correction method based on geomagnetic modulus gradient and particle filter.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
步骤1、惯导系统根据潜艇上加速度计信息解算载体所在的位置 代表解算得到的载体纬度,代表解算得到的载体经度;Step 1. The inertial navigation system calculates the position of the carrier according to the accelerometer information on the submarine represents the obtained carrier latitude, Represents the carrier longitude obtained from the solution;
步骤2、根据地磁模量梯度/惯性组合导航系统的状态方程预测载体的位置误差由载体位置误差对惯导位置进行修正,得到真实位置的预测值在地磁模量梯度基准图中查找到预测的真实位置处对应的地磁模量梯度解算值与位置处真实地磁模量梯度关系为:Step 2. Predict the position error of the carrier according to the state equation of the geomagnetic modulus gradient/inertial integrated navigation system The inertial navigation position is corrected by the carrier position error to obtain the predicted value of the real position Find the predicted true position in the Geomagnetic Modulus Gradient Benchmark The corresponding geomagnetic modulus gradient at The calculated value and the real geomagnetic modulus gradient at the position The relationship is:
em为地磁模量梯度基准图误差;e m is the error of the geomagnetic modulus gradient reference map;
步骤3、潜艇水下航行时由其上地磁模量梯度测量装置实时获取潜艇在真实位置处的地磁模量梯度测量值真实地磁模量梯度与地磁模量梯度测量值关系为:Step 3. When the submarine sails underwater, the real position of the submarine is obtained in real time by the geomagnetic modulus gradient measurement device on it. The measured value of the geomagnetic modulus gradient at True Geomagnetic Modulus Gradient with geomagnetic modulus gradient measurements The relationship is:
其中es是地磁模量梯度测量装置量测噪声;where e s is the measurement noise of the geomagnetic modulus gradient measurement device;
步骤4、由步骤2、3得到预测模量梯度值和观测模量梯度值之间的差值,即Step 4. Obtain the difference between the predicted modulus gradient value and the observed modulus gradient value from steps 2 and 3, namely
步骤5、基于质点动力学拟态物理优化的粒子滤波估计算法对系统状态进行估计:利用步骤4中得到的地磁模量梯度预测值和地磁模量梯度观测值之间的差值,更新粒子权值,得到系统状态的估计;基于质点动力学拟态物理优化的粒子滤波估计算法对系统状态进行估计:Step 5. Estimate the state of the system based on the particle filter estimation algorithm based on particle dynamics mimic physics optimization: use the predicted value of the geomagnetic modulus gradient obtained in step 4 and geomagnetic modulus gradient observations The difference between the particle weights is updated to obtain an estimate of the system state; the particle filter estimation algorithm based on particle dynamics mimic physics optimization estimates the system state:
5.1初始化;5.1 Initialization;
5.2预测;从中采样新粒子集,计算粒子权值;5.2 Forecast; from Sampling a new set of particles and calculating the particle weights;
5.3优化粒子分布;采用质点动力学拟态物理优化过程优化粒子分布,获得新的粒子集,5.3 Optimize the particle distribution; use the particle dynamics mimic physics optimization process to optimize the particle distribution and obtain a new particle set,
5.4迭代优化结束;5.4 Iterative optimization ends;
计算新粒子权值,并归一化;Calculate the weight of the new particle and normalize it;
5.5重采样;如果有效粒子数小于设定阈值,进行重采样,返回 5.5 Resampling; if the number of effective particles is less than the set threshold, resampling is performed and returns
5.6状态估计, 5.6 State Estimation,
滤波器通过更新和递推,不断估计惯导位置误差,校正系统位置输出,使位置误差逐渐趋于零;同时估计陀螺漂移,滤波获得当前时刻漂移;The filter continuously estimates the inertial navigation position error through updating and recursion, and corrects the system position output, so that the position error gradually tends to zero; at the same time, it estimates the gyro drift and filters to obtain the current time drift;
步骤6、根据步骤5的估计结果对惯导系统进行误差补偿。Step 6. Perform error compensation on the inertial navigation system according to the estimation result in step 5.
地磁模量梯度基准图是这样构建的:将已有的航空、海面等实测地磁异常数据通过一步波数域迭代法延拓到水下基准面,利用余弦变换求经延拓得到的地磁异常的频域表达式,对地磁异常的频域表达式进行余弦逆变换得到地磁模量梯度的空间域表达式,由地磁模量梯度的空间域表达式得到水下地磁模量梯度基准图,将得到的地磁模量梯度基准图存储于组合导航计算机中。The geomagnetic modulus gradient reference map is constructed as follows: the existing geomagnetic anomaly data measured by aviation and sea surface are extended to the underwater reference plane by one-step wave number domain iteration method, and the frequency domain expression, the cosine inverse transform is performed on the frequency domain expression of the geomagnetic anomaly to obtain the spatial domain expression of the geomagnetic modulus gradient, and the underwater geomagnetic modulus gradient reference map is obtained from the spatial domain expression of the geomagnetic modulus gradient, and the obtained The geomagnetic modulus gradient reference map is stored in the integrated navigation computer.
本发明的有益效果在于:提出的基于地磁模量梯度和粒子滤波的惯导误差校正方法,采用地磁异常转换模量梯度和余弦变换的方法构建地磁模量梯度基准图,可在很大程度上开发和利用已有的地磁异常数据,采用余弦变换对地磁异常数据进行正演可以减小Gibbs边界效应,解决当前缺乏水下地磁模量梯度数据和地磁图难以构建的问题;步骤5采用的粒子滤波状态估计方法,无需地磁场的准确解析表达式和系统量测方程,只需离散的观测量数据和匹配基准图,有效解决组合导航滤波方法中无实用的地磁模量梯度模型及量测方程的困境。此项发明可对载体真实航迹或航路点位置进行估计,根据估计结果校正载体航迹,同时对惯导陀螺漂移进行估计和补偿。为水下载体实现精确自主导航提供一种理想途径。The beneficial effects of the present invention are: the proposed inertial navigation error correction method based on geomagnetic modulus gradient and particle filter adopts the method of geomagnetic anomaly conversion modulus gradient and cosine transformation to construct the geomagnetic modulus gradient reference map, which can largely Developing and utilizing the existing geomagnetic anomaly data, using the cosine transform to carry out forward modeling on the geomagnetic anomaly data can reduce the Gibbs boundary effect, and solve the current problem of lack of underwater geomagnetic modulus gradient data and the difficulty of constructing geomagnetic maps; the particles used in step 5 The filtering state estimation method does not require accurate analytical expressions and system measurement equations of the geomagnetic field, but only needs discrete observation data and matching reference maps, effectively solving the problem of the lack of practical geomagnetic modulus gradient models and measurement equations in the integrated navigation filtering method dilemma. The invention can estimate the real track of the carrier or the position of the waypoint, correct the track of the carrier according to the estimation result, and estimate and compensate the drift of the inertial navigation gyro at the same time. It provides an ideal way for underwater vehicles to realize precise autonomous navigation.
附图说明Description of drawings
图1观测平面与延拓平面示意图;Figure 1 Schematic diagram of observation plane and extension plane;
图2惯性/地磁模量梯度组合导航系统的匹配滤波流程图;The matched filtering flow chart of the inertial/geomagnetic modulus gradient integrated navigation system of Fig. 2;
图3惯性/地磁模量梯度组合导航系统框架。Fig. 3 Framework of inertial/geomagnetic modulus gradient integrated navigation system.
具体实施方式Detailed ways
下面结合附图对本发明的实施方式进行详细描述:Embodiments of the present invention are described in detail below in conjunction with accompanying drawings:
本发明的一种基于地磁模量梯度和粒子滤波的惯导误差校正方法,利用地磁异常数据事先构建水下地磁模量梯度基准图并存储于组合导航计算机中,载体水下航行时由其上地磁模量梯度测量装置实时获取载体所在位置的地磁模量梯度测量值,由惯导系统解算载体所在位置,根据解算位置在地磁模量梯度基准图上找到地磁模量梯度预测值。地磁模量梯度实测值与预测值与之间的差作为观测信息,通过粒子滤波技术对观测信息进行惯导误差估计,根据估计结果对惯导系统进行误差补偿。其具体步骤如下:An inertial navigation error correction method based on geomagnetic modulus gradient and particle filter of the present invention uses geomagnetic anomaly data to construct an underwater geomagnetic modulus gradient reference map in advance and stores it in an integrated navigation computer. The geomagnetic modulus gradient measurement device obtains the measured value of the geomagnetic modulus gradient at the location of the carrier in real time, and the inertial navigation system calculates the location of the carrier, and finds the predicted value of the geomagnetic modulus gradient on the geomagnetic modulus gradient reference map according to the calculated position. The difference between the measured value and the predicted value of the geomagnetic modulus gradient is used as the observation information. The particle filter technology is used to estimate the inertial navigation error of the observation information, and the error compensation of the inertial navigation system is performed according to the estimation result. The specific steps are as follows:
步骤1、惯导系统根据潜艇上加速度计信息解算载体所在的位置 代表解算得到的载体纬度,代表解算得到的载体经度。Step 1. The inertial navigation system calculates the position of the carrier according to the accelerometer information on the submarine represents the obtained carrier latitude, Represents the longitude of the carrier obtained from the solution.
步骤2、根据地磁模量梯度/惯性组合导航系统的状态方程预测载体的位置误差由载体位置误差对惯导位置进行修正,得到真实位置的预测值在地磁模量梯度基准图中查找到预测的真实位置处对应的地磁模量梯度该解算值与该位置处真实地磁模量梯度关系为:Step 2. Predict the position error of the carrier according to the state equation of the geomagnetic modulus gradient/inertial integrated navigation system The inertial navigation position is corrected by the carrier position error to obtain the predicted value of the real position Find the predicted true position in the Geomagnetic Modulus Gradient Benchmark The corresponding geomagnetic modulus gradient at The calculated value and the true geomagnetic modulus gradient at the position The relationship is:
em为地磁模量梯度基准图误差。e m is the error of the geomagnetic modulus gradient reference map.
所述的地磁模量梯度基准图是这样构建的:将已有的航空、海面等实测地磁异常数据通过一步波数域迭代法延拓到水下基准面,利用余弦变换求经延拓得到的地磁异常的频域表达式,对地磁异常的频域表达式进行余弦逆变换得到地磁模量梯度的空间域表达式,由地磁模量梯度的空间域表达式得到水下地磁模量梯度基准图,将得到的地磁模量梯度基准图存储于组合导航计算机中The geomagnetic modulus gradient reference map is constructed as follows: the existing aviation, sea and other measured geomagnetic anomaly data are extended to the underwater reference plane through a one-step wave number domain iteration method, and the geomagnetic The frequency domain expression of the anomaly, the cosine inverse transform is performed on the frequency domain expression of the geomagnetic anomaly to obtain the space domain expression of the geomagnetic modulus gradient, and the underwater geomagnetic modulus gradient reference map is obtained from the space domain expression of the geomagnetic modulus gradient, Store the obtained geomagnetic modulus gradient reference map in the integrated navigation computer
步骤3、潜艇水下航行时由其上地磁模量梯度测量装置实时获取潜艇在真实位置处的地磁模量梯度测量值真实地磁模量梯度与地磁模量梯度测量值关系为:Step 3. When the submarine sails underwater, the real position of the submarine is obtained in real time by the geomagnetic modulus gradient measurement device on it. The measured value of the geomagnetic modulus gradient at True Geomagnetic Modulus Gradient with geomagnetic modulus gradient measurements The relationship is:
其中es是地磁模量梯度测量装置量测噪声。Where e s is the measurement noise of the geomagnetic modulus gradient measurement device.
步骤4、由步骤2、3得到预测模量梯度值和观测模量梯度值之间的差值,即Step 4. Obtain the difference between the predicted modulus gradient value and the observed modulus gradient value from steps 2 and 3, namely
步骤5、基于质点动力学拟态物理优化的粒子滤波估计算法对系统状态进行估计:利用步骤4中得到的地磁模量梯度预测值和地磁模量梯度观测值之间的差值,更新粒子权值,得到系统状态的估计。基于质点动力学拟态物理优化的粒子滤波估计算法对系统状态进行估计的具体步骤如下:Step 5. Estimate the state of the system based on the particle filter estimation algorithm based on particle dynamics mimic physics optimization: use the predicted value of the geomagnetic modulus gradient obtained in step 4 and geomagnetic modulus gradient observations The difference between the particle weights is updated to obtain an estimate of the system state. The specific steps of estimating the state of the system by particle filter estimation algorithm based on particle dynamics mimic physics optimization are as follows:
①初始化。①Initialization.
②预测。从中采样新粒子集,计算粒子权值。② Forecast. from Sampling a new set of particles and calculating particle weights.
③优化粒子分布。采用质点动力学拟态物理优化过程优化粒子分布,获得新的粒子集,迭代优化结束。③ Optimize particle distribution. The particle distribution is optimized by using the particle dynamics mimic physics optimization process to obtain a new particle set, and the iterative optimization ends.
④计算新粒子权值,并归一化。④ Calculate the weight of the new particle and normalize it.
⑤重采样。如果有效粒子数小于设定阈值,进行重采样,返回 ⑤ Resampling. If the number of effective particles is less than the set threshold, resample and return
⑥状态估计, ⑥ state estimation,
滤波器通过更新和递推,不断估计惯导位置误差,校正系统位置输出,使位置误差逐渐趋于零。同时估计陀螺漂移,滤波获得当前时刻漂移。The filter continuously estimates the inertial navigation position error through updating and recursion, and corrects the system position output so that the position error gradually tends to zero. At the same time, the gyro drift is estimated, and the current time drift is obtained by filtering.
步骤6、根据步骤5的估计结果对惯导系统进行误差补偿。Step 6. Perform error compensation on the inertial navigation system according to the estimation result in step 5.
本发明提供了一种应用于水下的基于地磁模量梯度和粒子滤波的惯导误差校正方法,该方法无须大量水下地磁模量梯度数据即可建立地磁模量梯度基准图的,粒子滤波状态估计方法也无需建立地磁场模型及量测方程,而且粒子滤波在组合导航系统中的应用不受高斯假设和弱非线性的限制,在组合导航滤波实现方面有一定的优势。本发明的基于地磁模量梯度和粒子滤波的惯导误差校正方法,有效解决了水下地磁图难以构建、航空磁测数据大距离向下延拓的不稳定性,粒子滤波的粒子退化和样本贫乏等问题,适用于水下潜器惯导系统的高精度误差补偿。The invention provides an inertial navigation error correction method applied underwater based on geomagnetic modulus gradient and particle filter, the method can establish a geomagnetic modulus gradient reference map without a large amount of underwater geomagnetic modulus gradient data, particle filter The state estimation method does not need to establish a geomagnetic field model and measurement equation, and the application of particle filter in integrated navigation system is not limited by Gaussian assumption and weak nonlinearity, so it has certain advantages in the realization of integrated navigation filter. The inertial navigation error correction method based on the geomagnetic modulus gradient and the particle filter of the present invention effectively solves the difficulty of constructing the underwater geomagnetic map, the instability of the long-distance downward continuation of the aeromagnetic survey data, and the particle degradation and sample degradation of the particle filter. It is suitable for high-precision error compensation of the inertial navigation system of underwater vehicles.
步骤1、惯导系统根据潜艇上加速度计信息解算载体所在的位置 代表解算得到的载体纬度,代表解算得到的载体经度。Step 1. The inertial navigation system calculates the position of the carrier according to the accelerometer information on the submarine represents the obtained carrier latitude, Represents the longitude of the carrier obtained from the solution.
步骤2、根据地磁模量梯度/惯性组合导航系统的状态方程预测载体的位置误差地磁模量梯度/惯性组合导航系统的状态方程为:Step 2. Predict the position error of the carrier according to the state equation of the geomagnetic modulus gradient/inertial integrated navigation system The state equation of the geomagnetic modulus gradient/inertial integrated navigation system is:
式中,A为状态矩阵,B为系统噪声阵,W为系统噪声。In the formula, A is the state matrix, B is the system noise matrix, and W is the system noise.
选取东北天(E,N,U)地理坐标系作为导航坐标系(n系),系统状态方程由速度误差,姿态误差及位置误差方程组成。状态变量选为The northeast (E, N, U) geographic coordinate system is selected as the navigation coordinate system (n system), and the system state equation is composed of velocity error, attitude error and position error equations. The state variable is selected as
式中,δλ、为经、纬度误差;δVE、δVN为东、北向速度误差;φE、φN、φU为姿态误差;εx、εy、εz为陀螺常值漂移;εrx、εry、εrz为陀螺随机漂移。In the formula, δλ, is longitude and latitude error; δV E , δV N are east and north velocity errors; φ E , φ N , φ U are attitude errors; ε x , ε y , ε z are gyro constant drifts; ε rx , ε ry , ε rz is the random drift of the gyro.
由载体位置误差对惯导位置进行修正,得到真实位置的预测值在地磁模量梯度基准图中查找到预测的真实位置处对应的地磁模量梯度该解算值与真实地磁模量梯度关系为:The inertial navigation position is corrected by the carrier position error to obtain the predicted value of the real position Find the predicted true position in the Geomagnetic Modulus Gradient Benchmark The corresponding geomagnetic modulus gradient at The calculated value and the real geomagnetic modulus gradient The relationship is:
em为地磁模量梯度基准图误差。e m is the error of the geomagnetic modulus gradient reference map.
所述的地磁模量梯度基准图构筑方法如下:利用已有海域航磁数据和海面船测地磁异常数据构建水下地磁模量梯度图,需要将航磁数据向下延拓到水下基准面,延拓过程如下:The construction method of the geomagnetic modulus gradient reference map is as follows: the underwater geomagnetic modulus gradient map is constructed using the existing sea area aeromagnetic data and the sea surface ship geomagnetic anomaly data, and the aeromagnetic data needs to be extended downward to the underwater reference surface , the extension process is as follows:
采用一步波数域迭代法对航磁数据和海面船测地磁异常数据进行向下延拓,迭代过程使用了位场向上延拓,图1给出了观测平面与延拓平面示意图。平面ΓA(z=h)和ΓB(z=0)之间是无源空间,ΔT0(x,y)为ΓB上的地磁异常数据,为已知观测量,ΔTh(x,y)是ΓA上的地磁异常,是待求量。延拓过程如下:A one-step wavenumber domain iteration method is used to extend the aeromagnetic data and the surface ship geomagnetic anomaly data downward. The iterative process uses the upward extension of the potential field. Figure 1 shows the schematic diagram of the observation plane and the extension plane. There is a passive space between the plane Γ A (z=h) and Γ B (z=0), ΔT 0 (x, y) is the geomagnetic anomaly data on Γ B , which is the known observation, ΔT h (x, y) is the geomagnetic anomaly on Γ A , and is the quantity to be sought. The extension process is as follows:
(1)将ΔT0(x,y)的傅里叶变换S0(kx,ky)垂直投影到ΓA面上,作为ΓA面上地磁异常波谱初值 (1) Vertically project the Fourier transform S 0 (k x , ky ) of ΔT 0 (x, y) onto the Γ A plane as the initial value of the geomagnetic anomaly spectrum on the Γ A plane
(2)当ΓA、ΓB间没有场源时,位场满足拉普拉斯方程c,用向上延拓波数响应函数由计算ΓB上的位场波谱 (2) When there is no field source between Γ A and Γ B , the potential field satisfies the Laplace equation c, and the wavenumber response function is extended upward Depend on Calculate the potential field spectrum on Γ B
(3)用S0(kx,ky)与的差值校正得λ为步长,一般取0<λ<1。(3) Use S 0 (k x , k y ) and difference correction have to λ is the step size, generally 0<λ<1.
(4)重复第2步和第3步,当εT是很小的数,或达到迭代最大次数,迭代结束。(4) Repeat steps 2 and 3, when ε T is a very small number, or the maximum number of iterations is reached, and the iteration ends.
(5)对地磁异常波谱作逆变换,得到向下延拓平面上的地磁异常ΔTh(x,y),(5) Spectrum of geomagnetic anomaly Perform inverse transformation to obtain the geomagnetic anomaly ΔT h (x, y) on the downward continuation plane,
由于余弦变换具有更高的能量压缩性能,在一阶马尔科夫过程中依据最小均方误差原则是最接近Karhunen-Loeve变换性能的,可减小Gibbs边界效应。所以对得到的地磁异常ΔTh(x,y)进行余弦变换得到其频域表达式Because the cosine transform has higher energy compression performance, the minimum mean square error principle is the closest to the Karhunen-Loeve transform performance in the first-order Markov process, which can reduce the Gibbs boundary effect. Therefore, the obtained geomagnetic anomaly ΔT h (x, y) is cosine transformed to obtain its frequency domain expression
ΔTC(u,v)=C[ΔTh(x,y)] (4)ΔT C (u,v)=C[ΔT h (x,y)] (4)
这里C(·)表示余弦变换。三个空间方向上的地磁模量梯度ΔTx、ΔTy和ΔTz与地磁异常ΔTh之间的关系:Here C(·) denotes a cosine transform. The relationship between the geomagnetic modulus gradients ΔT x , ΔT y and ΔT z in three spatial directions and the geomagnetic anomaly ΔT h :
其中,C-1(·)表示余弦逆变换。根据获得的三个空间方向上地磁模量梯度ΔTx、ΔTy和ΔTz表达式绘制水下地磁模量梯度基准图。Among them, C -1 (·) represents the inverse cosine transform. The underwater geomagnetic modulus gradient reference map is drawn according to the expressions of the geomagnetic modulus gradients ΔT x , ΔT y and ΔT z in the three spatial directions obtained.
步骤3、载体水下航行时由其上地磁模量梯度测量装置实时获取潜艇在真实位置处的地磁模量梯度测量值真实地磁模量梯度与地磁模量梯度测量值关系为:Step 3. When the carrier sails underwater, the real position of the submarine is obtained in real time by the geomagnetic modulus gradient measurement device on it. The measured value of the geomagnetic modulus gradient at True Geomagnetic Modulus Gradient with geomagnetic modulus gradient measurements The relationship is:
其中es是地磁模量梯度测量装置量测噪声。Where e s is the measurement noise of the geomagnetic modulus gradient measurement device.
步骤4、由步骤2、3得到预测模量梯度值和观测模量梯度值之间的差值,即Step 4. Obtain the difference between the predicted modulus gradient value and the observed modulus gradient value from steps 2 and 3, namely
步骤5、基于质点动力学拟态物理优化的粒子滤波估计算法对系统状态进行估计:利用步骤4中得到的地磁模量梯度预测值和地磁模量梯度观测值之间的差值,更新粒子权值,得到系统状态的估计。图2为惯性/地磁模量梯度组合导航系统的匹配滤波流程图。Step 5. Estimate the state of the system based on the particle filter estimation algorithm based on particle dynamics mimic physics optimization: use the predicted value of the geomagnetic modulus gradient obtained in step 4 and geomagnetic modulus gradient observations The difference between the particle weights is updated to obtain an estimate of the system state. Figure 2 is a flow chart of the matched filtering of the inertial/geomagnetic modulus gradient integrated navigation system.
基于质点动力学拟态物理优化的粒子滤波估计算法对系统状态进行估计的具体步骤如下:The specific steps of estimating the state of the system by particle filter estimation algorithm based on particle dynamics mimic physics optimization are as follows:
(1)初始化。(1) Initialization.
(2)预测。从中采样新粒子集,计算粒子权值。(2) Prediction. from Sampling a new set of particles and calculating particle weights.
(3)优化粒子分布。采用质点动力学拟态物理优化过程优化粒子分布,获得新的粒子集,迭代优化结束。(3) Optimize particle distribution. The particle distribution is optimized by using the particle dynamics mimic physics optimization process to obtain a new particle set, and the iterative optimization ends.
(4)计算新粒子权值,并归一化。(4) Calculate the weight of the new particle and normalize it.
(5)重采样。如果有效粒子数小于设定阈值,进行重采样,返回 (5) Resampling. If the number of effective particles is less than the set threshold, resample and return
(6)状态估计, (6) state estimation,
滤波器通过更新和递推,不断估计惯导位置误差,校正系统位置输出,使位置误差逐渐趋于零。同时估计陀螺漂移,滤波获得当前时刻漂移。The filter continuously estimates the inertial navigation position error through updating and recursion, and corrects the system position output so that the position error gradually tends to zero. At the same time, the gyro drift is estimated, and the current time drift is obtained by filtering.
步骤6、根据步骤5的估计结果对惯导系统进行误差补偿,图3惯性/地磁模量梯度组合导航系统框架图。Step 6. Perform error compensation on the inertial navigation system according to the estimation result in step 5. Fig. 3 is a frame diagram of the inertial/geomagnetic modulus gradient integrated navigation system.
本发明有益效果说明如下:Beneficial effects of the present invention are described as follows:
利用地磁异常数据构建的水下地磁模量梯度基准图和粒子滤波技术进行导航定位,该方法具有良好的隐蔽性和测量精度,能全天候、自主、连续地对惯导误差进行高精度补偿;本发明的基于地磁模量梯度和粒子滤波的惯导误差校正方法,有效解决了水下地磁图难以构建,地磁梯度模型及量测方程无法建立,匹配滤波算法在大初始位置误差的可用性等诸多问题,适用于水下潜器惯导系统的高精度误差补偿。Using the underwater geomagnetic modulus gradient reference map constructed by geomagnetic anomaly data and particle filter technology for navigation and positioning, this method has good concealment and measurement accuracy, and can perform high-precision compensation for inertial navigation errors autonomously and continuously around the clock; The invented inertial navigation error correction method based on the geomagnetic modulus gradient and particle filter effectively solves many problems such as the difficulty in constructing the underwater geomagnetic map, the inability to establish the geomagnetic gradient model and measurement equation, and the usability of the matched filter algorithm for large initial position errors. , which is suitable for high-precision error compensation of underwater submersible inertial navigation system.
Claims (2)
- A kind of 1. ins error bearing calibration based on earth magnetism modulus gradient and particle filter, it is characterised in that:The position of step 1, inertial navigation system according to where accelerometer information on submarine resolves carrier Represent and resolve what is obtained Carrier latitude,Represent the carrier longitude for resolving and obtaining;Step 2,The site error of carrier is predicted according to the state equation of earth magnetism modulus gradient/inertia combined navigation systemEarth magnetism mould Amount gradient/inertia combined navigation system state equation be:<mrow> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mi>X</mi> <mo>+</mo> <mi>B</mi> <mi>W</mi> </mrow>In formula, A is state matrix, and B is system noise acoustic matrix, and W is system noise;It is n systems that northeast day (E, N, U) geographic coordinate system, which is chosen, as navigational coordinate system, and system state equation is by velocity error, appearance State error and site error equation composition;State variable is elected asIn formula, δ λ,For warp, latitude error;δVE、δVNFor east, north orientation speed error;φE、φN、φUFor attitude error;εx、 εy、εzFor gyroscope constant value drift;εrx、εry、εrzFor Modelling of Random Drift of Gyroscopes;Inertial navigation position is modified by carrier positions error, obtains the predicted value of actual positionIn earth magnetism mould The actual position of prediction is found in amount gradient reference mapLocate corresponding earth magnetism modulus gradient The resolving value and true earth magnetism modulus gradientRelation is:emFor earth magnetism modulus gradient reference map error;The earth magnetism modulus gradient reference map construction method is as follows:Utilize existing marine site Aeromagnetic data and Sea Surface Ship geodetic magnetic anomaly Regular data builds underwater earth magnetism modulus gradient figure, it is necessary to which Aeromagnetic data downward continuation to underwater benchmark face, continuation process is as follows:Downward continuation, iterative process are carried out to Aeromagnetic data and Sea Surface Ship geodetic magnetic anomaly regular data using a step wave-number domain iterative method Potential field upward continuation, plane Γ are usedAAnd ΓBBetween be passive space, z=h, z=0, Δ T0(x, y) is ΓBOn earth magnetism Abnormal data, is known observed quantity, Δ Th(x, y) is ΓAOn magnetic anomaly, be amount to be asked;Continuation process is as follows:(2.1) by Δ T0The Fourier transformation S of (x, y)0(kx,ky) upright projection is to ΓAOn face, as ΓAMagnetic anomaly on face Wave spectrum initial value(2.2) Γ is worked asA、ΓBBetween when there is no field source, potential field meets Laplace's equation c, with upward continuation WAVENUMBER RESPONSE functionByCalculate ΓBOn potential field wave spectrum(2.3) S is used0(kx,ky) withDifference correction λ is step-length, takes 0 < λ < 1;(2.4) the 2.2nd step and the 2.3rd step are repeated, whenεTIt is the number of very little, or reaches iteration most Big number, iteration terminate;(2.5) magnetic anomalies over the groundMake inverse transformation, obtain the magnetic anomaly Δ T in downward continuation planeh(x, y),To obtained magnetic anomaly Δ Th(x, y) carries out cosine transform and obtains its frequency-domain expressionΔTC(u, v)=C [Δ Th(x,y)]Here C () represents cosine transform;Earth magnetism modulus gradient Δ T on three direction in spacesx、ΔTyWith Δ TzWith ground magnetic anomaly Normal Δ ThBetween relation:<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&Delta;T</mi> <mi>x</mi> </msub> <mo>=</mo> <msup> <mi>C</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>&lsqb;</mo> <mrow> <mn>2</mn> <msub> <mi>&pi;iu&Delta;T</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>u</mi> <mo>,</mo> <mi>v</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&rsqb;</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&Delta;T</mi> <mi>y</mi> </msub> <mo>=</mo> <msup> <mi>C</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>&lsqb;</mo> <mrow> <mn>2</mn> <msub> <mi>&pi;iv&Delta;T</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>u</mi> <mo>,</mo> <mi>v</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&rsqb;</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&Delta;T</mi> <mi>z</mi> </msub> <mo>=</mo> <msup> <mi>C</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>&lsqb;</mo> <mrow> <mn>2</mn> <mi>&pi;</mi> <msqrt> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>v</mi> <mn>2</mn> </msup> </mrow> </msqrt> <msub> <mi>&Delta;T</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>u</mi> <mo>,</mo> <mi>v</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&rsqb;</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>Wherein, C-1() represents cosine inverse transformation;According to earth magnetism modulus gradient Δ T on the three of acquisition direction in spacesx、ΔTyWith ΔTzExpression formula draws underwater earth magnetism modulus gradient reference map;Submarine is obtained in actual position by earth magnetism modulus gradient measuring device thereon in real time when step 3, submarine underwater navigationThe earth magnetism modulus gradient measured value at placeTrue earth magnetism modulus gradientWith Earth magnetism modulus gradient measured valueRelation is:Wherein esIt is that earth magnetism modulus gradient measuring device measures noise;Step 4, obtain prediction modulus gradient value by step 2,3 and observe the difference between modulus gradient value, i.e.,Step 5, the particle filter algorithm for estimating based on the optimization of particle dynamics mimicry physics estimate system mode:Utilize The earth magnetism modulus gradient predicted value obtained in step 4With earth magnetism modulus gradient observation Between difference, more new particle weights, obtain the estimation of system mode;Particle filter based on the optimization of particle dynamics mimicry physics Ripple algorithm for estimating estimates system mode:5.1 initialization;5.2 prediction;FromMiddle sampling new particle collection, calculates particle weights;5.3 optimization particle distributions;Particle distribution is optimized using particle dynamics mimicry physics optimization process, obtains new particle Collection, 5.4 iteration optimizations terminate;New particle weights are calculated, and are normalized;5.5 resampling;If number of effective particles is less than given threshold, resampling is carried out, is returned5.6 state estimations,Wave filter constantly estimates inertial navigation site error, the output of correction system position, makes site error gradual by renewal and recursion Go to zero;Gyroscopic drift is estimated at the same time, and filtering obtains current time drift;Step 6, according to the estimated result of step 5 carry out error compensation to inertial navigation system.
- 2. a kind of ins error bearing calibration based on earth magnetism modulus gradient and particle filter according to claim 1, its It is characterized in that:The earth magnetism modulus gradient reference map is so built:By existing aviation, sea actual measurement magnetic anomaly number According to the frequency that the magnetic anomaly obtained through continuation by a step wave-number domain iterative method continuation to underwater benchmark face, is asked using cosine transform Domain expression formula, the frequency-domain expression progress cosine inverse transformation to magnetic anomaly obtain the spatial domain representation of earth magnetism modulus gradient, Underwater earth magnetism modulus gradient reference map is obtained by the spatial domain representation of earth magnetism modulus gradient, the earth magnetism modulus gradient base that will be obtained Quasi- figure is stored in integrated navigation computer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410416153.4A CN104215259B (en) | 2014-08-22 | 2014-08-22 | A kind of ins error bearing calibration based on earth magnetism modulus gradient and particle filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410416153.4A CN104215259B (en) | 2014-08-22 | 2014-08-22 | A kind of ins error bearing calibration based on earth magnetism modulus gradient and particle filter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104215259A CN104215259A (en) | 2014-12-17 |
CN104215259B true CN104215259B (en) | 2018-04-24 |
Family
ID=52096994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410416153.4A Expired - Fee Related CN104215259B (en) | 2014-08-22 | 2014-08-22 | A kind of ins error bearing calibration based on earth magnetism modulus gradient and particle filter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104215259B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104807462B (en) * | 2015-04-30 | 2018-09-07 | 中测高科(北京)测绘工程技术有限责任公司 | Indoor earth-magnetism navigation benchmark drawing generating method and system |
CN105425304B (en) * | 2015-11-03 | 2017-09-15 | 哈尔滨工业大学 | A kind of compensation method of Aircraft magnetic disturbance |
CN105301666B (en) * | 2015-11-05 | 2017-09-26 | 哈尔滨工业大学 | A kind of self-adapting regulation method for the magnetic disturbance penalty coefficient that navigates |
CN105424036B (en) * | 2015-11-09 | 2018-02-13 | 东南大学 | A kind of inexpensive underwater hiding-machine terrain aided inertia combined navigation localization method |
CN106125026B (en) * | 2016-06-12 | 2019-02-26 | 哈尔滨工程大学 | A three-axis magnetometer full error parameter identification and correction method that does not depend on the amount of the geomagnetic field |
CN106382931A (en) * | 2016-08-19 | 2017-02-08 | 北京羲和科技有限公司 | An indoor positioning method and a device therefor |
CN106919785B (en) * | 2017-01-23 | 2019-07-16 | 哈尔滨工程大学 | An online compensation method for carrier interference magnetic field based on geomagnetic vector and particle filter |
CN106917621B (en) * | 2017-01-25 | 2020-02-07 | 重庆大学 | Small-aperture single-gyroscope horizontal well rotation directional inclination measurement device and method |
CN107291659B (en) * | 2017-05-16 | 2020-09-25 | 哈尔滨工程大学 | A recursive cosine transform method for planar modulus gradient field with one-step upward extension of planar geomagnetic anomalous field |
CN107462247A (en) * | 2017-07-18 | 2017-12-12 | 深圳天珑无线科技有限公司 | A kind of indoor orientation method, device and computer-readable recording medium |
CN107632964B (en) * | 2017-09-06 | 2021-06-11 | 哈尔滨工程大学 | Downward continuation recursive cosine transform method for plane geomagnetic abnormal field |
CN108362281B (en) * | 2018-02-24 | 2020-11-24 | 中国人民解放军61540部队 | Long-baseline underwater submarine matching navigation method and system |
CN109633490B (en) * | 2019-01-23 | 2021-04-02 | 中国科学院上海微系统与信息技术研究所 | Calibration method of full-tensor magnetic gradient measurement assembly |
CN109739263B (en) * | 2019-01-25 | 2020-06-30 | 清华大学 | Submarine detecting navigation method based on magnetic signal continuation algorithm for submarine detection |
WO2020195892A1 (en) * | 2019-03-28 | 2020-10-01 | ソニー株式会社 | Information processing device, program, and information processing method |
CN112566009B (en) * | 2019-09-26 | 2022-12-27 | 成都易书桥科技有限公司 | Participation type indoor positioning system based on geomagnetism |
CN111076717B (en) * | 2019-12-31 | 2022-11-25 | 南京工程学院 | Geomagnetic-assisted inertial navigation simulation system and method based on global geomagnetic abnormal field |
CN112684396B (en) * | 2020-11-20 | 2024-03-01 | 国网江苏省电力有限公司营销服务中心 | Data preprocessing method and system for electric energy meter operation error monitoring model |
CN113503891B (en) * | 2021-04-22 | 2022-11-29 | 中国人民解放军海军工程大学 | A SINSDVL alignment correction method, system, medium and equipment |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103344242B (en) * | 2013-07-02 | 2015-11-25 | 哈尔滨工业大学 | Based on the geomagnetic matching navigation method of absolute force and gradient |
CN103630139B (en) * | 2013-12-17 | 2015-12-02 | 哈尔滨工程大学 | A kind of full attitude determination method of underwater carrier measured based on earth magnetism gradient tensor |
-
2014
- 2014-08-22 CN CN201410416153.4A patent/CN104215259B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104215259A (en) | 2014-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104215259B (en) | A kind of ins error bearing calibration based on earth magnetism modulus gradient and particle filter | |
Huang et al. | High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders | |
CN103630137B (en) | A kind of for the attitude of navigational system and the bearing calibration of course angle | |
CN103917850B (en) | A kind of motion alignment methods of inertial navigation system | |
CN101949703B (en) | Strapdown inertial/satellite combined navigation filtering method | |
CN104655131B (en) | Inertial navigation Initial Alignment Method based on ISTSSRCKF | |
CN109931955B (en) | An Initial Alignment Method for Strapdown Inertial Navigation System Based on State Dependent Lie Group Filtering | |
CN103471616B (en) | Initial Alignment Method under a kind of moving base SINS Large azimuth angle condition | |
CN105091907B (en) | DVL orientation alignment error method of estimation in SINS/DVL combinations | |
CN112525218A (en) | Robust intelligent collaborative calibration method for INS/DVL combined navigation system | |
CN103344260B (en) | Based on the strapdown inertial navitation system (SINS) Initial Alignment of Large Azimuth Misalignment On method of RBCKF | |
CN106289246A (en) | A kind of rods arm measure method based on position and orientation measurement system | |
CN107742026A (en) | A Nonlinear State Estimation Method for Ship Dynamic Positioning System | |
CN103278163A (en) | Nonlinear-model-based SINS/DVL (strapdown inertial navigation system/doppler velocity log) integrated navigation method | |
CN105737828A (en) | Combined navigation method of joint entropy extended Kalman filter based on strong tracking | |
CN103076026B (en) | A Method for Determining Velocity Error of Doppler Log in Strapdown Inertial Navigation System | |
CN106871928A (en) | Strap-down inertial Initial Alignment Method based on Lie group filtering | |
CN105424036A (en) | Terrain-aided inertial integrated navigational positioning method of low-cost underwater vehicle | |
CN104374405A (en) | MEMS strapdown inertial navigation initial alignment method based on adaptive central difference Kalman filtering | |
CN109945859B (en) | A Kinematics Constrained Strapdown Inertial Navigation Method Based on Adaptive H∞ Filtering | |
CN109945895A (en) | Inertial Navigation Initial Alignment Method Based on Fading Smooth Structural Filtering | |
Yan et al. | High-precision simulator for strapdown inertial navigation systems based on real dynamics from GNSS and IMU integration | |
CN103398725A (en) | Star-sensor-based initial alignment method of strapdown inertial navigation system | |
CN106441297B (en) | The gravity error vector acquisition methods and device of inertial navigation system | |
CN104359496A (en) | High-precision attitude correction method based on vertical deviation compensation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180424 |