CN104211169B - 基于聚羟基共聚酯的反硝化脱氮方法及其系统 - Google Patents

基于聚羟基共聚酯的反硝化脱氮方法及其系统 Download PDF

Info

Publication number
CN104211169B
CN104211169B CN201410452621.3A CN201410452621A CN104211169B CN 104211169 B CN104211169 B CN 104211169B CN 201410452621 A CN201410452621 A CN 201410452621A CN 104211169 B CN104211169 B CN 104211169B
Authority
CN
China
Prior art keywords
copolyesters
hydroxyl
poly
denitrification
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410452621.3A
Other languages
English (en)
Other versions
CN104211169A (zh
Inventor
李思博
张超杰
陈银广
周琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201410452621.3A priority Critical patent/CN104211169B/zh
Publication of CN104211169A publication Critical patent/CN104211169A/zh
Application granted granted Critical
Publication of CN104211169B publication Critical patent/CN104211169B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明涉及一种基于聚羟基共聚酯的反硝化脱氮方法及其系统,以聚羟基共聚酯和陶粒混合后作为反应器的过滤介质,采用底部进水,上部出水的形式进行污水的反硝化脱氮,反硝化系统包括反应器,反应器内部由下到上分别为进水区、过滤区及出水区,进水区连接进水管,过滤区内填充由聚羟基共聚酯和陶粒混合形成的过滤介质,出水区连接出水管,进水区、过滤区及出水区上分别设有液体取样口,过滤区上还设有过滤介质取样口,出水区设置温度计、溶解氧检测口,出水区的上方设有收集气体的集气囊。与现有技术相比,本发明处理效果好,同时具有经济、环境和社会效益。

Description

基于聚羟基共聚酯的反硝化脱氮方法及其系统
技术领域
本发明涉及一种反硝化脱氮方法及其系统,尤其是涉及一种基于聚羟基共聚酯的反硝化脱氮方法及其系统,属于水处理技术领域。
背景技术
低碳氮比城市污水处理时出水氮不能达标排放的一个重要原因是进水碳源,特别是脱氮微生物需要的优质碳源不足。虽然可以通过加入甲醇、葡萄糖等外碳源解决该问题,但这会消耗人类有限的有机资源,特别是粮食资源,并且增加了污水处理的成本,导致出水的COD浓度增加,不利于城市污水厂的运营。在传统的异养反硝化系统中,在进水水质波动情况下,投加乙醇、甲醇等液态有机物易造成碳源投加不足或者过量,影响出水水质,同时碳源的大量消耗会带来很高的运行成本,响应时间慢,具有毒性等缺点,部分研究者转而采用一些低廉的固体有机物作为碳源,如报纸、棉花等。固体碳源反硝化的优势是可以减低运行成本。但是由于这些材料含有一些水溶性的有机物,在水中会不断地溶出,碳源的释放量不能得到反硝化生物膜的有效控制。此外,这些固体碳源成分复杂,因此存在污染水质的危险,在运行一定周期以后脱氮效果都会出现不同程度的退化。
中国专利CN 102992479A公布了一种利用聚羟基丁酸戊酸共聚酯去除水中硝酸氮的方法,将粒径为0.2cm~0.4cm的PHBV颗粒加入到固定床反应器中,填充率为35%~60%;反应器不加任何污泥接种,直接加入地下水启动;初始水力停留时间HRT为48h,待出水硝酸氮浓度不高于于5mg/L,逐渐降低HRT。该发明中固体碳源反应器不加污水处理厂的污泥而是用地下水直接驯化启动,可以避免污水厂污泥中致病菌的引入,尤其适用于地下水和饮用水的脱氮处理;可生物降解固体PHBV的碳源释放具有缓释性能,可以避免液体碳源投加不易控制的问题,出水质量好;PHBV既作为生物膜的载体又作为反硝化的碳源,反应器操作运行简单,容易控制。但是,该专利在处理水的过程中需要的碳源较多,同时其出水的氮浓度较高,出水效果较差。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种处理效果好、具有经济、环境和社会效益的基于聚羟基共聚酯的反硝化脱氮方法及其系统。
本发明的目的可以通过以下技术方案来实现:
一种基于聚羟基共聚酯的反硝化脱氮方法,以聚羟基共聚酯和陶粒混合后作为反应器的过滤介质,采用底部进水,上部出水的形式进行城市污水厂尾水的反硝化脱氮;
所述的聚羟基共聚酯具体为聚羟基链烷酸酯,为一种微生物转化产物,从微生物菌体中回收所得;聚羟基链烷酸酯,可以为微生物提供碳源与合适的营养物质,如氮、磷等,促进微生物生长和繁殖。聚羟基链烷酸酯在环境温度下,可被土壤或水中的微生物分解为二氧化碳和水。同时,也可以通过厌氧消化产生沼气,回收作为能源。
聚羟基链烷酸酯是通过以下途径得到的:当微生物含量达到所需数量,营养物质被削减,从而产生非平衡状态。在非平衡的生长状态下,微生物通过一系列的酶途径开始转化胞外碳源,将其以聚合物的形式储存在细胞内作为能源。在通常情况下,80%到90%的细胞可以储存该类共聚酯作为能源。当细胞内的聚合物达到最大水平时,转化过程中止,同时共聚酯从细胞内析出。
所述的聚羟基链烷酸酯比重为1.2~1.3,屈服应力为31-36MPa,抗张强度为25~35MPa,断裂延伸率为1.8~2.2%,杨氏模量为2800-3500,弯曲模量为3520-4170,维卡软化温度为165~168℃,缺口冲击为20~25J/m,DSC熔点为170-176℃。
所述的聚羟基共聚酯与陶粒的重量比3∶7~7∶13。
所述的污水中主要污染物为COD、NH3-N、NO3 --N、NO2 --N、TN和TOC,各污染物浓度分别为15~25mg/L、0~1.8mg/L、12~33mg/L、0~1.7mg/L、10~20mg/L、10~25mg/L和5~10mg/L。
所述的污水在过滤介质中的停留时间为1~16h,优选为7~9h,更优选为8h。
在进水前,向反应器内接种污水厂沉池污泥。
进行污水反硝化脱氮的温度为27~30℃。
一种基于聚羟基共聚酯的反硝化脱氮系统,包括反应器,反应器内部由下到上分别为进水区、过滤区及出水区,所述的进水区连接进水管,所述的过滤区内填充由聚羟基共聚酯和陶粒混合形成的过滤介质,所述的出水区连接出水管,所述的进水区、过滤区及出水区上分别设有液体取样口,用于实时监测水质数据,所述的过滤区上还设有过滤介质取样口,以监测过滤介质的使用情况,所述的出水区设置温度计以监测水温、溶解氧检测口监测溶解氧浓度,所述的出水区的上方设有收集气体的集气囊。
所述的进水区、过滤区及出水区的高度比为1∶5∶2。
所述的过滤介质在过滤区内的填充率为30~34%。
本发明中的碳源聚羟基共聚酯是基于污水有机碳微生物转化而成的产物,是微生物在非平衡生长状态下(如缺乏氮、磷、镁)细胞内合成的一种热塑性聚酯,在生物体内主要作为细胞内碳源和能源的贮存物质存在。与一般合成高分子不同,它不以石油、天然气为原料,各种有机物,如食品厂工业废物、废弃的蔬菜、植物残骸等都可以作为微生物合成聚羟基共聚酯的原料,通过生物等协同作用,将混合有机物转化为短链脂肪酸,经过发酵等微生物代谢作用而形成。
本发明中的聚羟基共聚酯是回收污水中有机物组分资源化所得,虽不溶解但可以被微生物降解,既可以作为电子供体,同时还可以作为生物膜的载体,对于废水中硝酸盐的去除及动力学特征的研究有着重要的意义。
本发明中,以基于污水有机碳微生物转化产物所得的反硝化碳源聚羟基共聚酯作为电子供体以及生物膜载体进行反硝化,有效地将高分子材料学中的高新技术成果与水处理的基本原理相结合。工艺不需要额外加可溶碳源,解决了传统工艺中所存在的外加碳源投加难以控制的弊端,给反硝化生物创造一个稳定、易于维护的生存环境。并且对人体无害,在所给定的条件下不会向水中浸出有毒有害物质,不产生对人体有害的代谢副产物。
通过联合运用微生物生理生态调控技术,结合污水预处理工艺单元的创新改进,一方面为反硝化创造条件,另一面使污水中有机物定向转化为脱氮微生物优质碳源,从而实现低碳氮比污水内部碳源有效利用同时实现污水高效生物处理的目的。
与现有技术相比,本发明具有以下优点及有益效果:
(1)本发明采用基于污水有机碳微生物转化产物,即聚羟基共聚酯作为一种反硝化碳源,具有生物降解性好、无毒、二次污染小等特点。以构建基于污水有机碳微生物转化产物制备碳源实现资源回收利用并满足环境质量需求的新型污水处理工艺流程及配套技术为基本出发点,研发基于微生物转化的反硝化碳源聚羟基共聚酯对低碳氮比污水反硝化脱氮效果的影响。
(2)利用污水中蕴含的有机物(碳源)进行资源化回收与利用,与单纯的污水处理工艺相比,污水资源化技术既可以去除污水中的有机污染物,消减污水排放对环境的污染负荷及对自然循环的干扰,又可以回收有用的资源产品,创造经济、环境和社会效益。
(3)本发明实现了污水的有机碳的资源化,可广泛适用于反硝化滤池或地下水原位反硝化处理系统的高效脱氮处理工艺中,得到反硝化速率达到最大时的最佳工艺条件。
(4)反应器内填充率为30%~34%,与专利CN102992479A相比较小,在处理相同水量的条件下,可以需要更少的碳源,从而更为经济。此外,本专利水力停留时间为8h时,达到最大的反硝化速率,出水中COD浓度16~23mg/L,氨氮0.2~0.3mg/L,总氮0.06~1.10mg/L,NO3 --N含量为0.1~0.35mg/L,NO2 --N含量约为0.2~0.3mg/L。由此可见,出水硝态氮浓度明显低于专利CN102992479A各工况下的出水,去除率更高,出水效果更优。
附图说明
图1为本发明的反硝化系统结构示意图;
图2为本发明的反硝化系统在不同HRT工况下的反硝化速率效果图;
图3为实施例中有无碳源聚羟基共聚酯情况下在HRT=8h下出水TN和NO3-N浓度效果图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
一种基于聚羟基共聚酯的反硝化脱氮系统,如图1所示,包括反应器,反应器内部由下到上分别为进水区1、过滤区2及出水区3,进水区1连接进水管4,过滤区2内填充由聚羟基共聚酯和陶粒混合形成的过滤介质,聚羟基共聚酯具体为聚羟基链烷酸酯,为一种微生物转化产物,从微生物菌体中回收所得;聚羟基共聚酯与陶粒的重量比3∶7,过滤介质在过滤区内的填充率为33%。
出水区3连接出水管5,进水区1、过滤区2及出水区3上分别设有液体取样口9,用于实时监测水质数据,过滤区2上还设有过滤介质取样口10,以监测过滤介质的使用情况,出水区3设置温度计6以监测水温、溶解氧检测口7监测溶解氧浓度,出水区3的上方设有收集气体的集气囊8。
滤柱直径8cm,进水区高10cm,过滤区高50cm,出水区高20cm。此外,为控制温度保持在28度左右,滤柱周围将加装保温丝。
本系统处理的污水中主要污染物为COD、NH3-N、NO3 --N、NO2 --N、TN和TOC,各污染物浓度分别为15~25mg/L、0~1.8mg/L、12~33mg/L、0~1.7mg/L、10~20mg/L、10~25mg/L和5~10mg/L。
本系统共运行1年时间,考察8个不同水力停留时间工况(1h、2h、4h、6h、8h、12h、14h和16h)下系统的运行性能(见图2)。经过填充有混合聚羟基共聚酯和陶粒滤池的反硝化处理后,反硝化速率由1.3mgNL-1h-1(1h)、1.46mgNL-1h-1(2h)增长至1.52mgNL-1h-1(4h)、1.66mgNL-1h-1(6h)达到最高1.80mgNL-1h-1(8h)而后降低至1.4mgNL-1h-1(12h)、1.0mgNL-1h-1(14h)、0.72mgNL-1h-1(16h)。在HRT=8h的工况下,反硝化速率最高,为1.80mgNL-1h-1。出水中TN浓度为0.06~1.10mg/L,可达到地表水IV类标准(<1.5mg/L)。
在陶粒的空白对照组中,在HRT=8h的工况下,反硝化速率仅为0.03mgNL-1h-1。其中,出水NO3 --N含量为15.1~17.2mg/L,TN浓度为16.4~19.2mg/L(见图3)。与空白组相比,以基于污水有机碳微生物转化产物聚羟基共聚酯利用的反硝化脱氮工艺在HRT=8h的工况下,碳源可以得到充分的利用,出水中COD浓度16~23mg/L,氨氮0.2~0.3mg/L,总氮0.06~1.10mg/L,NO3 --N含量为0.1~0.35mg/L,NO2 --N含量约为0.2~0.3mg/L。出水水量稳定,水力条件良好,不曾出现堵塞等问题,满足地表水IV类标准。
实施例2
相对于实施例1而言,过滤介质中,聚羟基共聚酯与陶粒的重量比7∶13,过滤介质在过滤区内的填充率为30%。在进水条件不变的情况下,出水中COD浓度16~20mg/L,氨氮0.2~0.25mg/L,总氮0.06~1.30mg/L,NO3 --N含量为0.1~0.45mg/L,NO2 --N含量约为0.25~0.35mg/L。出水水量稳定,水力条件良好,不曾出现堵塞等问题,满足地表水IV类标准。
实施例3
相对于实施例1而言,过滤介质中,聚羟基共聚酯与陶粒的重量比1∶2,过滤介质在过滤区内的填充率为34%。在进水条件不变的情况下,出水中COD浓度18~22mg/L,氨氮0.26~0.29mg/L,总氮0.5~1.30mg/L,NO3 --N含量为0.2~0.45mg/L,NO2 --N含量约为0.3mg/L。出水水量稳定,水力条件良好,不曾出现堵塞等问题,满足地表水IV类标准。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (4)

1.一种基于聚羟基共聚酯的反硝化脱氮方法,其特征在于,以聚羟基共聚酯和陶粒混合后作为反应器的过滤介质,采用底部进水,上部出水的形式进行城市污水厂尾水的反硝化脱氮,在进水前,向反应器内接种污水厂沉池污泥;
所述的聚羟基共聚酯具体为聚羟基链烷酸酯,为一种微生物转化产物,从微生物菌体中回收所得,所述的聚羟基链烷酸酯比重为1.2~1.3,屈服应力为31-36MPa,抗张强度为25~35MPa,断裂延伸率为1.8~2.2%,杨氏模量为2800-3500,弯曲模量为3520-4170,维卡软化温度为165~168℃,缺口冲击为20~25J/m,DSC熔点为170-176℃;
所述的聚羟基共聚酯与陶粒的重量比3:7~7:13。
2.根据权利要求1所述的一种基于聚羟基共聚酯的反硝化脱氮方法,其特征在于,污水在过滤介质中的停留时间为1~16h。
3.根据权利要求2所述的一种基于聚羟基共聚酯的反硝化脱氮方法,其特征在于,污水在过滤介质中的停留时间为7~9h。
4.根据权利要求1所述的一种基于聚羟基共聚酯的反硝化脱氮方法,其特征在于,进行污水反硝化脱氮的温度为27~30℃。
CN201410452621.3A 2014-09-05 2014-09-05 基于聚羟基共聚酯的反硝化脱氮方法及其系统 Expired - Fee Related CN104211169B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410452621.3A CN104211169B (zh) 2014-09-05 2014-09-05 基于聚羟基共聚酯的反硝化脱氮方法及其系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410452621.3A CN104211169B (zh) 2014-09-05 2014-09-05 基于聚羟基共聚酯的反硝化脱氮方法及其系统

Publications (2)

Publication Number Publication Date
CN104211169A CN104211169A (zh) 2014-12-17
CN104211169B true CN104211169B (zh) 2016-08-24

Family

ID=52093137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410452621.3A Expired - Fee Related CN104211169B (zh) 2014-09-05 2014-09-05 基于聚羟基共聚酯的反硝化脱氮方法及其系统

Country Status (1)

Country Link
CN (1) CN104211169B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035275A (zh) * 1988-02-27 1989-09-06 清华大学 去除低浓度有机物的水处理方法
CN1792410A (zh) * 2005-11-28 2006-06-28 哈尔滨工业大学 一种由污泥制成的滤料及其制备方法
JP2006205142A (ja) * 2005-01-24 2006-08-10 N Ii T Kk 原水調整槽
CN1876580A (zh) * 2006-05-25 2006-12-13 甘肃金桥给水排水设计与工程有限公司 高效生物滤料及其制备方法
CN101486563A (zh) * 2009-02-25 2009-07-22 刘阳生 一种由矿山尾渣烧制的生物陶粒及其制备方法和使用方法
CN102976486A (zh) * 2012-12-05 2013-03-20 宁波天安生物材料有限公司 一种水处理用材料
CN102992479A (zh) * 2012-12-13 2013-03-27 清华大学 一种利用聚羟基丁酸戊酸共聚酯去除水中硝酸氮的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035275A (zh) * 1988-02-27 1989-09-06 清华大学 去除低浓度有机物的水处理方法
JP2006205142A (ja) * 2005-01-24 2006-08-10 N Ii T Kk 原水調整槽
CN1792410A (zh) * 2005-11-28 2006-06-28 哈尔滨工业大学 一种由污泥制成的滤料及其制备方法
CN1876580A (zh) * 2006-05-25 2006-12-13 甘肃金桥给水排水设计与工程有限公司 高效生物滤料及其制备方法
CN101486563A (zh) * 2009-02-25 2009-07-22 刘阳生 一种由矿山尾渣烧制的生物陶粒及其制备方法和使用方法
CN102976486A (zh) * 2012-12-05 2013-03-20 宁波天安生物材料有限公司 一种水处理用材料
CN102992479A (zh) * 2012-12-13 2013-03-27 清华大学 一种利用聚羟基丁酸戊酸共聚酯去除水中硝酸氮的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PHBV基可生物降解复合材料研究现状;汪为华;《现代纺织技术》;20060830(第04期);第54-58页 *

Also Published As

Publication number Publication date
CN104211169A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
Chong et al. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment–a state-of-the-art review
Wu et al. Constructed wetlands for pollution control
Chen et al. Challenges in biogas production from anaerobic membrane bioreactors
Mirzoyan et al. Anaerobic digestion of sludge from intensive recirculating aquaculture systems
Lettinga et al. Challenge of psychrophilic anaerobic wastewater treatment
CN104478175B (zh) 一种餐厨废弃物厌氧发酵沼液的处理系统及方法
Ilmasari et al. A review of the biological treatment of leachate: Available technologies and future requirements for the circular economy implementation
CN101723559B (zh) 糖精钠废水的处理工艺
CN102040307A (zh) 污水处理系统
CN103435155B (zh) 低能耗、智能化立体生态自回流循环硝化方法及装置
CN103613244A (zh) 一种环氧树脂生产废水的处理工艺
CN206502723U (zh) 一种强化除磷与污泥减量型污水处理装置
CN103896442A (zh) 猪场废水处理方法
CN103183447A (zh) 猪场废水的处理方法
CN203307182U (zh) 一种畜禽养殖废水的资源利用和再生循环利用装置
Massara et al. A mini review of the techno-environmental sustainability of biological processes for the treatment of high organic content industrial wastewater streams
CN102557349A (zh) 一种基于碳源回收的低能耗污水处理工艺及装置
Renuka et al. Performance evaluation of panelled anaerobic baffle-cum-filter reactor in treating municipal wastewater
CN102718360A (zh) 一体化畜禽养殖废水处理方法
CN103626302B (zh) 一种脱氮除磷菌种在线提取培养及驯化的污水处理方法
CN103435156A (zh) 低能耗、智能化立体生态外循环硝化方法及装置
CN106587544A (zh) 一种强化除磷与污泥减量型污水处理装置
CN103435157A (zh) 低能耗、智能化立体生态内循环硝化方法及装置
Fu et al. A glance of configuration-operational strategies and intensification of constructed wetland towards land-effective occupation
Hong et al. Study on the Efficiency Treatment of Polluted Water by Biofilm Process Filled with Bamboo Filler

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824

Termination date: 20210905