CN104197930A - Indoor positioning device and method based on inertial guidance and radio frequency identification - Google Patents

Indoor positioning device and method based on inertial guidance and radio frequency identification Download PDF

Info

Publication number
CN104197930A
CN104197930A CN 201410461963 CN201410461963A CN104197930A CN 104197930 A CN104197930 A CN 104197930A CN 201410461963 CN201410461963 CN 201410461963 CN 201410461963 A CN201410461963 A CN 201410461963A CN 104197930 A CN104197930 A CN 104197930A
Authority
CN
China
Prior art keywords
radio frequency
positioning
axis
dimensional
terminal
Prior art date
Application number
CN 201410461963
Other languages
Chinese (zh)
Inventor
周金龙
朱冬宏
田群
Original Assignee
金海新源电气江苏有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金海新源电气江苏有限公司 filed Critical 金海新源电气江苏有限公司
Priority to CN 201410461963 priority Critical patent/CN104197930A/en
Publication of CN104197930A publication Critical patent/CN104197930A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups G01C1/00-G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in preceding groups G01C1/00-G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in preceding groups G01C1/00-G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in preceding groups G01C1/00-G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups G01C1/00-G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation

Abstract

The invention discloses an indoor positioning device based on inertial guidance and radio frequency identification. The device comprises a positioning terminal, a radio frequency transmitting module and a server, wherein the positioning terminal comprises a three-dimensional accelerometer, a three-axis gyroscope, a radio frequency signal receiver, a wireless communication module, a microprocessor and a shell, the three-dimensional accelerometer and the three-axis gyroscope are fixed in the shell, the axis Z of the shell is vertical upwards, the communication main line of the three-dimensional accelerometer is connected with the microprocessor, the three-axis gyroscope and a three-dimensional accelerometer coordinate are in coincidence, the communication main line of three-axis gyroscope is connected with the microprocessor, the radio frequency signal receiver and the wireless communication module are respectively fixed on two sides of the inner part of the shell, and the communication main line of the radio frequency signal receiver is communicated with the microprocessor. The invention further discloses an indoor positioning method based on the inertial guidance and radio frequency identification. The indoor positioning technology related in the invention has the advantages of being high in positioning accuracy, not affected by indoor complex structures and electromagnetic interference, low in cost and the like.

Description

一种基于惯性制导和射频识别的室内定位装置及方法 An in-home apparatus and method for positioning and inertial guidance based on radio frequency identification

技术领域 FIELD

[0001] 本发明属于移动定位技术领域,涉及无GPS信号的室内环境目标定位,具体地说是一种基于惯性制导和射频识别的定位装置及方法。 [0001] The present invention belongs to the field of mobile positioning technology, relates to targeting indoor environment without GPS signal, in particular an apparatus and method for positioning and inertial guidance based on radio frequency identification.

背景技术 Background technique

[0002] 随着数据业务和多媒体业务的快速增加,人们对定位的需求日益增大,尤其在复杂的室内环境,如机场大厅、展厅、超市、图书馆、地下停车场、矿井、灾难现场等环境中,移动终端或其持有者、设备及物品在室内的位置信息显得尤为重要。 [0002] With the rapid increase in data services and multimedia services, the demand for positioning growing, especially in complex indoor environments, such as airport halls, exhibition halls, supermarkets, libraries, underground parking, mines, and other disaster site environment, or the mobile terminal position information holder, equipment and items in the room is very important. 在开阔的室外环境中,全球定位系统GPS提供了非常精确的定位信息,然而由于室内环境的特殊性,GPS信号难以覆盖室内,所以,当前应用于室外环境的算法和系统很难移植到室内定位的应用中。 In the open outdoor environment, global positioning system GPS provides very accurate positioning information, but because of the special nature of the indoor environment, GPS signal indoor coverage is difficult, therefore, currently used in outdoor environments algorithms and systems are difficult to migrate to indoor positioning applications. 室内目标定位存在重要的潜在应用,近年来弓I发大量的研究和关注。 There is indoor targeting important potential applications in recent years, the bow I made a lot of research and attention.

[0003] 现有室内定位的研究主要集中在两个方面,一是室内定位系统的研究;二是室内算法的研究。 Studies [0003] existing indoor positioning focused on two aspects, one is indoor positioning research system; the second is research room of the algorithm. 上述位置信息的获取需要依靠定位系统,室内定位技术容易受定位时间、定位精度以及复杂的室内环境的限制。 Obtaining the positional information of the need to rely on positioning systems, indoor positioning technology easy positioning time, positioning accuracy and limit the complexity of the indoor environment by. 当前室内定位技术主要有惯性制导、地磁制导、红外、超声波、蓝牙、超宽带、WIF1、和射频定位技术等。 The current indoor location technologies include inertial guidance, geomagnetic guidance, infrared, ultrasound, Bluetooth, ultra-wideband, WIF1, and RF positioning technology. 其中,红外线由于直线短距离传播,而且容易被灯光干扰,室内定位的效果很差;超声波定位虽然整体定位精度较高,但超声波受多径效应和非视距传播的影响很大,并需要投入大量的硬件设施,因此成本太高;蓝牙技术用作室内短距离定位时容易发现设备,且信号传播不受视距的影响,但它的不足之处在于价格昂贵,在复杂的室内空间环境中稳定性稍差,受噪声信号的干扰大;超宽带室内定位技术是一种全新的、与传统通信技术有较大差异的通信新技术,可应用于室内静止或移动物体以及人的定位跟踪和导航,且能提供非常精确的室内定位精度,但设备昂贵,无法大规模推广;基于WIFI的定位技术只能用于小范围的室内定位,而且很容易受到其他信号的干扰,精度较差,定位器的能耗也较高;地磁定位虽然能够准确的定位室内空间上的每一个点, Wherein, since the infrared linear propagation distance is short, and could easily be poor interference light, indoor positioning effect; ultrasonic navigation although higher overall positioning accuracy, but the ultrasonic wave is greatly affected by multipath and non-line of sight propagation, and the need to invest a large number of hardware facilities, so the cost is too high; when the device is easy to find short-range Bluetooth technology is used as indoor positioning and signal propagation is not affected by line of sight, but it has the disadvantage of expensive, complex interior environment stability somewhat less affected by noise interference signal is large; UWB indoor positioning is a new technology, the conventional communication techniques are quite different communication technology can be used indoors as well as human stationary or moving object location tracking and navigation, and can provide very accurate indoor positioning accuracy, but the equipment is expensive, not large-scale promotion; WIFI-based positioning technology for indoor use only small targets, and it is susceptible to interference from other signals, less accurate positioning power consumption is also higher; geomagnetic even though it can locate a point on the accurate positioning of each indoor space, 但首先要建立地磁信息数据库,且地磁信息数据库必须及时更新,地磁及其容易受地质变化、天气变化、电网分布等外部信息的影响;惯性制导技术因为不受视距、地磁、噪音信号的影响,初始定位精度很高,但经过一段时间的使用后,由于误差累计效应,其精度会明显下降;射频识别定位存在着在复杂室内环境下定位精度不高的缺陷。 But first of all to establish geomagnetic information database and geomagnetic information in the database must be updated, and the influence of external information geomagnetic vulnerable to geological changes, weather changes, power distribution; influence of inertial guidance technology because without line of sight, geomagnetic noise signal initial positioning accuracy is high, but after a period of use, due to the cumulative effect of errors, the accuracy will be decreased; RFID positioning exists in complex indoor positioning accuracy is not high defect.

[0004] 鉴于上述技术的不足,本申请人做了有益的设计,将惯性制导技术和射频识别技术相结合成为了优选的室内定位技术。 [0004] In view of the deficiencies of the techniques described above, the present applicant made a useful design, inertial guidance technology and radio frequency identification technology has become the preferred combination of indoor positioning technologies. 下面将要介绍的技术方案便是在这种背景下产生的。 The following technical solutions will be introduced in this context is generated.

发明内容 SUMMARY

[0005] 本发明所要解决的技术问题是,为克服现有技术的缺点,提供一种基于惯性制导和射频识别的室内定位装置及方法,本发明涉及的室内定位装置及方法具有定位精度高,不受室内复杂的结构和电磁干扰影响以及成本低等优点。 [0005] The present invention solves the technical problem, to overcome the disadvantages of the prior art to provide an apparatus and method for indoor positioning and inertial guidance based on radio frequency identification, indoor positioning apparatus and method of the present invention having a high positioning accuracy, from indoor complex structures and electromagnetic interference and low cost.

[0006] 为了解决以上技术问题,本发明提供一种基于惯性制导和射频识别的室内定位装置,包括定位终端、射频发射模块和服务端,射频发射模块具有特有的序列号以及三维位置信息,定位终端内部装有射频接收器,定位终端每经过一个射频发射模块,射频接收器即可获得准确的位置信息,定位终端包括三维加速度计、三轴陀螺仪、射频信号接收器、无线通信模块、微处理器和外壳,三维加速度计与三轴陀螺仪固定在外壳内,外壳的Z轴垂直向上,三维加速度计的通信主线与微处理器相连,三轴陀螺仪与三维加速度计坐标系重合,三轴陀螺仪的通信主线与微处理器相连,射频信号接收器和无线通信模块分别固定在外壳内部两侧,其通信主线都与微处理器相连; [0006] In order to solve the above technical problem, the present invention provides a unique serial number and the three-dimensional position information based on indoor positioning and inertial guidance means radio frequency identification, including positioning terminal, and a server radio frequency transmission modules, radio frequency transmission module, positioning a radio frequency receiver with an internal terminal, each of the positioning terminal through a radio frequency transmission modules, the RF receiver can obtain accurate location information, including three-dimensional positioning terminal accelerometer, three-axis gyroscope, a radio frequency signal receiver, a wireless communication module, a micro the processor and the housing, the three-dimensional accelerometer and a triaxial gyroscope fixed in the housing, Z-axis vertical direction, a three-dimensional accelerometer communicate with the main line of the microprocessor is connected to the housing, the three-dimensional three-axis accelerometer and gyroscope coordinate systems coincide, tris communication with the main axis gyroscope connected to the microprocessor, the RF signal receiver and the wireless communication module within the housing are fixed on both sides, which are connected to the main line communication with the microprocessor;

[0007] 定位终端内的三维加速度计和三轴陀螺仪分别实时记录每一时刻三个坐标轴上的加速度和偏移标准坐标系的夹角,进而得到每一时刻的矢量速度,三维加速度计对加速度值的采集增加了去抖处理,将超出一定阈值的加速度值作为异常值予以剔除,采用滑动窗口滤波的方法对加速度值进行平滑滤波。 Three-dimensional accelerometer and triaxial gyroscope in [0007] the positioning terminal are recorded in real time and the offset angle acceleration standard three coordinate axes of the coordinate system each time, and thus obtain a speed vector for each time point, three-dimensional accelerometer acquired acceleration value increases debounce process, would exceed a certain threshold acceleration value as outliers were excluded, sliding window method filtered acceleration values ​​smoothing filter.

[0008] 本发明进一步限定的技术方案是: [0008] The present invention is further defined in the technical solution is:

[0009] 前述射频发射模块在每个楼层采用蜂窝型式布置,在楼层之间的楼梯、电梯、过道采用线型布置,整个空间做到无缝覆盖;且服务端将所述定位终端按照组别划分,同时定义每个所述定位终端的权限级别,并设定位置信息的共享范围。 [0009] The use of the radio frequency transmission modules arranged on each floor and a honeycomb pattern, between the floor stairs, elevators, aisle using a linear arrangement, the entire space to achieve seamless coverage; and the server according to the positioning terminal group division, while custom permission levels of each of said positioning terminal, and set the range of the position information sharing.

[0010] 本发明采用惯性制导原理,通过定位终端内的三维加速度计和三轴陀螺仪分别实时记录每一时刻三个坐标轴上的加速度和偏移标准坐标系的夹角,进而可以得到每一时刻的矢量速度,从而对每一时刻的速度进行积分即可求出定位终端的移动路径和当前位置。 [0010] The present invention uses the principle of inertial guidance, each time the real time recording angle for each three coordinate axes and the acceleration offsets the coordinate system of the standard three-dimensional three-axis accelerometer and the gyroscope is positioned within the terminal, each in turn can be obtained a time vector velocity, so that each time the speed can be calculated by integrating the moving path and the current position of the positioning terminal.

[0011] 同时运用射频识别校正原理,由于惯性制导的累积误差随着移动的距离增加而变大,当经过相当距离后,惯性制导的效果会变差;所以,在室内特定的位置设置若干个射频发射模块,每个射频发射模块都有特有的序列号以及三维位置信息;定位终端内部装有射频接收器,每经过一个射频发射模块,射频接收器就会获得准确的位置信息,从而逐段消除了累积误差,大大提高了全程的定位精度。 [0011] Also the use of radio frequency identification correction principle, due to the accumulation of errors of the inertial movement increases as the distance becomes larger, when after a considerable distance, the inertial effect is deteriorated; therefore, provided a number of specific locations in the room radio frequency transmission modules, each module has a radio frequency transmission and a serial number unique to the three-dimensional position information; positioned inside terminal with a radio frequency receiver, each through a radio frequency transmission modules, the RF receiver will obtain accurate location information, thereby piecewise eliminating cumulative errors, greatly improving the positioning accuracy of the entire process.

[0012] 本发明的算法部分还作了进一步的改进,首先,加速度值的采集增加了去抖处理,将超出一定阈值的加速度值作为异常值予以剔除,采用滑动窗口滤波的方法对加速度值进行平滑滤波;其次,优化了射频发射器的空间布局,在每个楼层采用蜂窝型式布置,在楼层之间的楼梯、电梯、过道采用线型布置,整个空间做到无缝覆盖;最后,服务端程序可以将定位终端按照组别划分,也可以定义每个定位终端的权限级别,还可以设定位置信息的共享范围。 [0012] Algorithm part of the present invention is also made a further improvement, firstly, acquired acceleration value is increased debounce process, would exceed a certain threshold acceleration value to be excluded as an outlier, a sliding window filtering method acceleration values smoothing filter; Secondly, to optimize the spatial layout of the RF transmitter, using a honeycomb pattern disposed on each floor, between the floor stairs, elevators, aisle using a linear arrangement, the entire space to achieve seamless coverage; Finally, the server positioning the terminal program may be divided according to groups, privilege levels may be defined for each positioning terminal can also set the scope of location information is shared.

[0013] 进一步的, [0013] Further,

[0014] 本发明还提供一种基于惯性制导和射频识别的室内定位方法,其系统工作流程包含以下步骤: [0014] The present invention also provides a method of indoor positioning and inertial guidance based on radio frequency identification, which workflow system comprising:

[0015] 步骤一:将需要定位的室内场所的三维地图信息下载到定位终端,在需要定位的室内确定一个原点,以垂直地面向上为Z轴,以任意互相垂直的方向设置X、Y轴,建立三维直角坐标系,设置单位长度为分米; [0015] Step a: The indoor places need to locate the three-dimensional map information is downloaded to the positioning terminal, the need to locate interior determining an origin to a vertical surface upwardly as the Z-axis, in any mutually perpendicular direction X, Y-axis, dimensional Cartesian coordinate system, the unit length is set decimeter;

[0016] 步骤二:确定定位终端初始位置的坐标,设置定位终端初始点的坐标为(χΟ,γΟ, ζ0),且速度为零,加速度为零; [0016] Step II: determining coordinates of the initial position of the positioning terminal, set the coordinates of the initial point positioning terminal (χΟ, γΟ, ζ0), and the velocity is zero, acceleration is zero;

[0017] 步骤三:使用者持定位终端在该室内场所移动,定位终端实时记录三维加速度和偏角,终端内的三轴陀螺仪实时记录X'轴与X轴的夹角α (以X轴逆时针方向为正),V轴与Z轴的夹角β (以Z轴逆时针方向为正,范围为正负180度),定位终端内的三维加速度计记录下三个坐标轴方向的加速的ax',a/, a/并计算出实时的三维坐标; [0017] Step three: the user holding the mobile terminal is positioned in the indoor place, the positioning terminal and the real time recording angle three-dimensional acceleration, three-axis gyroscope real time recording X 'axis and the X axis the angle α in the terminal (the X-axis the counterclockwise direction is positive), the angle β V axis and Z-axis (Z axis in the counterclockwise direction is positive, the range of plus or minus 180 degrees), the acceleration in three axis accelerometer recording three-dimensional coordinates in the positioning terminal the ax ', a /, a / calculated in real time and three-dimensional coordinates;

[0018] 步骤四:在特定的位置设置若干个射频发射器,使其周期性的广播自身位置信息,当定位终端经过时,定位终端上的射频接收器将会接收到该射频发射器广播的位置信息,用以对自身的位置进行校正; [0018] Step Four: setting a plurality of radio transmitters in a particular position, it periodically broadcasts the self-position information, when the positioning terminal through the RF receiver on a positioning terminal will receive the radio frequency transmitter broadcasts position information to a position of self-correcting;

[0019] 步骤五:定位终端将实时的三维坐标发送到服务端,服务端通过数据处理,将得到场所内所有定位终端的位置信息,并根据组别、权限设置发布给相应的定位终端。 [0019] Step Five: The real-time positioning terminal transmits three-dimensional coordinates to the server, the server data processing, the obtained position information of all the terminals positioned in the place, and provided release of the positioning terminal according to the corresponding group, the permissions.

[0020] 其中,步骤三中实时三维坐标的计算方法为: [0020] wherein the method for calculating three-dimensional coordinates of the real-time step 3 is:

[0021] 首先,算出按原有X、Y、Z轴方向的加速度分量ax,ay,az: [0021] First, calculated according to the original X, Y, Z-axis direction acceleration component ax, ay, az:

fP fP

ax = ac cos P cosa — av cos P cosa + —™ a2 coscccos P ax = ac cos P cosa - av cos P cosa + - ™ a2 coscccos P

—'.I? I -. 'I I?

p p

[0022] I av = axxos P sin a + a”cos P cosc1- —— sinctcos P [0022] I av = axxos P sin a + a "cos P cosc1- - sinctcos P

7 J IP 1- 7 J IP 1-

COS β COS β

az = a2 sin P + ac sin P + av sin P az = a2 sin P + ac sin P + av sin P

I IcosP I — e I IcosP I - e

[0023] 然后,根据每一时刻的加速度计算每一时刻的速度分量:1 Vx = Vx + axdt [0023] Then, for each velocity component is calculated based on the acceleration time for each time point: 1 Vx = Vx + axdt

[0024] I Vy/ = Vf + Ay dt [0024] I Vy / = Vf + Ay dt

Ivz = vz + a2dt Ivz = vz + a2dt

[0025] 最后,根据速度分量计算定位终端现在的坐标: [0025] Finally, the coordinates of the positioning terminal according to the present calculating velocity component:

Ik' = I v.{ dt + X Ik '= I v. {Dt + X

>:如+ y >: As + y

yr = I vz dt + ζ yr = I vz dt + ζ

[0027] 前述步骤四中定位终端上的射频接收器接收所述射频发射器广播的位置信息时,从信号强度达到阀值时开始校正,当信号强度达到峰值并开始下降时,将此处的三维坐标同步为该射频发射器的坐标。 When [0027] the radio frequency receiver on the Step 4 of the positioning terminal receives broadcast radio frequency transmitter position information, the correction is started from the signal strength reaches a threshold, when the signal strength reaches a peak and begins to decline, the herein a radio frequency transmitter for synchronizing the coordinates of three-dimensional coordinates.

[0028] 本发明的有益效果是: [0028] Advantageous effects of the present invention are:

[0029] 本发明应用了惯性制导技术进行定位,消除了传统室内定位利用无线定位时产生的定位精度低,稳定性差,受复杂的空间格局影响大,易受电磁噪音干扰等缺点。 [0029] The present invention utilizes the inertial guidance technology positioning, eliminating the positioning accuracy is low when the generated conventional indoor positioning using wireless location, poor stability, by complex spatial pattern of large impact, is susceptible to electromagnetic noise interference and other disadvantages. 同时又利用了射频识别技术,在每个节点对定位终端的三维坐标进行校正,从根本上解决了惯性制导初始定位精度高,但误差会逐步累积的缺点。 While the use of radio frequency identification technology, three-dimensional coordinates of the positioning terminal is corrected at each node, the inertial guidance solved fundamentally initial positioning accuracy, but the error will gradually accumulate disadvantages. 此外,本发明使用的定位终端利用惯性及射频定位,系统结构简单,成本低廉,能耗低,十分适合大范围使用。 In addition, the positioning terminal according to the present invention and the inertia RF location system is simple, low cost, low power consumption, very suitable for large-scale use.

附图说明 BRIEF DESCRIPTION

[0030] 图1为本发明的三维直角坐标系示意图; Dimensional Cartesian coordinates [0030] Figure 1 is a schematic view showing the invention;

[0031] 图2为本发明的定位终端模型示意图; Positioning terminal model [0031] FIG. 2 is a schematic view of the present disclosure;

[0032] 其中,201 -外壳,202-三维加速度计,203-三轴陀螺仪,204-射频信号接收器,205-无线通信模块,206-微处理器。 [0032] wherein 201-- housing, a three-dimensional accelerometer 202-, 203- triaxial gyroscope, 204- radio frequency signal receiver, a wireless communication module 205-, 206- microprocessor.

具体实施方式 Detailed ways

[0033] 以下通过具体实施例对本发明的具体实施方式作进一步详细的说明。 [0033] The following specific examples further by the detailed description of specific embodiments of the present invention.

[0034] 本发明所述三维加速度计选用型号为ADXL330,灵敏度达300mV/g ; [0034] The present invention is a three-dimensional model of the accelerometer selected ADXL330, sensitivity of 300mV / g;

[0035] 本发明所述三轴陀螺仪选用型号为MPU-3050,模块内置AD转换器,16位数字输出,灵敏度达131LSBs/dps ; [0035] The present invention is the selection of the model built-axis gyroscope AD converter to MPU-3050, module, 16-bit digital output, the sensitivity of 131LSBs / dps;

[0036] 本发明所述微处理器选用型号为S3C2410 ; [0036] The present invention is selected model S3C2410 microprocessor;

[0037] 本发明所述射频接收器选用型号为AS3992,其具有_86dBm的超高接收器灵敏度; [0037] The radio frequency receiver of the present invention is selected model AS3992, having an ultra-high sensitivity _86dBm the receiver;

[0038] 本发明所述无线通信模块选用型号为nRF24L01,采用Zigbee通信协议与服务端通信; [0038] The present invention is a wireless communication module selects the model nRF24L01, using Zigbee communication protocol communications with the server;

[0039] 本发明所述射频发射器采用的是UHF无源RFID标签,最大识别距离达到10米; [0039] The present invention uses a radio frequency transmitter passive UHF RFID tags, to identify the maximum distance of 10 m;

[0040] 本发明中采用了工作站ThinkStat1n C30作为服务端主机。 [0040] The present invention uses a workstation ThinkStat1n C30 as a server host.

[0041] 实施例1 [0041] Example 1

[0042] 本实施例提供一种基于惯性制导和射频识别的室内定位装置,结构如图1、图2所示,包括定位终端、射频发射模块和服务端,射频发射模块具有特有的序列号以及三维位置信息,定位终端内部装有射频接收器,定位终端每经过一个射频发射模块,射频接收器即可获得准确的位置信息,定位终端包括三维加速度计202、三轴陀螺仪203、射频信号接收器204、无线通信模块205、微处理器206和外壳201,三维加速度计202与三轴陀螺仪203固定在外壳201内,外壳201的Z轴垂直向上,三维加速度计202的通信主线与微处理器206相连,三轴陀螺仪203与三维加速度计202坐标系重合,三轴陀螺仪203的通信主线与微处理器206相连,射频信号接收器204和无线通信模块205分别固定在外壳201内部两侧,其通信主线都与微处理器206相连; [0042] The present embodiment provides an inertial guidance based on indoor positioning and a radio frequency identification device, the structure of FIG. 1, shown, includes a positioning terminal and a server radio frequency transmission modules, radio frequency transmission modules having a unique sequence number 2, and FIG. internal dimensional position information, the positioning terminal equipped with a radio frequency receiver, each of the positioning terminal through a radio frequency transmission modules, the RF receiver can obtain accurate position information, the positioning terminal 202 including three-dimensional accelerometer, a three-axis gyroscope 203, received RF signal 204, a wireless communication module 205, a microprocessor 206 and a housing 201, a three-dimensional accelerometer 202 and axis gyroscope 203 is fixed within the housing 201, the housing 201 of the Z-axis vertically upward, the three-dimensional accelerometer communicate with the microprocessor 202 of the main 206 is connected, three-axis gyroscope 203 and the three-dimensional coordinate system coincides with the accelerometer 202, the three-axis gyro microprocessor 203 communicate with the main line 206 is connected to the RF signal receiver 204 and the wireless communication module 205 within the housing 201 are fixed two side, which communicate with the main line are connected to the microprocessor 206;

[0043] 前述定位终端内的三维加速度计202和三轴陀螺仪203分别实时记录每一时刻三个坐标轴上的加速度和偏移标准坐标系的夹角,进而得到每一时刻的矢量速度,三维加速度计202对加速度值的采集增加了去抖处理,将超出一定阈值的加速度值作为异常值予以剔除,采用滑动窗口滤波的方法对加速度值进行平滑滤波;射频发射模块在每个楼层采用蜂窝型式布置,在楼层之间的楼梯、电梯、过道采用线型布置,整个空间做到无缝覆盖;服务端将定位终端按照组别划分,同时定义每个所述定位终端的权限级别,并设定位置信息的共享范围。 [0043] The three-dimensional acceleration inside the positioning terminal count 202 and 203 are three-axis gyroscope and acceleration offset angle real time recording standard three coordinate axes of the coordinate system each time, and thus obtain a speed vector for each time, a three-dimensional accelerometer 202 pairs acquired acceleration value is increased debounce process, would exceed a certain threshold acceleration value to be excluded as an outlier, the method sliding window filtering the acceleration values ​​smoothing filter; radio frequency transmission modules cellular each floor type disposed between the floor stairs, elevators, aisle using a linear arrangement, the entire space to achieve seamless coverage; server positioning terminal according to the divided groups, while the definition of each of the positioning terminal permission level, and set range for a given share position information.

[0044] 实施例2 [0044] Example 2

[0045] 本实施例提供一种基于惯性制导和射频识别的室内定位方法,其系统工作流程包含以下步骤: [0045] The present embodiment provides a method of indoor positioning and inertial guidance based on radio frequency identification, which workflow system comprising:

[0046] 步骤一:将需要定位的室内场所的三维地图信息下载到定位终端,在需要定位的室内确定一个原点,以垂直地面向上为Z轴,以任意互相垂直的方向设置X、Y轴,建立三维直角坐标系,设置单位长度为分米; [0046] Step a: The indoor places need to locate the three-dimensional map information is downloaded to the positioning terminal, the need to locate interior determining an origin to a vertical surface upwardly as the Z-axis, in any mutually perpendicular direction X, Y-axis, dimensional Cartesian coordinate system, the unit length is set decimeter;

[0047] 步骤二:确定定位终端初始位置的坐标,设置定位终端初始点的坐标为(χΟ,YΟ, ζΟ),且速度为零,加速度为零; [0047] Step II: determining coordinates of the initial position of the positioning terminal, provided the coordinates of the initial point positioning terminal (χΟ, YΟ, ζΟ), and the velocity is zero, acceleration is zero;

[0048] 步骤三:使用者持定位终端在该室内场所移动,定位终端实时记录三维加速度和偏角,终端内的三轴陀螺仪实时记录X'轴与X轴的夹角α (以X轴逆时针方向为正),V轴与Z轴的夹角β (以Z轴逆时针方向为正,范围为正负180度),定位终端内的三维加速度计记录下三个坐标轴方向的加速的ax', a/ , a/ ,并计算出实时的三维坐标; [0048] Step three: the user holding the mobile terminal is positioned in the indoor place, the positioning terminal and the real time recording angle three-dimensional acceleration, three-axis gyroscope real time recording X 'axis and the X axis the angle α in the terminal (the X-axis the counterclockwise direction is positive), the angle β V axis and Z-axis (Z axis in the counterclockwise direction is positive, the range of plus or minus 180 degrees), the acceleration in three axis accelerometer recording three-dimensional coordinates in the positioning terminal the ax ', a /, a /, and calculate real-time three-dimensional coordinates;

[0049] 步骤四:在特定的位置设置若干个射频发射器,使其周期性的广播自身位置信息,当定位终端经过时,定位终端上的射频接收器将会接收到该射频发射器广播的位置信息,用以对自身的位置进行校正; [0049] Step Four: setting a plurality of radio transmitters in a particular position, it periodically broadcasts the self-position information, when the positioning terminal through the RF receiver on a positioning terminal will receive the radio frequency transmitter broadcasts position information to a position of self-correcting;

[0050] 步骤五:定位终端将实时的三维坐标发送到服务端,服务端通过数据处理,将得到场所内所有定位终端的位置信息,并根据组别、权限设置发布给相应的定位终端。 [0050] Step Five: The real-time positioning terminal transmits three-dimensional coordinates to the server, the server data processing, the obtained position information of all the terminals positioned in the place, and provided release of the positioning terminal according to the corresponding group, the permissions.

[0051] 其中,步骤三中实时三维坐标的计算方法为: [0051] wherein the method for calculating three-dimensional coordinates of the real-time step 3 is:

[0052] 首先,算出按原有X、Y、Z轴方向的加速度分量ax,ay,az: [0052] First, calculated according to the original X, Y, Z-axis direction acceleration component ax, ay, az:

Figure CN104197930AD00081

[0054] 然后,根据每一时刻的加速度计算每一时刻的速度分量vx',v/,N:: [0054] Then, based on the acceleration calculated at each moment in time for each velocity component vx ', v /, N ::

Figure CN104197930AD00082

[0056] 最后,根据速度分量计算定位终端现在的坐标: [0056] Finally, the coordinates of the positioning terminal according to the present calculating velocity component:

Figure CN104197930AD00083

[0058] 步骤四中定位终端上的射频接收器接收所述射频发射器广播的位置信息时,从信号强度达到阀值时开始校正,当信号强度达到峰值并开始下降时,将此处的三维坐标同步为该射频发射器的坐标。 When [0058] The RF receiver at step four positioning terminal receives position information of the broadcast radio frequency transmitter, a correction start signal from the strength reaches a threshold, when the signal strength reaches a peak and begins to decline, where the three-dimensional a radio frequency transmitter for synchronization of the coordinates.

[0059] 以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。 [0059] The above embodiments are merely illustrative of the technical idea of ​​the present invention, in order not to limit the scope of the present invention, all made in accordance with the technical idea of ​​the present invention, any changes made on the basis of the aspect, the present invention fall within the within the scope of protection.

Claims (7)

1.一种基于惯性制导和射频识别的室内定位装置,包括定位终端、射频发射模块和服务端,所述射频发射模块具有特有的序列号以及三维位置信息,所述定位终端内部装有射频接收器,所述定位终端每经过一个射频发射模块,射频接收器即可获得准确的位置信息,其特征在于,所述定位终端包括三维加速度计(202)、三轴陀螺仪(203)、射频信号接收器(204)、无线通信模块(205)、微处理器(206)和外壳(201),所述三维加速度计(202)与三轴陀螺仪(203)固定在所述外壳(201)内,所述外壳(201)的Z轴垂直向上,所述三维加速度计(202)的通信主线与所述微处理器(206)相连,所述三轴陀螺仪(203)与所述三维加速度计(202)坐标系重合,三轴陀螺仪(203)的通信主线与所述微处理器(206)相连,所述射频信号接收器(204)和所述无线通信模块(205)分别固定在外壳(201)内部两侧,其通信主线都 An inertial guidance based on indoor positioning means and radio frequency identification, including positioning terminal, radio frequency transmission modules and server, the radio frequency transmission modules having a unique serial number and the three-dimensional position information of the positioning terminal equipped with an internal radio frequency receiver device, each of the positioning terminal through a radio frequency transmission modules, the RF receiver can obtain accurate location information, wherein the positioning terminal comprising a three-dimensional accelerometer (202), a three-axis gyroscope (203), a radio frequency signal the receiver (204), a wireless communication module (205), the microprocessor (206) and the housing (201), the three-dimensional accelerometer (202) with a three-axis gyroscope (203) is fixed (201) within said housing , Z axis of the housing (201) vertically upwards, the three-dimensional accelerometer (202) communication with the main microprocessor (206), said triaxial gyroscope (203) and the three-dimensional accelerometer (202) coincides with the coordinate system, coupled to (206) axis gyroscope (203) communication with the main microprocessor, the radio frequency signal receiver (204) and the wireless communication module (205) are fixed in the housing (201) internal sides, which are the main line communication 所述微处理器(206)相连。 The microprocessor (206) is connected.
2.根据权利要求1所述的基于惯性制导和射频识别的室内定位装置,其特征在于,所述定位终端内的三维加速度计(202)和三轴陀螺仪(203)分别实时记录每一时刻三个坐标轴上的加速度和偏移标准坐标系的夹角,进而得到每一时刻的矢量速度,所述三维加速度计(202)对加速度值的采集增加了去抖处理,将超出一定阈值的加速度值作为异常值予以剔除,采用滑动窗口滤波的方法对加速度值进行平滑滤波。 2. Based on the inertial guidance and indoor positioning a radio frequency identification device, characterized in that said three-dimensional accelerometer is positioned in the terminal (202) and a three-axis gyroscope (203), respectively, each time the real time recording according to claim 1, acceleration and a standard deviation of the angle coordinates of the three coordinate axes, and thus to obtain velocity vectors for each time point, the three-dimensional accelerometer (202) of the acquired acceleration value increases debounce process, would exceed a certain threshold acceleration values ​​were excluded as an outlier, the sliding window method filtered acceleration values ​​smoothing filter.
3.根据权利要求1所述的基于惯性制导和射频识别的室内定位装置,其特征在于,所述射频发射模块在每个楼层采用蜂窝型式布置,在楼层之间的楼梯、电梯、过道采用线型布置,整个空间做到无缝覆盖。 According to claim 1 based on indoor positioning and inertial guidance radio frequency identification device, wherein the radio frequency transmission modules are arranged in a honeycomb pattern on each floor, between the floor stairs, elevators, aisle line using type arrangement, the entire space to achieve seamless coverage.
4.根据权利要求1所述的基于惯性制导和射频识别的室内定位装置,其特征在于,所述服务端将所述定位终端按照组别划分,同时定义每个所述定位终端的权限级别,并设定位置信息的共享范围。 According to claim 1, based on the inertial guidance and indoor positioning a radio frequency identification device, wherein the service end groups divided according to the positioning terminal, while each of the privilege levels defined positioning terminal, and setting position information shared scope.
5.用于权利要求1所述装置的基于惯性制导和射频识别的室内定位方法,其特征在于,系统工作流程包含以下步骤: 步骤一:将需要定位的室内场所的三维地图信息下载到定位终端,在需要定位的室内确定一个原点,以垂直地面向上为Z轴,以任意互相垂直的方向设置X、Y轴,建立三维直角坐标系,设置单位长度为分米; 步骤二:确定定位终端初始位置的坐标,设置定位终端初始点的坐标为(x0, y0, z0),且速度为零,加速度为零; 步骤三:使用者持定位终端在该室内场所移动,定位终端实时记录三维加速度和偏角,终端内的三轴陀螺仪实时记录X'轴与X轴的夹角α,以逆时针方向为正,Ζ'轴与Z轴的夹角β,定位终端内的三维加速度计记录下三个坐标轴方向的加速的ax',a/ , az',并计算出实时的三维坐标; 步骤四:在特定的位置设置若干个射频发射器,使其周期性 5. A device as claimed in claim 1 said method of indoor positioning and inertial guidance based on radio frequency identification, wherein the system workflow includes the following steps: Step 1: The indoor places need to locate the three-dimensional map information is downloaded to the positioning terminal in determining a need to locate the origin of the room to the Z-axis direction perpendicular to the ground, in any mutually perpendicular direction X, Y-axis, dimensional Cartesian coordinate system, the unit length is set decimeter; step two: determining an initial location service terminal coordinate position, a positioning of the terminal point of the initial coordinates (x0, y0, z0), and the velocity is zero, acceleration is zero; step three: the user terminal is positioned within the chamber held mobile place, the positioning terminal and the real time recording three-dimensional acceleration angle, recording the real-time three-axis gyroscope in the terminal X 'axis and an X-axis angle [alpha], in the counterclockwise direction is positive, Ζ' three-dimensional accelerometer records the angle β of the axis and the Z-axis, the positioning terminal acceleration ax in the direction of three coordinate axes ', a /, az', and calculate real-time three-dimensional coordinates; step four: in a particular position is provided a plurality of RF transmitters, it periodically 广播自身位置信息,当定位终端经过时,定位终端上的射频接收器将会接收到该射频发射器广播的位置信息,用以对自身的位置进行校正; 步骤五:定位终端将实时的三维坐标发送到服务端,服务端通过数据处理,将得到场所内所有定位终端的位置信息,并根据组别、权限设置发布给相应的定位终端。 Self-position information is broadcast, when the positioning terminal through the RF receiver on a positioning terminal will receive the location information broadcast by the radio frequency transmitter to a position of self-correcting; Step Five: positioning the real-time three-dimensional coordinates of the terminal sent to the server, the server data processing, the obtained position information of all the terminals positioned in the place, and provided release of the positioning terminal according to the corresponding group, the permissions.
6.根据权利要求5所述的基于惯性制导和射频识别的室内定位方法,其特征在于,所述步骤三中实时三维坐标的计算方法为: 首先,算出按原有X、Y、Z轴方向的加速度分量ax,ay,az: f P ax = a、cos P cosa — a” cos P cosci + —- a2 coscccos P — " IP I p < av = ax cos P.si net + av cos P cosa--— a2 sinctcos P -.-1PI cos P a2 = a, sin P axsin P + av sin PI ' !cos P I.然后,根据每一时刻的加速度计算每一时刻的速度分量,V/,N:: (vX = v:i + %dt I Vy = Vy + aydt Ivz = v2 + a2dt 最后,根据速度分量计算定位终端现在的坐标: p = /v,dt + x I \?t = I \\, dt + V ο Γ V ^ Iyf = I V2dt + ζ 6. The method of indoor positioning and inertial guidance based on radio frequency identification, wherein according to claim 5, said method step of calculating real-time three-dimensional coordinates as follows: First, calculating according to the original X, Y, Z axis direction acceleration components ax, ay, az: f P ax = a, cos P cosa - a "cos P cosci + - a2 coscccos P -" IP I p <av = ax cos P.si net + av cos P cosa- - a2 sinctcos P -.- 1PI cos P a2 = a, sin P axsin P + av sin PI 'cos P I. then, the acceleration is calculated at each moment in time for each velocity component, V /, N:! : (vX = v: i +% dt I Vy = Vy + aydt Ivz = v2 + a2dt Finally, the coordinates of the positioning terminal according to the present velocity component calculating: p = / v, dt + x I \ t = I \\,? dt + V ο Γ V ^ Iyf = I V2dt + ζ
7.根据权利要求5所述的基于惯性制导和射频识别的室内定位方法,其特征在于,所述步骤四中定位终端上的射频接收器接收所述射频发射器广播的位置信息时,从信号强度达到阀值时开始校正,当信号强度达到峰值并开始下降时,将此处的三维坐标同步为该射频发射器的坐标。 7. The method of indoor positioning and inertial guidance based on radio frequency identification, wherein according to claim 5, said radio frequency receiver on the Step 4 of the positioning terminal receives the location information of the broadcast radio transmitter, the signal from the when the intensity reaches a threshold correction starts, when the signal strength reaches a peak and begins to decline, the three-dimensional coordinates of the radio frequency transmitter synchronized here that the coordinates.
CN 201410461963 2014-09-11 2014-09-11 Indoor positioning device and method based on inertial guidance and radio frequency identification CN104197930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410461963 CN104197930A (en) 2014-09-11 2014-09-11 Indoor positioning device and method based on inertial guidance and radio frequency identification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410461963 CN104197930A (en) 2014-09-11 2014-09-11 Indoor positioning device and method based on inertial guidance and radio frequency identification

Publications (1)

Publication Number Publication Date
CN104197930A true CN104197930A (en) 2014-12-10

Family

ID=52083258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410461963 CN104197930A (en) 2014-09-11 2014-09-11 Indoor positioning device and method based on inertial guidance and radio frequency identification

Country Status (1)

Country Link
CN (1) CN104197930A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569909A (en) * 2014-12-31 2015-04-29 深圳市鼎泰富科技有限公司 Indoor positioning system and method
CN105509736A (en) * 2015-12-03 2016-04-20 北京机械设备研究所 Indoor composite locating method for fire rescue
WO2016180060A1 (en) * 2015-05-08 2016-11-17 深圳市华颖泰科电子技术有限公司 Calibration method
CN106403939A (en) * 2016-08-29 2017-02-15 无锡卓信信息科技股份有限公司 Ship environment fixed-point calibration-type inertial positioning system
CN106403947A (en) * 2016-08-29 2017-02-15 无锡卓信信息科技股份有限公司 Ship environment intelligent filtering-type fixed-point calibration inertial positioning system
CN106662631A (en) * 2015-01-22 2017-05-10 广州艾若博机器人科技有限公司 Rfid-based localization and mapping method and device thereof
CN106846875A (en) * 2016-12-26 2017-06-13 上海蔚来汽车有限公司 Intelligent reverse car seeking method
CN106949892A (en) * 2017-03-10 2017-07-14 深圳市赛亿科技开发有限公司 A kind of localization method and device
CN107836013A (en) * 2016-03-09 2018-03-23 广州艾若博机器人科技有限公司 Map constructing method, method and device for correcting
CN107864510A (en) * 2017-12-26 2018-03-30 厦门大学 A kind of indoor orientation method, terminal device and storage medium suitable for nuclear island of nuclear power station

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101144722A (en) * 2006-09-05 2008-03-19 霍尼韦尔国际公司 Portable positioning and navigation system
CN101393028A (en) * 2008-11-07 2009-03-25 北京航空航天大学 Rapid estimating and compensating system with IMU mounting angle obliquely set
US20110039573A1 (en) * 2009-08-13 2011-02-17 Qualcomm Incorporated Accessing positional information for a mobile station using a data code label
CN102494683A (en) * 2011-10-26 2012-06-13 东莞市泰斗微电子科技有限公司 Radio frequency identification (RFID)-based joint positioning device and method
CN103267524A (en) * 2013-04-24 2013-08-28 华中科技大学 Wearable personnel gait-detection indoor-positioning system and method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101144722A (en) * 2006-09-05 2008-03-19 霍尼韦尔国际公司 Portable positioning and navigation system
CN101393028A (en) * 2008-11-07 2009-03-25 北京航空航天大学 Rapid estimating and compensating system with IMU mounting angle obliquely set
US20110039573A1 (en) * 2009-08-13 2011-02-17 Qualcomm Incorporated Accessing positional information for a mobile station using a data code label
CN102494683A (en) * 2011-10-26 2012-06-13 东莞市泰斗微电子科技有限公司 Radio frequency identification (RFID)-based joint positioning device and method
CN103267524A (en) * 2013-04-24 2013-08-28 华中科技大学 Wearable personnel gait-detection indoor-positioning system and method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李平等: "基于RFID和DR技术的室内组合定位技术", 《上海大学学报(自然科学版)》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104569909A (en) * 2014-12-31 2015-04-29 深圳市鼎泰富科技有限公司 Indoor positioning system and method
CN106662631A (en) * 2015-01-22 2017-05-10 广州艾若博机器人科技有限公司 Rfid-based localization and mapping method and device thereof
WO2016180060A1 (en) * 2015-05-08 2016-11-17 深圳市华颖泰科电子技术有限公司 Calibration method
CN105509736A (en) * 2015-12-03 2016-04-20 北京机械设备研究所 Indoor composite locating method for fire rescue
CN107836013B (en) * 2016-03-09 2019-09-03 广州艾若博机器人科技有限公司 Map constructing method, correction method and device
CN107836013A (en) * 2016-03-09 2018-03-23 广州艾若博机器人科技有限公司 Map constructing method, method and device for correcting
CN106403939A (en) * 2016-08-29 2017-02-15 无锡卓信信息科技股份有限公司 Ship environment fixed-point calibration-type inertial positioning system
CN106403947A (en) * 2016-08-29 2017-02-15 无锡卓信信息科技股份有限公司 Ship environment intelligent filtering-type fixed-point calibration inertial positioning system
CN106846875A (en) * 2016-12-26 2017-06-13 上海蔚来汽车有限公司 Intelligent reverse car seeking method
CN106846875B (en) * 2016-12-26 2019-12-13 上海蔚来汽车有限公司 Intelligent reverse vehicle searching method
CN106949892A (en) * 2017-03-10 2017-07-14 深圳市赛亿科技开发有限公司 A kind of localization method and device
CN107864510A (en) * 2017-12-26 2018-03-30 厦门大学 A kind of indoor orientation method, terminal device and storage medium suitable for nuclear island of nuclear power station

Similar Documents

Publication Publication Date Title
KR101322778B1 (en) Method and apparatus for identification of points of interest within a predefined area
Torres-Solis et al. A review of indoor localization technologies: towards navigational assistance for topographical disorientation
US9078104B2 (en) Utilizing magnetic field based navigation
US9390302B2 (en) Location measurments using a mesh of wireless tags
KR100982852B1 (en) Moving object real-time positioning system and method using RDF, and wireless relay device installation method therefor
CN101715639B (en) Method for measuring location of radio frequency identification reader by using beacon
CN105190345B (en) System and method for using three dimensional local information to improve positioning service
JP2009288245A (en) Indoor positioning system of autonomous ultrasonic wave, and its device and method
US7760132B1 (en) Method and system of three-dimensional positional finding
Priyantha The cricket indoor location system
ES2710624T3 (en) Positioning a device in relation to a magnetic signal source
Abdelnasser et al. SemanticSLAM: Using environment landmarks for unsupervised indoor localization
US9538325B2 (en) Rotation based alignment of a group of wireless tags
KR20150074124A (en) Map-assisted sensor-based positioning of mobile devices
CN103363988B (en) A kind of method utilizing intelligent mobile phone sensor to realize the navigation of earth magnetism indoor positioning
Ijaz et al. Indoor positioning: A review of indoor ultrasonic positioning systems
Lymberopoulos et al. The microsoft indoor localization competition: Experiences and lessons learned
LaMarca et al. Location systems: An introduction to the technology behind location awareness
Woo et al. Application of WiFi-based indoor positioning system for labor tracking at construction sites: A case study in Guangzhou MTR
Zhou et al. Activity sequence-based indoor pedestrian localization using smartphones
US9494432B2 (en) Collaborative navigation techniques for mobile devices
CN103199923B (en) A kind of underground moving target light fingerprint location tracking based on visible light communication
WO2013166061A1 (en) Adaptive updating of indoor navigation assistance data for use by a mobile device
CN103033180A (en) Precise positioning navigation system and method for indoor vehicles
CN102033222B (en) Large-scale multiple-object ultrasonic tracking and locating system and method

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
RJ01 Rejection of invention patent application after publication