CN104194066A - Silicon oxide-chitosan composite aerogel and preparation method thereof - Google Patents
Silicon oxide-chitosan composite aerogel and preparation method thereof Download PDFInfo
- Publication number
- CN104194066A CN104194066A CN201410468390.5A CN201410468390A CN104194066A CN 104194066 A CN104194066 A CN 104194066A CN 201410468390 A CN201410468390 A CN 201410468390A CN 104194066 A CN104194066 A CN 104194066A
- Authority
- CN
- China
- Prior art keywords
- chitosan
- silica
- preparation
- solution
- chitosan composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001661 Chitosan Polymers 0.000 title claims abstract description 159
- 239000002131 composite material Substances 0.000 title claims abstract description 90
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 239000004964 aerogel Substances 0.000 title claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title description 10
- 229910052710 silicon Inorganic materials 0.000 title description 10
- 239000010703 silicon Substances 0.000 title description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 19
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 56
- 239000002904 solvent Substances 0.000 claims description 31
- 238000003756 stirring Methods 0.000 claims description 30
- 235000019353 potassium silicate Nutrition 0.000 claims description 26
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 26
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 24
- 235000012239 silicon dioxide Nutrition 0.000 claims description 24
- 239000003495 polar organic solvent Substances 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 239000011259 mixed solution Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 9
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 9
- 230000002378 acidificating effect Effects 0.000 claims description 8
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 6
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- 239000003729 cation exchange resin Substances 0.000 claims description 6
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 claims description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 6
- -1 chloro, methoxy , Ethoxy Chemical group 0.000 claims description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 5
- 239000004593 Epoxy Substances 0.000 claims description 3
- PCSMJKASWLYICJ-UHFFFAOYSA-N Succinic aldehyde Chemical compound O=CCCC=O PCSMJKASWLYICJ-UHFFFAOYSA-N 0.000 claims description 3
- 230000006196 deacetylation Effects 0.000 claims description 3
- 238000003381 deacetylation reaction Methods 0.000 claims description 3
- 229940015043 glyoxal Drugs 0.000 claims description 3
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical group O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims description 3
- SPIGUVVOJXSWNX-UHFFFAOYSA-N n-(oxomethylidene)thiohydroxylamine Chemical compound SN=C=O SPIGUVVOJXSWNX-UHFFFAOYSA-N 0.000 claims description 3
- 125000000962 organic group Chemical group 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 230000001568 sexual effect Effects 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 239000005456 alcohol based solvent Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 5
- 150000004676 glycans Chemical class 0.000 abstract description 2
- 229920001282 polysaccharide Polymers 0.000 abstract 1
- 239000005017 polysaccharide Substances 0.000 abstract 1
- 239000000499 gel Substances 0.000 description 42
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- 238000010521 absorption reaction Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 239000000017 hydrogel Substances 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 8
- 239000008235 industrial water Substances 0.000 description 7
- 238000000862 absorption spectrum Methods 0.000 description 6
- 238000007385 chemical modification Methods 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 239000004312 hexamethylene tetramine Substances 0.000 description 4
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 4
- 239000003456 ion exchange resin Substances 0.000 description 4
- 229920003303 ion-exchange polymer Polymers 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910008051 Si-OH Inorganic materials 0.000 description 3
- 229910002808 Si–O–Si Inorganic materials 0.000 description 3
- 229910006358 Si—OH Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 239000012454 non-polar solvent Substances 0.000 description 3
- 239000002798 polar solvent Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical group [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000000352 supercritical drying Methods 0.000 description 2
- HXLAEGYMDGUSBD-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(OCC)CCCN HXLAEGYMDGUSBD-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical group [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 239000005051 trimethylchlorosilane Substances 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
- Cosmetics (AREA)
Abstract
本发明涉及一种氧化硅-壳聚糖复合气凝胶及其制备方法,所述氧化硅-壳聚糖复合气凝胶包含壳聚糖、壳聚糖交联剂以及氧化硅,其中,壳聚糖质量分数为9%-65%,氧化硅质量分数为30%-90%,壳聚糖交联剂质量分数为1%~5%。
The invention relates to a silica-chitosan composite airgel and a preparation method thereof. The silica-chitosan composite airgel comprises chitosan, a chitosan cross-linking agent and silica, wherein the shell The mass fraction of polysaccharide is 9%-65%, the mass fraction of silicon oxide is 30%-90%, and the mass fraction of chitosan crosslinking agent is 1%-5%.
Description
技术领域technical field
本发明属于复合新材料领域,具体涉及一种氧化硅-壳聚糖复合气凝胶及其制备方法,所制备的复合气凝胶耐酸碱性能好,比表面积高,可根据需要嫁接不同官能团,用于医药、水处理、化工等领域。The invention belongs to the field of composite new materials, and in particular relates to a silica-chitosan composite airgel and a preparation method thereof. The prepared composite airgel has good acid and alkali resistance, high specific surface area, and can be grafted with different functional groups as required , used in medicine, water treatment, chemical industry and other fields.
背景技术Background technique
壳聚糖来源于天然高分子甲壳素,自然界含量丰富,分子内含有氨基、羟基等活性官能团,且具有良好的生物相容性、微生物降解性等优异性能,在医药、食品、化工、化妆品、水处理、金属提取和回收等领域具有重要的应用前景。Chitosan is derived from the natural polymer chitin, which is rich in nature, contains active functional groups such as amino and hydroxyl groups in the molecule, and has good biocompatibility and microbial degradability. It is widely used in medicine, food, chemical industry, cosmetics, Water treatment, metal extraction and recovery have important application prospects.
在水溶液中,壳聚糖分子的氨基很容易离子化,当pH值低于5时,壳聚糖会发生溶解,极大限制了酸性溶液中壳聚糖的应用。为了改善壳聚糖的抗酸性,一般将壳聚糖与交联剂发生交联,但是所制备的交联壳聚糖树脂比表面积小。壳聚糖常作为载体或吸附剂,比表面积是一个重要的参数指标,较小的比表面积极大的影响了壳聚糖的应用效果。为了提高壳聚糖的比表面积,人们尝试制备壳聚糖气凝胶。但是壳聚糖分子间存在很强的氢键,导致凝胶在干燥过程中发生严重的变形和收缩,这增加了壳聚糖气凝胶制备的难度。为提高壳聚糖气凝胶的比表面积,一般采用两种方式:(1)采用超临界干燥方式,但安全隐患较大、成本较高;(2)以无机凝胶为骨架支撑,制备壳聚糖复合气凝胶。In aqueous solution, the amino groups of chitosan molecules are easily ionized. When the pH value is lower than 5, chitosan will dissolve, which greatly limits the application of chitosan in acidic solution. In order to improve the acid resistance of chitosan, chitosan is generally cross-linked with a cross-linking agent, but the prepared cross-linked chitosan resin has a small specific surface area. Chitosan is often used as a carrier or an adsorbent, and the specific surface area is an important parameter index. A smaller specific surface area will greatly affect the application effect of chitosan. In order to increase the specific surface area of chitosan, people try to prepare chitosan airgel. However, there are strong hydrogen bonds between chitosan molecules, which lead to severe deformation and shrinkage of the gel during drying, which increases the difficulty of preparing chitosan airgel. In order to increase the specific surface area of chitosan airgel, two methods are generally adopted: (1) supercritical drying is adopted, but the safety hazard is relatively large and the cost is high; (2) the shell is prepared by using inorganic gel as the skeleton support. Glycan composite aerogels.
陈代荣等(J.Phys.Chem.B 2008,112,7721-7725)公开了一种壳聚糖气凝胶的制备方法。以甲醛、乙二醛或戊二醛为交联剂与壳聚糖的稀酸溶液发生交联反应,形成壳聚糖水凝胶,采用超临界干燥方式制备壳聚糖气凝胶,其中甲醛交联壳聚糖气凝胶比表面积可达845m2/g。但是该方法采用超临界干燥方式,安全隐患较大,成本较高,很难在工业上大规模应用。Chen Dairong et al. (J. Phys. Chem. B 2008, 112, 7721-7725) disclosed a preparation method of chitosan airgel. Using formaldehyde, glyoxal or glutaraldehyde as the cross-linking agent to react with dilute acid solution of chitosan to form chitosan hydrogel, and prepare chitosan airgel by supercritical drying method, in which formaldehyde The specific surface area of chitosan airgel can reach 845m 2 /g. However, this method adopts a supercritical drying method, which has great potential safety hazards and high cost, and is difficult to be applied on a large scale in industry.
Michael R.Ayers(Journal of Non-Crystalline Solids,2001,285,123-127)公开了一种氧化硅-壳聚糖气凝胶的制备方法。该方法以正硅酸乙酯为硅源,首先制备氧化硅-壳聚糖湿凝胶,然后采用超临界干燥方式制备了高比表面积的氧化硅-壳聚糖复合气凝胶,比表面具最高可达750m2/g。但该方法没有将壳聚糖与交联剂发生反应,限制了其在酸性环境中的应用。同时,该方法采用超临界干燥方式,安全隐患较大,成本较高。Michael R. Ayers (Journal of Non-Crystalline Solids, 2001, 285, 123-127) discloses a preparation method of silica-chitosan airgel. In this method, tetraethyl orthosilicate is used as the silicon source, and the silica-chitosan wet gel is prepared first, and then the silica-chitosan composite airgel with high specific surface area is prepared by supercritical drying method, and the specific surface area is Up to 750m 2 /g. However, this method does not react chitosan with a crosslinking agent, which limits its application in acidic environments. Simultaneously, this method adopts the supercritical drying method, which has great potential safety hazards and high cost.
因此,该领域迫切需要一种简单、快捷的方式制备壳聚糖气凝胶。Therefore, there is an urgent need for a simple and quick way to prepare chitosan aerogels in this field.
发明内容Contents of the invention
本发明旨在克服现有壳聚糖气凝胶性能和制备方法方面的缺陷,本发明提供了一种氧化硅-壳聚糖复合气凝胶及其制备方法。The invention aims to overcome the defects of the existing chitosan airgel performance and preparation method, and the invention provides a silicon oxide-chitosan composite airgel and a preparation method thereof.
本发明提供了一种氧化硅-壳聚糖复合气凝胶,所述氧化硅-壳聚糖复合气凝胶包含壳聚糖、壳聚糖交联剂以及氧化硅,其中,壳聚糖质量分数为9%-65%,氧化硅质量分数为30%-90%,壳聚糖交联剂的质量分数为1%-5%。应理解,此处的壳聚糖交联剂包括存在于复合气凝胶当中的壳聚糖交联剂因与壳聚糖发生反应形成的连接基团。The invention provides a silica-chitosan composite aerogel, the silica-chitosan composite aerogel comprises chitosan, a chitosan cross-linking agent and silica, wherein the mass of chitosan The fraction is 9%-65%, the mass fraction of silicon oxide is 30%-90%, and the mass fraction of chitosan crosslinking agent is 1%-5%. It should be understood that the chitosan cross-linking agent here includes the linking group formed by the chitosan cross-linking agent existing in the composite airgel due to the reaction with chitosan.
较佳地,所述氧化硅-壳聚糖复合气凝胶具有三维多孔网络结构,BET比表面积为300-1000m2/g,振实密度为0.1-1.0g/cm3。Preferably, the silica-chitosan composite airgel has a three-dimensional porous network structure, a BET specific surface area of 300-1000 m 2 /g, and a tap density of 0.1-1.0 g/cm 3 .
较佳地,所述壳聚糖交联剂为甲醛、乙二醛、戊二醛、丁二醛中的至少一种。Preferably, the chitosan crosslinking agent is at least one of formaldehyde, glyoxal, glutaraldehyde and succinaldehyde.
又,本发明还提供了一种上述氧化硅-壳聚糖复合气凝胶的制备方法,所述制备方法包括:Again, the present invention also provides a kind of preparation method of above-mentioned silica-chitosan composite airgel, and described preparation method comprises:
1)将pH为2-3的硅酸溶液与pH为1-3的壳聚糖溶液混合均匀得到硅酸-壳聚糖混合溶胶或溶液;1) mixing a silicic acid solution with a pH of 2-3 and a chitosan solution with a pH of 1-3 to obtain a silicic acid-chitosan mixed sol or solution;
2)调节步骤1)制备的硅酸-壳聚糖混合溶胶或溶液的pH值至5-7之间,并向所述硅酸-壳聚糖混合溶胶或溶液中加入壳聚糖交联剂,搅拌均匀后于40~80℃下反应0.5~12小时,得氧化硅-壳聚糖复合凝胶,其中,壳聚糖、壳聚糖交联剂以及硅酸之间的质量比符合所述氧化硅-壳聚糖复合气凝胶中组成之间的比例关系;2) adjusting the pH value of the silicic acid-chitosan mixed sol or solution prepared in step 1) to between 5-7, and adding a chitosan crosslinking agent to the silicic acid-chitosan mixed sol or solution , stirred evenly, and reacted at 40-80°C for 0.5-12 hours to obtain a silica-chitosan composite gel, wherein the mass ratio between chitosan, chitosan cross-linking agent and silicic acid complies with the The proportional relationship between the components in the silica-chitosan composite airgel;
3)先将步骤2)制备的氧化硅-壳聚糖复合凝胶捣碎至颗粒尺寸小于1cm,再将捣碎的氧化硅-壳聚糖复合凝胶中浸入极性有机溶剂中,通过搅拌使得极性有机溶剂置换出氧化硅-壳聚糖复合凝胶中的水;3) First mash the silica-chitosan composite gel prepared in step 2) until the particle size is less than 1cm, then immerse the mashed silica-chitosan composite gel in a polar organic solvent, and stir Make the polar organic solvent replace the water in the silica-chitosan composite gel;
4)将步骤3)中置换完毕的氧化硅-壳聚糖复合凝胶,浸入非极性有机溶剂中,通过搅拌使得非极性有机溶剂置换出氧化硅-壳聚糖复合凝胶中的极性有机溶剂;4) The silicon oxide-chitosan composite gel that has been replaced in step 3) is immersed in a non-polar organic solvent, and the non-polar organic solvent is replaced by the polar organic solvent in the silicon oxide-chitosan composite gel by stirring. Sexual organic solvents;
5)将步骤4)中置换完毕的氧化硅-壳聚糖复合凝胶进行常压干燥处理。5) Drying the silica-chitosan composite gel replaced in step 4) under normal pressure.
较佳地,步骤1)中,硅酸溶液的制备方式为:先将模数为1.0-3.5的水玻璃与水混合,得到水玻璃溶液,然后将水玻璃溶液倒入强酸性阳离子交换树脂中,搅拌5-30分钟后过滤得到清液得到所述pH值为2-3的硅酸溶液。Preferably, in step 1), the silicic acid solution is prepared by mixing water glass with a modulus of 1.0-3.5 with water to obtain a water glass solution, and then pouring the water glass solution into a strong acidic cation exchange resin , stirred for 5-30 minutes and then filtered to obtain the clear liquid to obtain the silicic acid solution with a pH value of 2-3.
较佳地,步骤1)中,所述pH为1-3的壳聚糖溶液由壳聚糖粉体溶于0.01~0.1mol/L的稀酸中制得,所述壳聚糖粉体的脱乙酰度为60%-95%。Preferably, in step 1), the chitosan solution having a pH of 1-3 is prepared by dissolving chitosan powder in dilute acid of 0.01 to 0.1 mol/L, and the chitosan powder is The degree of deacetylation is 60%-95%.
较佳地,步骤3)中,极性有机溶剂为醇类溶剂、四氢呋喃、N,N-二甲基甲酰胺、丙酮中的至少一种。Preferably, in step 3), the polar organic solvent is at least one of alcohol solvents, tetrahydrofuran, N,N-dimethylformamide, and acetone.
较佳地,步骤3)中,重复在25-80℃下搅拌1-24小时,重复的次数为2-5次,从而实现溶剂置换。Preferably, in step 3), stirring at 25-80° C. for 1-24 hours is repeated for 2-5 times, so as to realize solvent replacement.
较佳地,步骤4)中,非极性有机溶剂表面张力需小于25mN-m,优选环己烷、正己烷、正庚烷或其组合。Preferably, in step 4), the surface tension of the non-polar organic solvent needs to be less than 25mN-m, preferably cyclohexane, n-hexane, n-heptane or a combination thereof.
较佳地,步骤4)中,重复在25-80℃下搅拌1-24小时,重复的次数为2-5次,从而实现溶剂置换。Preferably, in step 4), stirring at 25-80° C. for 1-24 hours is repeated for 2-5 times, so as to realize solvent replacement.
较佳地,步骤4)中,氧化硅-壳聚糖复合凝胶在第一次浸入非极性有机溶剂时,在非极性有机溶剂中加入通式为RSiX3的硅烷偶联剂,R为有机基团,优选,乙烯基、氨基、环氧基、巯基、异氰酸酯,X为易水解基团,优选氯基、甲氧基、乙氧基,硅烷偶联剂的加入量为所用水玻璃体积的0%-50%,根据实际需求而定,甚至有时无需表面化学改性。Preferably, in step 4), when the silicon oxide-chitosan composite gel is immersed in a non-polar organic solvent for the first time, a silane coupling agent with a general formula of RSiX3 is added in the non-polar organic solvent, and R is Organic groups, preferably, vinyl, amino, epoxy, mercapto, isocyanate, X is an easily hydrolyzed group, preferably chlorine, methoxyl, ethoxyl, the addition of silane coupling agent is the volume of water glass used 0%-50%, depending on actual needs, sometimes even without surface chemical modification.
较佳地,步骤5)中,干燥处理为:在80-120℃下,干燥2-12小时。Preferably, in step 5), the drying treatment is: drying at 80-120° C. for 2-12 hours.
本发明的有益效果:Beneficial effects of the present invention:
本发明的特点是所制备的氧化硅-壳聚糖复合气凝胶,壳聚糖质量分数为9%-65%,壳聚糖交联剂的质量分数为1%-5%,氧化硅质量分数为30%-90%。本发明通过溶胶凝胶法,采用共聚合的方式制备氧化硅-壳聚糖复合水凝胶,然后实施多次极性和非极性溶剂的溶剂置换和表面化学改性,最终通过常压干燥方法制备了高比表面积、耐酸碱性能好的氧化硅-壳聚糖复合气凝胶,可应用于医药、水处理、化学化工等领域。本方法所使用的主要原料为工业水玻璃和壳聚糖,来源丰富,价格低廉,并且生产条件温和、耗时时间短,步骤简单易操作,生产效率高,适合大规模的工业化生产。The present invention is characterized in that the prepared silica-chitosan composite airgel has a mass fraction of chitosan of 9%-65%, a mass fraction of chitosan cross-linking agent of 1%-5%, and a mass fraction of silica The score is 30%-90%. The present invention adopts sol-gel method to prepare silica-chitosan composite hydrogel by means of copolymerization, then implements multiple polar and non-polar solvent solvent replacement and surface chemical modification, and finally dries under normal pressure. Methods A silica-chitosan composite aerogel with high specific surface area and good acid and alkali resistance was prepared, which can be used in medicine, water treatment, chemical industry and other fields. The main raw materials used in the method are industrial water glass and chitosan, which are rich in sources, low in price, mild in production conditions, short in time, simple and easy to operate, high in production efficiency, and suitable for large-scale industrial production.
附图说明Description of drawings
图1示出了本发明的一个实施方式中制备的氧化硅-壳聚糖复合气凝胶的SEM照片;Fig. 1 shows the SEM photo of the silica-chitosan composite airgel prepared in one embodiment of the present invention;
图2示出了本发明的一个实施方式中制备的氧化硅-壳聚糖气凝胶红外吸收光谱;Fig. 2 shows the silicon oxide-chitosan airgel infrared absorption spectrum prepared in one embodiment of the present invention;
图3示出了本发明的一个实施方式中制备的氨基改性氧化硅-壳聚糖气凝胶红外吸收光谱;Fig. 3 shows the amino-modified silica-chitosan airgel infrared absorption spectrum prepared in one embodiment of the present invention;
图4示出了本发明的一个实施方式中制备的氧化硅-壳聚糖气凝胶红外吸收光谱。Fig. 4 shows the infrared absorption spectrum of the silica-chitosan airgel prepared in one embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图和下述实施方式进一步说明本发明,应理解,附图及下述实施方式仅用于说明本发明,而非限制本发明。The present invention will be further described below in conjunction with the drawings and the following embodiments. It should be understood that the drawings and the following embodiments are only used to illustrate the present invention rather than limit the present invention.
本发明涉及一种氧化硅-壳聚糖复合气凝胶及其制备方法。本发明所制备的氧化硅-壳聚糖复合气凝胶具有三维多孔网络结构,BET比表面积为300-1000m2/g,振实密度为0.1-1.0g/cm3,其组分组成为:壳聚糖质量分数为9%-65%,壳聚糖交联剂的质量分数为1%-5%,氧化硅质量分数为30%-90%。The invention relates to a silicon oxide-chitosan composite airgel and a preparation method thereof. The silica-chitosan composite airgel prepared by the present invention has a three-dimensional porous network structure, a BET specific surface area of 300-1000m 2 /g, a tap density of 0.1-1.0g/cm 3 , and its components are: shell The polycan mass fraction is 9%-65%, the chitosan cross-linking agent mass fraction is 1%-5%, and the silicon oxide mass fraction is 30%-90%.
本发明所述方法包括如下步骤:(1)制备氧化硅-壳聚糖复合溶胶;(2)制备氧化硅-壳聚糖凝胶;(3)氧化硅-壳聚糖凝胶的极性有机溶剂置换;(4)氧化硅-壳聚糖凝胶的非极性溶剂置换及表面化学改性;(5)氧化硅-壳聚糖凝胶的常压干燥及氧化硅-壳聚糖复合气凝胶的获得。本发明制备的复合气凝胶耐酸碱性能好,比表面积高,可根据需要嫁接不同官能团,用于医药、水处理、化工等领域。本发明所提供的复合气凝胶制备方法具有成本低、生产时间短等突出优势,适合大规模工业化生产。The method of the present invention comprises the following steps: (1) prepare silica-chitosan composite sol; (2) prepare silica-chitosan gel; (3) polar organic compound of silica-chitosan gel Solvent replacement; (4) non-polar solvent replacement and surface chemical modification of silica-chitosan gel; (5) normal pressure drying of silica-chitosan gel and silica-chitosan composite gas Obtaining the gel. The composite airgel prepared by the invention has good acid and alkali resistance and high specific surface area, and can be grafted with different functional groups according to needs, and can be used in the fields of medicine, water treatment, chemical industry and the like. The composite airgel preparation method provided by the invention has outstanding advantages such as low cost and short production time, and is suitable for large-scale industrial production.
所述氧化硅-壳聚糖气凝胶的制备方法,具体包括如下步骤:The preparation method of described silica-chitosan airgel specifically comprises the steps:
一)氧化硅-壳聚糖复合溶胶的制备。选取不同模数的工业水玻璃为硅源,将其与适量的去离子水混合,得到稀释的水玻璃溶液(A)。将稀释的水玻璃溶液(A)倒入强酸性阳离子交换树脂中,搅拌5min-30min,过滤,得到清液即PH值在2-3的硅酸溶液(B)。将壳聚糖粉体溶于稀酸中,制得壳聚糖溶液(C)。将硅酸溶液(B)倒入壳聚糖溶液(C)中,搅拌均匀,获得壳聚糖和硅酸的混合溶胶(D);1) Preparation of silica-chitosan composite sol. Select industrial water glass with different modulus as the silicon source, mix it with an appropriate amount of deionized water, and obtain a diluted water glass solution (A). Pour the diluted water glass solution (A) into a strong acidic cation exchange resin, stir for 5min-30min, and filter to obtain a clear solution, namely a silicic acid solution (B) with a pH value of 2-3. Chitosan powder is dissolved in dilute acid to prepare chitosan solution (C). Pour the silicic acid solution (B) into the chitosan solution (C), and stir evenly to obtain a mixed sol (D) of chitosan and silicic acid;
二)氧化硅-壳聚糖凝胶的制备。利用碱性催化剂调节壳聚糖和硅酸的混合溶胶(D)的PH值至5-7,加入壳聚糖交联剂,并搅拌均匀,在40-80℃下反应30min-12h,得氧化硅-壳聚糖复合凝胶(E);2) Preparation of silica-chitosan gel. Adjust the pH value of the mixed sol (D) of chitosan and silicic acid to 5-7 with an alkaline catalyst, add chitosan cross-linking agent, and stir evenly, and react at 40-80°C for 30min-12h to obtain oxidation Silicon-chitosan composite gel (E);
三)氧化硅-壳聚糖凝胶的极性有机溶剂置换。将步骤2)制备获得的氧化硅-壳聚糖复合凝胶(E)捣碎至颗粒大小在1cm以下,浸入极性有机溶剂中,在25-80℃下搅拌1-24h,进行溶剂置换。本步骤重复2-5次,得到复合凝胶(F);3) Polar organic solvent displacement of silica-chitosan gel. The silica-chitosan composite gel (E) prepared in step 2) is crushed until the particle size is less than 1 cm, immersed in a polar organic solvent, stirred at 25-80° C. for 1-24 h, and solvent replacement is performed. This step is repeated 2-5 times to obtain a composite gel (F);
四)氧化硅-壳聚糖凝胶的极性溶剂置换及表面化学改性。将步骤3)中得到的复合有机凝胶(F)浸入非极性有机溶剂中,在25-80℃下搅拌1-24h,进行溶剂置换。重复溶剂置换步骤2-5次,得到复合凝胶(G)。若要对复合有机凝胶(F)进行化学改性,可在初次浸入非极性有机溶剂时加入硅烷偶联剂,其后仍需2-5次的溶剂置换;4) Polar solvent replacement and surface chemical modification of silica-chitosan gel. Immerse the composite organogel (F) obtained in step 3) in a non-polar organic solvent, stir at 25-80°C for 1-24h, and perform solvent replacement. Repeat the solvent exchange step 2-5 times to obtain a composite gel (G). To chemically modify the composite organogel (F), a silane coupling agent can be added when the non-polar organic solvent is immersed for the first time, and then 2-5 solvent replacements are still required;
五)氧化硅-壳聚糖凝胶的常压干燥及氧化硅-壳聚糖复合气凝胶的获得。将步骤4)得到的复合凝胶(G)放入烘箱中,在80-120℃下,干燥2-12h,即得到氧化硅-壳聚糖复合气凝胶。5) Atmospheric pressure drying of silica-chitosan gel and obtaining of silica-chitosan composite airgel. Put the composite gel (G) obtained in step 4) into an oven, and dry at 80-120° C. for 2-12 hours to obtain a silica-chitosan composite airgel.
步骤一)中所使用的水玻璃模数为1.0-3.5。The water glass modulus used in step 1) is 1.0-3.5.
步骤一)中所使用的强酸性阳离子交换树脂可为苯乙烯系阳离子交换树脂及其改性树脂或任何其它阳离子交换树脂。The strongly acidic cation exchange resin used in step 1) can be styrene-based cation exchange resin and its modified resin or any other cation exchange resin.
步骤一)中所使用的所使用的壳聚糖粉体的脱乙酰度为60%-95%。The degree of deacetylation of the chitosan powder used in step 1) is 60%-95%.
步骤一)中所使用的稀酸为浓度在0.01-0.1mol/L的盐酸、硫酸、硝酸、醋酸或其它任何无机或有机酸。The dilute acid used in step 1) is hydrochloric acid, sulfuric acid, nitric acid, acetic acid or any other inorganic or organic acid with a concentration of 0.01-0.1 mol/L.
步骤二)中所使用的碱性催化剂为氨水、氢氧化钠、氢氧化钾、六亚甲基四胺、乙醇胺等在水中释放氢氧根离子的物质。The basic catalyst used in the step 2) is ammonia, sodium hydroxide, potassium hydroxide, hexamethylenetetramine, ethanolamine and the like that release hydroxide ions in water.
步骤二)中所使用的壳聚糖交联剂为甲醛、乙二醛、戊二醛、丁二醛等或其组合物。The chitosan cross-linking agent used in step 2) is formaldehyde, glyoxal, glutaraldehyde, succinaldehyde etc. or its composition.
步骤三)所使用的极性有机溶剂为与水自由混合的极性有机溶剂,可以是醇类溶剂,四氢呋喃、N,N-二甲基甲酰胺、丙酮等,优选为能与水互溶的一元或多元醇(如甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、乙二醇)。Step 3) The polar organic solvent used is a polar organic solvent that can be freely mixed with water, and can be an alcohol solvent, tetrahydrofuran, N,N-dimethylformamide, acetone, etc., preferably a monohydric solvent that is miscible with water. Or polyols (such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, ethylene glycol).
步骤四)中所使用的非极性有机溶剂表面张力需小于25mN-m,优选环己烷、正己烷、正庚烷或其组合。The surface tension of the non-polar organic solvent used in step 4) needs to be less than 25mN-m, preferably cyclohexane, n-hexane, n-heptane or a combination thereof.
步骤五)中所使用的硅烷偶联剂的通式为RSiX3,R为有机基团,如乙烯基、氨基、环氧基、巯基、异氰酸酯等,X为某些易水解基团,如氯基、甲氧基、乙氧基等,具体包括三甲基氯硅烷、六甲基二硅胺烷、3-氨丙基三乙氧基硅烷、3-氨丙基甲基二乙氧基硅烷、3-缩水甘油醚氧基丙基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷等或是其组合物,但不限于此。The general formula of the silane coupling agent used in step five) is RSiX3, R is an organic group, such as vinyl, amino, epoxy, mercapto, isocyanate, etc., and X is some easily hydrolyzed groups, such as chlorine , methoxy, ethoxy, etc., specifically including trimethylchlorosilane, hexamethyldisilazane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-glycidyloxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, etc. or a combination thereof, but not limited thereto.
为了解决目前技术上的缺陷,同时制备高比表面的的壳聚糖气凝胶,本发明以氧化硅凝胶作为支撑骨架,采用共聚合凝胶方式,通过多次的溶剂置换过程和表面化学改性,采用常压干燥法制备了高比表面积的氧化硅-壳聚糖复合气凝胶。本发明通过溶胶凝胶法,采用共聚合的方式制备氧化硅-壳聚糖复合水凝胶,然后实施多次极性和非极性溶剂的溶剂置换和表面化学改性,最终通过常压干燥方法制备了高比表面积、耐酸碱性能好的氧化硅-壳聚糖复合气凝胶,可应用于医药、水处理、化学化工等领域。本方法所使用的主要原料为工业水玻璃和壳聚糖,来源丰富,价格低廉,并且生产条件温和、耗时时间短,步骤简单易操作,生产效率高,适合大规模的工业化生产。In order to solve the defects in the current technology and prepare chitosan airgel with high specific surface area at the same time, the present invention uses silica gel as the supporting skeleton, adopts the method of copolymerization gel, and undergoes multiple solvent replacement processes and surface chemistry. Modified, the silica-chitosan composite aerogel with high specific surface area was prepared by normal pressure drying method. The present invention adopts sol-gel method to prepare silica-chitosan composite hydrogel by means of copolymerization, then implements multiple polar and non-polar solvent solvent replacement and surface chemical modification, and finally dries under normal pressure. Methods A silica-chitosan composite aerogel with high specific surface area and good acid and alkali resistance was prepared, which can be used in medicine, water treatment, chemical industry and other fields. The main raw materials used in the method are industrial water glass and chitosan, which are rich in sources, low in price, mild in production conditions, short in time, simple and easy to operate, high in production efficiency, and suitable for large-scale industrial production.
以下进一步列举出一些示例性的实施例以更好地说明本发明。应理解,本发明详述的上述实施方式,及以下实施例仅用于说明本发明而不用于限制本发明的范围,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。另外,下述工艺参数中的具体配比、时间、温度等也仅是示例性,本领域技术人员可以在上述限定的范围内选择合适的值。Some exemplary embodiments are further enumerated below to better illustrate the present invention. It should be understood that the above-mentioned embodiments described in detail in the present invention and the following examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention, and those skilled in the art may make some non-essential improvements and improvements according to the above-mentioned contents of the present invention All adjustments belong to the protection scope of the present invention. In addition, the specific proportions, time, temperature, etc. in the following process parameters are only exemplary, and those skilled in the art can select appropriate values within the range defined above.
实施例1:Example 1:
1)选取模数为3.0的工业水玻璃10毫升,与40毫升的去离子水混合,搅拌均匀,得稀释水玻璃溶液(A)。将体积比1:1的强酸性离子交换树脂与稀释水玻璃混合,搅拌10min,过滤得到清液即PH值为2-3的硅酸溶液(B)。将0.5g壳聚糖粉体溶于50毫升0.1mol/L的醋酸溶液中,制得壳聚糖溶液(C)。将50毫升硅酸溶液(B)倒入50毫升壳聚糖溶液(C)中,搅拌20min,获得壳聚糖和硅酸溶液的混合溶液(D);1) Select 10 milliliters of industrial water glass with a modulus of 3.0, mix it with 40 milliliters of deionized water, and stir evenly to obtain a diluted water glass solution (A). Mix strong acidic ion exchange resin with a volume ratio of 1:1 and dilute water glass, stir for 10 minutes, and filter to obtain the clear liquid, that is, the silicic acid solution (B) with a pH value of 2-3. Dissolve 0.5 g of chitosan powder in 50 ml of 0.1 mol/L acetic acid solution to prepare chitosan solution (C). Pour 50 milliliters of silicic acid solution (B) into 50 milliliters of chitosan solution (C), and stir for 20 min to obtain a mixed solution (D) of chitosan and silicic acid solution;
2)利用氨水调节混合溶液(D)的PH值至6左右,加入100微升质量浓度为25%的戊二醛并搅拌20min,在60℃下反应1h,得氧化硅-壳聚糖复合水凝胶(E);2) Use ammonia water to adjust the pH value of the mixed solution (D) to about 6, add 100 microliters of glutaraldehyde with a mass concentration of 25%, stir for 20 minutes, and react at 60°C for 1 hour to obtain silica-chitosan composite water Gel (E);
3)将步骤2)中得到的氧化硅-壳聚糖复合水凝胶(E)捣碎并浸入100毫升的乙醇中,在65℃下搅拌2h,进行乙醇的溶剂置换。重复溶剂置换步骤2次,得到复合凝胶(F);3) The silica-chitosan composite hydrogel (E) obtained in step 2) was mashed and immersed in 100 ml of ethanol, and stirred at 65° C. for 2 h to perform solvent replacement with ethanol. Repeat the solvent replacement step 2 times to obtain a composite gel (F);
4)将步骤3)得到的复合凝胶(F)浸入100毫升的环己烷中,在65℃下搅拌2h,进行环己烷的溶剂置换。重复溶剂置换步骤3次,得到复合凝胶(G);4) The composite gel (F) obtained in step 3) was immersed in 100 ml of cyclohexane, and stirred at 65° C. for 2 hours to perform solvent replacement with cyclohexane. Repeat the solvent replacement step 3 times to obtain a composite gel (G);
5)将步骤4)得到的复合凝胶(G)放入烘箱中,在120℃下,干燥3h,即得到亲水氧化硅-壳聚糖复合气凝胶;5) Put the composite gel (G) obtained in step 4) into an oven, and dry at 120° C. for 3 hours to obtain a hydrophilic silica-chitosan composite airgel;
本实施例制备的氧化硅-壳聚糖复合气凝胶具有三维多孔网络结构,其SEM照片如图1所示;经过BET等温吸附测试,比表面积为514.4m2/g,振实密度0.64g/cm3;The silica-chitosan composite airgel prepared in this example has a three-dimensional porous network structure, and its SEM photo is shown in Figure 1; after BET isothermal adsorption test, the specific surface area is 514.4m 2 /g, and the tap density is 0.64g /cm 3 ;
图2示出了本实施例制备的氧化硅-壳聚糖复合气凝胶的红外吸收光谱,1089、800、468cm-1附近的吸收峰为氧化硅骨架Si-O-Si键的振动吸收峰,969cm-1附近出现的峰对应于氧化硅骨架Si-OH的吸收峰,1653cm-1附近出现的峰对应于戊二醛交联壳聚糖-C=N-弯曲振动吸收峰。Fig. 2 shows the infrared absorption spectrum of the silica-chitosan composite airgel prepared in this embodiment, the absorption peaks near 1089, 800, 468 cm -1 are the vibration absorption peaks of Si-O-Si bond of silica skeleton , the peak around 969cm -1 corresponds to the absorption peak of silicon oxide skeleton Si-OH, and the peak around 1653cm -1 corresponds to the absorption peak of glutaraldehyde-crosslinked chitosan-C=N-bending vibration.
实施例2:Example 2:
1)选取模数为3.0的工业水玻璃10毫升,与40毫升的去离子水混合,搅拌均匀,得稀释水玻璃溶液(A)。将体积比1:1的强酸性离子交换树脂与稀释水玻璃混合,搅拌10min,过滤得到清液即PH值为2-3的硅酸溶液(B)。将1g壳聚糖粉体溶于50毫升0.1mol/L的醋酸溶液中,制得壳聚糖溶液(C)。将50毫升硅酸溶液(B)倒入50毫升壳聚糖溶液(C)中,搅拌20min,获得壳聚糖和硅酸溶液的混合溶液(D);1) Select 10 milliliters of industrial water glass with a modulus of 3.0, mix it with 40 milliliters of deionized water, and stir evenly to obtain a diluted water glass solution (A). Mix strong acidic ion exchange resin with a volume ratio of 1:1 and dilute water glass, stir for 10 minutes, and filter to obtain the clear liquid, that is, the silicic acid solution (B) with a pH value of 2-3. Dissolve 1 g of chitosan powder in 50 milliliters of 0.1 mol/L acetic acid solution to prepare chitosan solution (C). Pour 50 milliliters of silicic acid solution (B) into 50 milliliters of chitosan solution (C), and stir for 20 min to obtain a mixed solution (D) of chitosan and silicic acid solution;
2)利用六亚甲基四胺调节混合溶液(D)的PH值至6左右,加入200微升质量浓度为25%的戊二醛并搅拌20min,在60℃下反应1h,得氧化硅-壳聚糖复合水凝胶(E);2) Use hexamethylenetetramine to adjust the pH value of the mixed solution (D) to about 6, add 200 microliters of glutaraldehyde with a mass concentration of 25%, stir for 20 minutes, and react at 60° C. for 1 hour to obtain silicon oxide- Chitosan composite hydrogel (E);
3)将步骤2)中得到的氧化硅-壳聚糖复合水凝胶(E)捣碎并浸入100毫升的乙醇中,在65℃下搅拌2h,进行乙醇的溶剂置换。重复溶剂置换步骤2次,得到复合凝胶(F);3) The silica-chitosan composite hydrogel (E) obtained in step 2) was mashed and immersed in 100 ml of ethanol, and stirred at 65° C. for 2 h to perform solvent replacement with ethanol. Repeat the solvent replacement step 2 times to obtain a composite gel (F);
4)将步骤3)得到的复合有机凝胶(F)浸入100毫升的环己烷中,在65℃下搅拌2h,进行环己烷的溶剂置换。重复溶剂置换步骤3次,得到复合凝胶(G);4) The composite organogel (F) obtained in step 3) was immersed in 100 ml of cyclohexane, stirred at 65° C. for 2 h, and the solvent of cyclohexane was replaced. Repeat the solvent replacement step 3 times to obtain a composite gel (G);
5)将步骤4)得到的复合凝胶(G)放入烘箱中,在100℃下,干燥3h,即得到氧化硅-壳聚糖复合气凝胶。经过BET等温吸附测试,比表面积为425.7m2/g,振实密度0.76g/cm3。5) Put the composite gel (G) obtained in step 4) into an oven, and dry at 100° C. for 3 hours to obtain a silica-chitosan composite airgel. After BET isothermal adsorption test, the specific surface area is 425.7m 2 /g, and the tap density is 0.76g/cm 3 .
实施例3:Example 3:
1)选取模数为3.0的工业水玻璃10毫升,与40毫升的去离子水混合,搅拌均匀,得稀释水玻璃溶液(A)。将体积比1:1的强酸性离子交换树脂与稀释水玻璃混合,搅拌10min,过滤得到清液即PH值为2-3的硅酸溶液(B)。将1g壳聚糖粉体溶于50毫升0.1mol-L的醋酸溶液中,制得壳聚糖溶液(C),将10ml硅酸溶液(A)倒入壳聚糖溶液(B)中,搅拌20min,获得壳聚糖和硅酸溶液的混合溶液(D);1) Select 10 milliliters of industrial water glass with a modulus of 3.0, mix it with 40 milliliters of deionized water, and stir evenly to obtain a diluted water glass solution (A). Mix strong acidic ion exchange resin with a volume ratio of 1:1 and dilute water glass, stir for 10 minutes, and filter to obtain the clear liquid, that is, the silicic acid solution (B) with a pH value of 2-3. Dissolve 1g of chitosan powder in 50 milliliters of 0.1mol-L acetic acid solution to prepare chitosan solution (C), pour 10ml of silicic acid solution (A) into chitosan solution (B), and stir 20min, obtain the mixed solution (D) of chitosan and silicic acid solution;
2)利用六亚甲基四胺调节混合溶液(D)的PH值至6左右,加入200微升质量浓度为25%的戊二醛并搅拌10min,在60℃下反应2h,得氧化硅-壳聚糖复合水凝胶(E);2) Use hexamethylenetetramine to adjust the pH value of the mixed solution (D) to about 6, add 200 microliters of glutaraldehyde with a mass concentration of 25%, stir for 10 minutes, and react at 60° C. for 2 hours to obtain silicon oxide- Chitosan composite hydrogel (E);
3)将步骤2)中得到的氧化硅-壳聚糖复合水凝胶(E)捣碎并浸入100毫升的乙醇中,在65℃下搅拌2h,进行乙醇的溶剂置换。重复溶剂置换步骤2次,得到复合凝胶(F);3) The silica-chitosan composite hydrogel (E) obtained in step 2) was mashed and immersed in 100 ml of ethanol, and stirred at 65° C. for 2 h to perform solvent replacement with ethanol. Repeat the solvent replacement step 2 times to obtain a composite gel (F);
4)将步骤3)得到的复合凝胶(F)浸入100毫升环己烷中,然后加入2毫升3-氨丙基三乙氧基硅烷(APTES),在65℃下搅拌4h,得到氨基改性复合凝胶(G)。将氨基改性凝胶(G)再次浸入100毫升环己烷中,在65℃下搅拌2h,进行溶剂置换,重复溶剂置换3次,过滤得到溶剂置换后的氨基改性复合凝胶(H);4) Immerse the composite gel (F) obtained in step 3) in 100 ml of cyclohexane, then add 2 ml of 3-aminopropyltriethoxysilane (APTES), and stir at 65°C for 4 hours to obtain amino modified Sexual Complex Gel (G). Immerse the amino-modified gel (G) in 100 ml of cyclohexane again, stir at 65°C for 2 hours, perform solvent replacement, repeat the solvent replacement 3 times, and filter to obtain the amino-modified composite gel (H) after solvent replacement ;
5)将步骤4)得到的氨基改性复合凝胶(H)放入烘箱中,在100℃下,干燥3h,即得到氨基改性氧化硅-壳聚糖复合气凝胶。经过BET等温吸附测试,比表面积为600.3m2/g,振实密度为0.5g/cm3;5) Put the amino-modified composite gel (H) obtained in step 4) into an oven, and dry at 100° C. for 3 hours to obtain the amino-modified silica-chitosan composite airgel. After BET isothermal adsorption test, the specific surface area is 600.3m2/g, and the tap density is 0.5g/cm3;
图3示出了本实施制备的氨基改性氧化硅-壳聚糖气凝胶红外吸收光谱,1071、784、461cm-1附近的吸收峰为氧化硅骨架Si-O-Si键的振动吸收峰,相比图2,未改性氧化硅-壳聚糖复合气凝胶样品,969cm-1附近氧化硅Si-OH的吸收峰明显变弱,这表明APTES成功改性了氧化硅骨架,同时1647cm-1附近出现的峰是-NH2和-C=N-吸收峰的叠加峰。Figure 3 shows the infrared absorption spectrum of the amino-modified silica-chitosan airgel prepared in this implementation, and the absorption peaks near 1071, 784, and 461 cm are the vibration absorption peaks of the Si-O-Si bond of the silica skeleton , compared with Fig. 2, for the unmodified silica-chitosan composite airgel sample, the absorption peak of silica Si-OH around 969cm -1 is significantly weaker, which indicates that APTES successfully modified the silica framework, while 1647cm The peak appearing around -1 is the superposition of -NH2 and -C=N- absorption peaks.
实施例4:Example 4:
1)选取模数为3.0的工业水玻璃10毫升,与40毫升的去离子水混合,搅拌均匀,得稀释水玻璃溶液(A)。将体积比1:1的强酸性离子交换树脂与稀释水玻璃混合,搅拌10min,过滤得到清液即PH值为2-3的硅酸溶液(B)。将1g壳聚糖粉体溶于50毫升0.1mol/L的醋酸溶液中,制得壳聚糖溶液(C)。将50毫升硅酸溶液(B)倒入50毫升壳聚糖溶液(C)中,搅拌20min,获得壳聚糖和硅酸溶液的混合溶液(D);1) Select 10 milliliters of industrial water glass with a modulus of 3.0, mix it with 40 milliliters of deionized water, and stir evenly to obtain a diluted water glass solution (A). Mix strong acidic ion exchange resin with a volume ratio of 1:1 and dilute water glass, stir for 10 minutes, and filter to obtain the clear liquid, that is, the silicic acid solution (B) with a pH value of 2-3. Dissolve 1 g of chitosan powder in 50 milliliters of 0.1 mol/L acetic acid solution to prepare chitosan solution (C). Pour 50 milliliters of silicic acid solution (B) into 50 milliliters of chitosan solution (C), and stir for 20 min to obtain a mixed solution (D) of chitosan and silicic acid solution;
2)利用六亚甲基四胺调节混合溶液(D)的PH值至6左右,加入1.5毫升质量分数为40%的甲醛溶液并搅拌20min,在60℃下反应1h,得氧化硅-壳聚糖复合水凝胶(E);2) Use hexamethylenetetramine to adjust the pH value of the mixed solution (D) to about 6, add 1.5 ml of formaldehyde solution with a mass fraction of 40%, stir for 20 minutes, and react at 60°C for 1 hour to obtain silica-chitopolymer Sugar complex hydrogel (E);
3)将步骤2)中得到的氧化硅-壳聚糖复合水凝胶(E)捣碎并浸入100毫升的乙醇中,在65℃下搅拌2h,进行乙醇的溶剂置换。重复溶剂置换步骤2次,得到复合凝胶(F);3) The silica-chitosan composite hydrogel (E) obtained in step 2) was mashed and immersed in 100 ml of ethanol, and stirred at 65° C. for 2 h to perform solvent replacement with ethanol. Repeat the solvent replacement step 2 times to obtain a composite gel (F);
4)将步骤3)得到的复合有机凝胶(F)浸入100毫升的环己烷中,在65℃下搅拌2h,进行环己烷的溶剂置换。重复溶剂置换步骤3次,得到复合凝胶(G);4) The composite organogel (F) obtained in step 3) was immersed in 100 ml of cyclohexane, stirred at 65° C. for 2 h, and the solvent of cyclohexane was replaced. Repeat the solvent replacement step 3 times to obtain a composite gel (G);
5)将步骤4)得到的复合凝胶(G)放入烘箱中,在100℃下,干燥3h,即得到氧化硅-壳聚糖复合气凝胶。经过BET等温吸附测试,比表面积为843.2m2/g,振实密度0.2g/cm3;5) Put the composite gel (G) obtained in step 4) into an oven, and dry at 100° C. for 3 hours to obtain a silica-chitosan composite airgel. After BET isothermal adsorption test, the specific surface area is 843.2m 2 /g, and the tap density is 0.2g/cm 3 ;
图4示出了本实施制备的氧化硅-壳聚糖气凝胶红外吸收光谱,1087、799、466cm-1附近的吸收峰为氧化硅骨架Si-O-Si键的振动吸收峰,970cm-1附近出现的峰对应于氧化硅骨架Si-OH的吸收峰,1639cm-1附近出现的峰对应于甲醛交联壳聚糖-C=N-弯曲振动吸收峰。Figure 4 shows the infrared absorption spectrum of the silica-chitosan airgel prepared in this implementation, the absorption peaks near 1087, 799, and 466cm are the vibration absorption peaks of the Si-O-Si bond of the silica skeleton, and the absorption peaks at 970cm- The peak around 1 corresponds to the absorption peak of silicon oxide skeleton Si-OH, and the peak around 1639 cm -1 corresponds to the absorption peak of formaldehyde-crosslinked chitosan-C=N-bending vibration.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410468390.5A CN104194066B (en) | 2014-09-15 | 2014-09-15 | silicon oxide-chitosan composite aerogel and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410468390.5A CN104194066B (en) | 2014-09-15 | 2014-09-15 | silicon oxide-chitosan composite aerogel and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104194066A true CN104194066A (en) | 2014-12-10 |
CN104194066B CN104194066B (en) | 2016-08-24 |
Family
ID=52079450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410468390.5A Active CN104194066B (en) | 2014-09-15 | 2014-09-15 | silicon oxide-chitosan composite aerogel and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104194066B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107715852A (en) * | 2017-11-02 | 2018-02-23 | 湘潭大学 | Vanillic aldehyde modification of chitosan SiO2Aerogel composite and its production and use |
CN108421534A (en) * | 2018-02-08 | 2018-08-21 | 中山大学 | A kind of chitosan gel rubber material and preparation method thereof, wastewater treatment method and application |
CN108779184A (en) * | 2015-12-29 | 2018-11-09 | 高德美股份公司 | Deacetylated method for biopolymer |
CN109225150A (en) * | 2018-10-10 | 2019-01-18 | 烟台工程职业技术学院 | A kind of preparation method of the dioxide composite silica aerogel of adsorbable formaldehyde |
CN109718726A (en) * | 2018-12-29 | 2019-05-07 | 江苏脒诺甫纳米材料有限公司 | A kind of production technology of parental type silica-chitosan composite aerogel |
CN111285345A (en) * | 2020-02-25 | 2020-06-16 | 中国科学院化学研究所 | A method for preparing carbon aerogel from hydrogel precursor material by hydrothermal process |
CN112244925A (en) * | 2020-10-26 | 2021-01-22 | 河北爱能生物科技股份有限公司 | Composite chitosan uterine cavity hemostatic balloon and preparation method thereof |
CN113546585A (en) * | 2021-08-05 | 2021-10-26 | 内蒙古科技大学 | A kind of hydrophobic agarose-SiO2 composite aerogel microsphere and preparation method thereof |
CN113979773A (en) * | 2021-12-03 | 2022-01-28 | 南京工业大学 | A kind of method for preparing polymer-converted ceramic aerogel |
CN114588936A (en) * | 2022-03-14 | 2022-06-07 | 南京大学 | A kind of zirconium-based Fenton catalyst and its preparation method and application |
US11730691B2 (en) | 2019-12-02 | 2023-08-22 | Galderma Holding SA | High molecular weight esthetic compositions |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102557052A (en) * | 2012-03-05 | 2012-07-11 | 中国科学院上海硅酸盐研究所 | Method for rapidly preparing low-density silicon oxide aerogel |
CN102580685A (en) * | 2011-12-15 | 2012-07-18 | 清华大学 | Porous polysaccharide cell adsorption material as well as preparation method and application thereof |
CN103157410A (en) * | 2013-03-13 | 2013-06-19 | 中国科学院化学研究所 | A kind of preparation method of airgel |
-
2014
- 2014-09-15 CN CN201410468390.5A patent/CN104194066B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102580685A (en) * | 2011-12-15 | 2012-07-18 | 清华大学 | Porous polysaccharide cell adsorption material as well as preparation method and application thereof |
CN102557052A (en) * | 2012-03-05 | 2012-07-11 | 中国科学院上海硅酸盐研究所 | Method for rapidly preparing low-density silicon oxide aerogel |
CN103157410A (en) * | 2013-03-13 | 2013-06-19 | 中国科学院化学研究所 | A kind of preparation method of airgel |
Non-Patent Citations (1)
Title |
---|
赵善宇: "介孔SiO2材料及相应复合气凝胶体系的合成", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11939433B2 (en) | 2015-12-29 | 2024-03-26 | Galderma Holding S.A. | Method for preparing acylated crosslinked glycosaminoglycans |
CN108779184A (en) * | 2015-12-29 | 2018-11-09 | 高德美股份公司 | Deacetylated method for biopolymer |
US11708461B2 (en) | 2015-12-29 | 2023-07-25 | Galderma Holding SA | Method for preparing acylated crosslinked glycosaminoglycans |
US11643509B2 (en) | 2015-12-29 | 2023-05-09 | Galderma Holding SA | Carbohydrate crosslinker |
US11530301B2 (en) | 2015-12-29 | 2022-12-20 | Galderma Holding SA | Carbohydrate crosslinker |
US11780970B2 (en) | 2015-12-29 | 2023-10-10 | Galderma Holding S.A. | Carbohydrate crosslinker |
US11254792B2 (en) | 2015-12-29 | 2022-02-22 | Galderma Holding SA | Method for deacetylation of biopolymers |
US11198765B2 (en) | 2015-12-29 | 2021-12-14 | Galderma Holding SA | Hydrolysis of ester bonds in amide crosslinked glycosaminoglycans |
CN107715852B (en) * | 2017-11-02 | 2020-05-22 | 湘潭大学 | Vanillin modified chitosan-SiO2Composite aerogel material and preparation method and application thereof |
CN107715852A (en) * | 2017-11-02 | 2018-02-23 | 湘潭大学 | Vanillic aldehyde modification of chitosan SiO2Aerogel composite and its production and use |
CN108421534A (en) * | 2018-02-08 | 2018-08-21 | 中山大学 | A kind of chitosan gel rubber material and preparation method thereof, wastewater treatment method and application |
CN109225150A (en) * | 2018-10-10 | 2019-01-18 | 烟台工程职业技术学院 | A kind of preparation method of the dioxide composite silica aerogel of adsorbable formaldehyde |
CN109718726A (en) * | 2018-12-29 | 2019-05-07 | 江苏脒诺甫纳米材料有限公司 | A kind of production technology of parental type silica-chitosan composite aerogel |
CN109718726B (en) * | 2018-12-29 | 2021-08-03 | 江苏脒诺甫纳米材料有限公司 | Production process of amphiphilic silica-chitosan composite aerogel |
US11730691B2 (en) | 2019-12-02 | 2023-08-22 | Galderma Holding SA | High molecular weight esthetic compositions |
CN111285345B (en) * | 2020-02-25 | 2021-07-27 | 中国科学院化学研究所 | A method for preparing carbon aerogel from hydrogel precursor material by hydrothermal process |
CN111285345A (en) * | 2020-02-25 | 2020-06-16 | 中国科学院化学研究所 | A method for preparing carbon aerogel from hydrogel precursor material by hydrothermal process |
CN112244925A (en) * | 2020-10-26 | 2021-01-22 | 河北爱能生物科技股份有限公司 | Composite chitosan uterine cavity hemostatic balloon and preparation method thereof |
CN113546585A (en) * | 2021-08-05 | 2021-10-26 | 内蒙古科技大学 | A kind of hydrophobic agarose-SiO2 composite aerogel microsphere and preparation method thereof |
CN113546585B (en) * | 2021-08-05 | 2022-09-09 | 内蒙古科技大学 | Hydrophobic agarose-SiO 2 Composite aerogel microspheres and preparation method thereof |
CN113979773A (en) * | 2021-12-03 | 2022-01-28 | 南京工业大学 | A kind of method for preparing polymer-converted ceramic aerogel |
CN114588936A (en) * | 2022-03-14 | 2022-06-07 | 南京大学 | A kind of zirconium-based Fenton catalyst and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN104194066B (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104194066B (en) | silicon oxide-chitosan composite aerogel and preparation method thereof | |
KR101155431B1 (en) | Manufacturing method for silica aerogel powder | |
CN102850549B (en) | Preparation method for nanometer modified surface antifogging agent | |
KR101434273B1 (en) | Method for Preparing Surface-Modified Aerogel | |
CN106492646B (en) | A kind of preparation method for the preferential mesoporous silicon oxide hybridized film of alcohol infiltration evaporation thoroughly | |
CN111908478B (en) | A kind of preparation method of flexible silica airgel | |
CN108218386A (en) | Chlorosilane modified graphene oxide/silica heat-preserving complex material preparation method | |
EP3357864A1 (en) | Method for preparing hydrophobic silica aerogel and hydrophobic silica aerogel prepared therefrom | |
EP3693425A1 (en) | Coating solution, method for producing coating film, and coating film | |
CN104300164B (en) | A kind of preparation method of compound proton exchange membrane | |
Lei et al. | Tailoring structural and physical properties of polymethylsilsesquioxane aerogels by adjusting NH3· H2O concentration | |
KR20080093772A (en) | Airgel powder production method having increased particle size and density and permanent hydrophobicity and airgel powder prepared therefrom | |
CN106824131B (en) | A kind of mesoporous material modified by chitosan and its preparation method and application | |
CN104209023B (en) | Sulfonated polyether-ether-ketone-sulfonation silicon dioxide microsphere hybridized film and preparation and application | |
CN106345458A (en) | Mesoporous carbon-silicon dioxide complex loaded nano-palladium catalyst and synthesis method thereof | |
TW201831229A (en) | Aerogel having surface modified with catechol-based compounds and preparation method thereof | |
CN103977749A (en) | A method for preparing amorphous SiO2-Al2O3 airgel using metakaolin as raw material | |
CN110591543A (en) | A kind of silica-loaded chitosan modified waterborne polyurethane acrylate composite emulsion and its preparation method and application | |
CN107188524A (en) | One-step method constant pressure and dry quickly prepares TiO2The method of doping silicon dioxide aerogel powder | |
CN102019213B (en) | Method for preparing strongly-acid ion exchange medium | |
CN106345461A (en) | Large-pore-size mesoporous carbon/silicon dioxide loaded gold nano-catalyst and synthesis method thereof | |
CN103360798A (en) | Method for preparing hydrophobic white carbon black | |
CN108658130A (en) | A method of preparing iron oxide and aerosil simultaneously from iron tailings | |
CN107011707A (en) | A kind of preparation method of the novel nano-material of antifogging self-cleaning | |
TW200902192A (en) | Provides a process for preparing a composite having metal nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |