CN104182624A - Integrated modular avionics system service capability assessment method - Google Patents
Integrated modular avionics system service capability assessment method Download PDFInfo
- Publication number
- CN104182624A CN104182624A CN201410397348.9A CN201410397348A CN104182624A CN 104182624 A CN104182624 A CN 104182624A CN 201410397348 A CN201410397348 A CN 201410397348A CN 104182624 A CN104182624 A CN 104182624A
- Authority
- CN
- China
- Prior art keywords
- resource
- ima
- service capability
- avionics system
- resources
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000006870 function Effects 0.000 claims abstract description 55
- 238000011156 evaluation Methods 0.000 claims abstract description 36
- 239000011159 matrix material Substances 0.000 claims abstract description 31
- 230000008569 process Effects 0.000 claims abstract description 9
- 230000015556 catabolic process Effects 0.000 claims abstract description 4
- 238000006731 degradation reaction Methods 0.000 claims abstract description 4
- 238000002955 isolation Methods 0.000 claims description 38
- 238000004891 communication Methods 0.000 claims description 20
- 238000003860 storage Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 16
- 238000012790 confirmation Methods 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 claims description 7
- 238000007726 management method Methods 0.000 claims description 6
- 238000005192 partition Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 4
- 238000013500 data storage Methods 0.000 claims description 3
- 238000011002 quantification Methods 0.000 claims description 3
- 230000010354 integration Effects 0.000 abstract description 7
- 238000011161 development Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种综合模块化航电系统服务能力评估方法。其包括对IMA平台提供的资源进行确认、划分;对IMA平台各资源进行独立性确认和量化处理;建立IMA平台资源矩阵;从平台资源矩阵中获得IMA平台最大服务能力;判定IMA系统是否满足航电系统功能的服务能力需求:当存在资源失效时,相应的资源矩阵中的元素置零,或根据资源的降级情况减少数值,重复判定过程,实现对资源失效后的IMA平台服务能力的评估等步骤。本发明解决了针对资源共享特性的IMA平台的服务能力评估问题,对系统的服务能力进行了量化,有助于最大化系统的资源利用率;有助于系统集成厂商合理规划IMA平台的驻留功能种类和数量,提高航电系统的“失效-安全”能力。
A comprehensive modular avionics system service capability assessment method. It includes confirming and dividing the resources provided by the IMA platform; independently confirming and quantifying the resources of the IMA platform; establishing the IMA platform resource matrix; obtaining the maximum service capability of the IMA platform from the platform resource matrix; Service capability requirements for electrical system functions: When there is a resource failure, the elements in the corresponding resource matrix are set to zero, or the value is reduced according to the degradation of the resource, and the determination process is repeated to realize the evaluation of the service capability of the IMA platform after the resource failure, etc. step. The invention solves the problem of evaluating the service capability of the IMA platform aimed at resource sharing characteristics, quantifies the service capability of the system, and helps to maximize the resource utilization rate of the system; it helps system integration manufacturers to reasonably plan the residence of the IMA platform The types and quantities of functions improve the "fail-safe" capability of the avionics system.
Description
技术领域technical field
本发明属于综合模块化航空电子技术领域,特别是涉及一种综合模块化航电系统服务能力评估方法。The invention belongs to the technical field of comprehensive modular avionics, in particular to a method for evaluating the service capability of a comprehensive modular avionics system.
背景技术Background technique
综合模块化航空电子(IMA,Integrated Modular Avionics)系统通过在硬件资源平台上驻留不同的分区应用来实现相应的航电系统功能,带来了制造、维护成本的降低,使IMA系统逐渐开始替代传统的联合式航电系统成为新一代客机的首选航电架构,已被应用于波音787、空客A380以及COMAC C919飞机。The integrated modular avionics (IMA, Integrated Modular Avionics) system implements the corresponding avionics system functions by residing in different partitioned applications on the hardware resource platform, which brings about the reduction of manufacturing and maintenance costs, and gradually replaces the IMA system. The traditional combined avionics system has become the preferred avionics architecture for the new generation of passenger aircraft, and has been applied to Boeing 787, Airbus A380 and COMAC C919 aircraft.
随着技术的发展和航电系统需求的不断提高,越来越多的航电系统功能被集成到IMA平台,因此IMA平台所驻留的分区应用数量和种类也在不断增加,使得不同安全关键等级的应用能够共享相同的资源。在IMA系统架构下,各具体系统功能的实现依赖于IMA平台本身的服务能力,而现有的服务能力评价方法仅针对特定的航电功能进行,如针对导航、通信、避撞等系统的性能评价,无法完成IMA系统的服务能力评估,从而给航电系统集成带来了困难,使系统集成厂商无法准确预估IMA平台的服务能力,只能采取保守策略,结果造成了系统资源的浪费,提高了设计、制造和系统集成的成本。With the development of technology and the continuous improvement of avionics system requirements, more and more avionics system functions are integrated into the IMA platform. Therefore, the number and types of partition applications that reside on the IMA platform are also increasing, making the Applications at a level can share the same resources. Under the framework of the IMA system, the realization of each specific system function depends on the service capability of the IMA platform itself, and the existing service capability evaluation method is only for specific avionics functions, such as the performance of navigation, communication, collision avoidance and other systems evaluation, the service capability evaluation of the IMA system cannot be completed, which brings difficulties to the integration of avionics systems, and makes it impossible for system integration manufacturers to accurately estimate the service capabilities of the IMA platform, so they can only adopt conservative strategies, resulting in a waste of system resources. Increased design, manufacturing and system integration costs.
发明内容Contents of the invention
为了解决上述问题,本发明的目的在于提供一种综合模块化航电系统服务能力评估方法。In order to solve the above problems, the purpose of the present invention is to provide a comprehensive modular avionics system service capability evaluation method.
为了达到上述目的,本发明提供的综合模块化航电系统服务能力评估方法包括按顺序执行的下列步骤:In order to achieve the above purpose, the comprehensive modular avionics system service capability evaluation method provided by the present invention includes the following steps executed in order:
步骤1):首先对IMA平台可提供的资源进行确认、划分;Step 1): First, confirm and divide the resources that the IMA platform can provide;
步骤2):对IMA平台各资源进行独立性确认和量化处理;Step 2): Carry out independent confirmation and quantitative processing of each resource on the IMA platform;
步骤3):建立IMA平台资源矩阵;Step 3): Establish the IMA platform resource matrix;
步骤4):从上述IMA平台资源矩阵中获得IMA平台的最大服务能力;Step 4): Obtain the maximum service capability of the IMA platform from the above-mentioned IMA platform resource matrix;
步骤5):判定IMA系统是否满足航电系统功能的服务能力需求:Step 5): Determine whether the IMA system meets the service capability requirements of the avionics system functions:
步骤6:当存在资源失效时,相应的资源矩阵中的元素置零,或根据资源的降级情况减少数值,重复步骤5)的判定过程,实现对资源失效后的IMA平台服务能力的评估;当不存在资源失效时,说明评估已经完成,本流程至此结束。Step 6: When there is a resource failure, the elements in the corresponding resource matrix are set to zero, or the value is reduced according to the degradation of the resource, and the determination process of step 5) is repeated to realize the evaluation of the service capability of the IMA platform after the resource failure; When there is no resource failure, it means that the evaluation has been completed, and this process ends here.
在步骤1)中,所述的IMA平台资源主要分为:计算资源、存储资源和通信资源;其中计算资源包括:中央处理器、传感器前端处理器;存储资源包括:分区应用的运行内存、分区应用的数据存储器以及分区应用的配置存储器;通信资源包括:通信链路、虚拟链路、通信端口和信誉值。In step 1), the IMA platform resources are mainly divided into: computing resources, storage resources and communication resources; wherein computing resources include: central processing unit, sensor front-end processor; storage resources include: running memory of partitioned applications, partitions Application data storage and partition application configuration storage; communication resources include: communication link, virtual link, communication port and reputation value.
在步骤2)中,所述的IMA平台资源的独立性确认手段包括物理隔离确认和逻辑隔离确认两种;对于不同的资源类别,被认可的的隔离方式如下;对于处理器资源,采用多核处理器或多处理器IMA平台的物理隔离方式,其各处理器/处理单元间具有确定的物理隔离边界,单个失效不会影响到其他部分的处理能力;以及单处理器上分区隔离的逻辑隔离方式,通过对处理器的访问权限进行时间划分来达到对各驻留航电系统功能的隔离;对于存储资源,采用物理地址隔离的物理隔离方式,通过内存管理单元对虚拟地址管理的逻辑隔离方式;通信资源采用虚拟链路技术的逻辑隔离方式,以及多端口技术的物理隔离方式。In step 2), the means for confirming the independence of the resources of the IMA platform includes physical isolation confirmation and logical isolation confirmation; for different resource categories, the approved isolation methods are as follows; for processor resources, multi-core processing is adopted The physical isolation method of processor or multi-processor IMA platform has a definite physical isolation boundary between each processor/processing unit, and a single failure will not affect the processing capabilities of other parts; and the logical isolation method of partition isolation on a single processor , by time-dividing the access authority of the processor to achieve the isolation of the functions of each resident avionics system; for storage resources, adopt the physical isolation method of physical address isolation, and the logical isolation method of virtual address management through the memory management unit; Communication resources adopt the logical isolation method of virtual link technology and the physical isolation method of multi-port technology.
在步骤2)中,所述的量化处理是对IMA平台资源进行数值化的能力评估;对于计算资源,以秒钟执行的百万指令数作为其计算能力的评估单位;对于存储资源,以比特作为其存储能力评估单位;对于通信资源,以每秒传输字节数作为其数据传输能力评估单位。In step 2), the quantification process is a numerical capability evaluation of IMA platform resources; for computing resources, the number of million instructions executed in seconds is used as the evaluation unit of its computing power; for storage resources, the evaluation unit is bit As its storage capacity evaluation unit; for communication resources, the number of bytes transmitted per second is used as its data transmission capacity evaluation unit.
在步骤3)中,所述的IMA平台资源矩阵为:In step 3), described IMA platform resource matrix is:
资源矩阵的列代表了m个不同的资源类别,资源矩阵的行代表了不同类别资源的n个独立模块,资源矩阵中的每个元素α11代表各资源模块可提供的量化的服务能力。The columns of the resource matrix represent m different resource categories, the rows of the resource matrix represent n independent modules of different types of resources, and each element α11 in the resource matrix represents the quantified service capability that each resource module can provide.
在步骤4)中,所述的从IMA平台资源矩阵中获得IMA平台的最大服务能力的方法是:In step 4), the described method of obtaining the maximum service capability of the IMA platform from the IMA platform resource matrix is:
从资源矩阵的每一列中选取1个不为0的元素组成的一个资源集合P[α1i α2k α3m …]称为一个最小服务单元;资源矩阵中所有不重叠的最小服务单元个数成为IMA平台的最大服务能力。A resource set P[α 1i α 2k α 3m …] consisting of one non-zero element selected from each column of the resource matrix is called a minimum service unit; the number of all non-overlapping minimum service units in the resource matrix becomes The maximum service capacity of the IMA platform.
在步骤5)中,所述的判定IMA系统是否满足航电系统功能的服务能力需求的方法是:In step 5), the method for determining whether the IMA system meets the service capability requirement of the avionics system function is:
对于具体的航电系统功能fi,其对IMA平台的资源需求集合为Q[β1 β2 β3 …];当航电系统功能所需的资源不可分割时,当存在最小服务单元Pi,对任意元素αij≥βi时,则判定IMA系统满足航电系统功能fi的服务能力需求;当航电功能所需的资源可分配到不同资源模块时,对于航电系统功能fk,当存在最小服务单元集合[Pi,Pk,…]满足对任意元素∑αij≥βi时,则判定IMA系统满足航电系统功能fk的服务能力需求,否则IMA系统不能满足航电系统功能fk的服务能力需求;For a specific avionics system function f i , its set of resource requirements for the IMA platform is Q[β 1 β 2 β 3 ...]; when the resources required by the avionics system function are indivisible, when there is a minimum service unit P i , when any element α ij ≥ β i , it is determined that the IMA system meets the service capability requirements of the avionics system function f i ; when the resources required by the avionics function can be allocated to different resource modules, for the avionics system function f k , when there is a minimum service unit set [P i , P k ,…] that satisfies any element ∑α ij ≥ β i , it is determined that the IMA system meets the service capability requirements of the avionics system function f k , otherwise the IMA system cannot meet the avionics system function f k Service capability requirements of electrical system function f k ;
当多航电系统功能驻留在同一IMA平台的时,对于航电系统功能集合F[fp,fr,ft,...],其对IMA平台的资源需求集合为[Qi,Qk,…],当存在最小服务单元集合[Pi,Pk,…]满足对任意元素∑αij≥∑βi,同时满足各航电系统功能对资源平台是否可分割的需求时,则判定IMA系统满足航电系统功能集合F的服务能力需求,否则IMA系统不满足航电系统功能集合F的服务能力需求。When multiple avionics system functions reside on the same IMA platform, for the avionics system function set F[f p , fr , ft ,...], the set of resource requirements for the IMA platform is [Q i , Q k ,…], when there is a minimum set of service units [P i , P k ,…] satisfying any element ∑α ij ≥ ∑β i , and meeting the requirements of each avionics system function on whether the resource platform is separable, It is determined that the IMA system meets the service capability requirements of the avionics system function set F, otherwise the IMA system does not meet the service capability requirements of the avionics system function set F.
本发明提供的综合模块化航电系统服务能力评估方法具有的优点在于:The comprehensive modular avionics system service capability evaluation method provided by the present invention has the advantages of:
解决了针对资源共享特性的IMA平台的服务能力评估问题,对系统的服务能力进行了量化,有助于最大化系统的资源利用率;Solved the service capability evaluation problem of the IMA platform for resource sharing characteristics, quantified the service capability of the system, and helped to maximize the resource utilization of the system;
解决了部分资源失效条件下的IMA平台服务能力评估问题,有助于系统集成厂商合理规划IMA平台的驻留功能种类和数量,提高航电系统的“失效-安全”能力。It solves the problem of IMA platform service capability evaluation under the condition of partial resource failure, helps system integration manufacturers to reasonably plan the types and quantities of resident functions of IMA platform, and improves the "failure-safety" capability of avionics systems.
附图说明Description of drawings
图1为本发明提供的综合模块化航电系统服务能力评估方法的流程图。Fig. 1 is a flow chart of the service capability evaluation method of the integrated modular avionics system provided by the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明提供的综合模块化航电系统服务能力评估方法进行详细说明。The method for evaluating the service capability of the integrated modular avionics system provided by the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,本发明提供的综合模块化航电系统服务能力评估方法包括按顺序执行的下列步骤:As shown in Figure 1, the comprehensive modular avionics system service capability assessment method provided by the present invention includes the following steps executed in sequence:
步骤1):首先对IMA平台可提供的资源进行确认、划分;IMA平台资源主要分为:计算资源、存储资源和通信资源;其中计算资源包括:中央处理器、传感器前端处理器等;存储资源包括:分区应用的运行内存、分区应用的数据存储器以及分区应用的配置存储器等;通信资源包括:通信链路、虚拟链路、通信端口和信誉值等;Step 1): First, confirm and divide the resources that the IMA platform can provide; the IMA platform resources are mainly divided into: computing resources, storage resources and communication resources; the computing resources include: central processing unit, sensor front-end processor, etc.; storage resources Including: the running memory of the partitioned application, the data storage of the partitioned application, and the configuration storage of the partitioned application, etc.; the communication resources include: communication links, virtual links, communication ports and reputation values, etc.;
步骤2):对IMA平台各资源进行独立性确认和量化处理;独立性确认的目的是减少资源的耦合,便于对失效后的系统服务能力进行分析评估;量化处理的结果便于进行数值化的评估;IMA平台资源的独立性确认手段包括物理隔离确认和逻辑隔离确认两种;对于不同的资源类别,被认可的的隔离方式如下;对于处理器资源,采用多核处理器或多处理器IMA平台的物理隔离方式,其各处理器/处理单元间具有确定的物理隔离边界,单个失效不会影响到其他部分的处理能力;以及单处理器上分区隔离的逻辑隔离方式,通过对处理器的访问权限进行时间划分来达到对各驻留航电系统功能的隔离;对于存储资源,采用物理地址隔离的物理隔离方式,通过内存管理单元对虚拟地址管理的逻辑隔离方式;通信资源采用虚拟链路技术的逻辑隔离方式,以及多端口技术的物理隔离方式。Step 2): Carry out independence confirmation and quantitative processing for each resource of the IMA platform; the purpose of independence confirmation is to reduce the coupling of resources and facilitate the analysis and evaluation of system service capabilities after failure; the results of quantitative processing are convenient for numerical evaluation ; The means of confirming the independence of IMA platform resources include physical isolation confirmation and logical isolation confirmation; for different resource types, the approved isolation methods are as follows; for processor resources, multi-core processors or multi-processor IMA platform Physical isolation method, each processor/processing unit has a definite physical isolation boundary, and a single failure will not affect the processing capabilities of other parts; and the logical isolation method of partition isolation on a single processor, through access to the processor Carry out time division to isolate the functions of each resident avionics system; for storage resources, adopt the physical isolation method of physical address isolation, and use the logical isolation method of virtual address management through the memory management unit; communication resources adopt virtual link technology Logical isolation method, and physical isolation method of multi-port technology.
量化处理是对IMA平台资源进行数值化的能力评估;对于计算资源,以秒钟执行的百万指令数(Million Instructions PerSecond,MIPS)作为其计算能力的评估单位;对于存储资源,以比特(bit)作为其存储能力评估单位;对于通信资源,以每秒传输字节数(bps)作为其数据传输能力评估单位;Quantification processing is the capability evaluation of IMA platform resources; for computing resources, the number of million instructions executed per second (Million Instructions Per Second, MIPS) is used as the evaluation unit of its computing power; for storage resources, bit (bit ) as its storage capacity evaluation unit; for communication resources, the number of transmission bytes per second (bps) is used as its data transmission capacity evaluation unit;
步骤3):建立IMA平台资源矩阵;Step 3): Establish the IMA platform resource matrix;
资源矩阵的列代表了m个不同的资源类别(处理、通信、存储等),资源矩阵的行代表了不同类别资源的n个独立模块,资源矩阵中的每个元素α11代表各资源模块可提供的量化的服务能力;The columns of the resource matrix represent m different resource categories (processing, communication, storage, etc.), the rows of the resource matrix represent n independent modules of different types of resources, and each element α 11 in the resource matrix represents that each resource module can Quantified service capabilities provided;
步骤4):从上述IMA平台资源矩阵中获得IMA平台的最大服务能力;Step 4): Obtain the maximum service capability of the IMA platform from the above-mentioned IMA platform resource matrix;
从资源矩阵的每一列中选取1个不为0的元素组成的一个资源集合P[α1i α2k α3m …]称为一个最小服务单元;资源矩阵中所有不重叠的最小服务单元个数成为IMA平台的最大服务能力;A resource set P[α 1i α 2k α 3m …] consisting of one non-zero element selected from each column of the resource matrix is called a minimum service unit; the number of all non-overlapping minimum service units in the resource matrix becomes The maximum service capacity of the IMA platform;
步骤5):判定IMA系统是否满足航电系统功能的服务能力需求:Step 5): Determine whether the IMA system meets the service capability requirements of the avionics system functions:
对于具体的航电系统功能fi,其对IMA平台的资源需求集合为Q[β1 β2 β3 …];当航电系统功能所需的资源不可分割时,当存在最小服务单元Pi,对任意元素αij≥βi时,则判定IMA系统满足航电系统功能fi的服务能力需求;当航电功能所需的资源可分配到不同资源模块时,对于航电系统功能fk,当存在最小服务单元集合[Pi,Pk,…]满足对任意元素∑αij≥βi时,则判定IMA系统满足航电系统功能fk的服务能力需求,否则IMA系统不能满足航电系统功能fk的服务能力需求;For a specific avionics system function f i , its set of resource requirements for the IMA platform is Q[β 1 β 2 β 3 ...]; when the resources required by the avionics system function are indivisible, when there is a minimum service unit P i , when any element α ij ≥ β i , it is determined that the IMA system meets the service capability requirements of the avionics system function f i ; when the resources required by the avionics function can be allocated to different resource modules, for the avionics system function f k , when there is a minimum service unit set [P i , P k ,…] that satisfies any element ∑α ij ≥ β i , it is determined that the IMA system meets the service capability requirements of the avionics system function f k , otherwise the IMA system cannot meet the avionics system function f k Service capability requirements of electrical system function f k ;
当多航电系统功能驻留在同一IMA平台时,对于航电系统功能集合F[fp,fr,ft,...],其对IMA平台的资源需求集合为[Qi,Qk,…],当存在最小服务单元集合[Pi,Pk,…]满足对任意元素∑αij≥∑βi,同时满足各航电系统功能对资源平台是否可分割的需求时,则判定IMA系统满足航电系统功能集合F的服务能力需求,否则IMA系统不满足航电系统功能集合F的服务能力需求。When multiple avionics system functions reside on the same IMA platform, for the avionics system function set F[f p , fr ,f t ,...], the set of resource requirements for the IMA platform is [Q i ,Q k ,…], when there is a minimum set of service units [P i , P k ,…] that satisfy any element ∑α ij ≥ ∑β i , and meet the requirements of each avionics system function on whether the resource platform is separable, then It is determined that the IMA system meets the service capability requirements of the avionics system function set F, otherwise the IMA system does not meet the service capability requirements of the avionics system function set F.
步骤6:当存在资源失效时,相应的资源矩阵中的元素置零,或根据资源的降级情况减少数值,重复步骤5)的判定过程,实现对资源失效后的IMA平台服务能力的评估;当不存在资源失效时,说明评估已经完成,本流程至此结束。Step 6: When there is a resource failure, the elements in the corresponding resource matrix are set to zero, or the value is reduced according to the degradation of the resource, and the determination process of step 5) is repeated to realize the evaluation of the service capability of the IMA platform after the resource failure; When there is no resource failure, it means that the evaluation has been completed, and this process ends here.
本发明提供的综合模块化航电系统服务能力评估方法能够有效地对IMA系统的服务能力进行量化,提高了系统资源的利用率,降低了IMA系统的开发、研制、集成成本;对部分资源失效后系统的服务能力的评估有助于系统集成厂商合理规划IMA平台的驻留功能种类和数量,提高了航电系统的“失效-安全”能力,提高了飞机的飞行安全水平。The comprehensive modular avionics system service capability evaluation method provided by the present invention can effectively quantify the service capability of the IMA system, improve the utilization rate of system resources, and reduce the development, development and integration costs of the IMA system; The evaluation of the service capability of the post-system will help the system integration manufacturer to reasonably plan the type and quantity of the resident functions of the IMA platform, improve the "failure-safety" capability of the avionics system, and improve the flight safety level of the aircraft.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410397348.9A CN104182624B (en) | 2014-08-13 | 2014-08-13 | Integrated modular avionics system service capability assessment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410397348.9A CN104182624B (en) | 2014-08-13 | 2014-08-13 | Integrated modular avionics system service capability assessment method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104182624A true CN104182624A (en) | 2014-12-03 |
CN104182624B CN104182624B (en) | 2017-01-25 |
Family
ID=51963659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410397348.9A Expired - Fee Related CN104182624B (en) | 2014-08-13 | 2014-08-13 | Integrated modular avionics system service capability assessment method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104182624B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105608247A (en) * | 2015-11-11 | 2016-05-25 | 北京航空航天大学 | IMA resource security analysis-oriented AADL to ECPN model conversion method |
CN105959090A (en) * | 2016-06-16 | 2016-09-21 | 国网信息通信产业集团有限公司 | Service processing method and device of power wireless private network |
CN106341276A (en) * | 2016-11-02 | 2017-01-18 | 中国航空无线电电子研究所 | IMA system configuration generating method based on constraint satisfaction theory |
CN107766650A (en) * | 2017-10-20 | 2018-03-06 | 中国民航大学 | The dynamic capability response avionics system vision simulation instrument implementation method of oriented mission |
CN107908892A (en) * | 2017-11-28 | 2018-04-13 | 中国民航大学 | A kind of enhancing visual system Safety Analysis Method based on model |
CN112884337A (en) * | 2021-03-04 | 2021-06-01 | 中国航空工业集团公司西安航空计算技术研究所 | Method for defining generalized IMA platform typical failure condition directory |
CN114741133A (en) * | 2022-04-21 | 2022-07-12 | 中国航空无线电电子研究所 | Comprehensive modularized avionics system resource allocation and evaluation method based on model |
CN117593171A (en) * | 2024-01-15 | 2024-02-23 | 西安甘鑫科技股份有限公司 | Image acquisition, storage and processing method based on FPGA |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103745116A (en) * | 2014-01-17 | 2014-04-23 | 清华大学 | DIMA (distributed integrated modular avionics) system evaluation and optimization method |
-
2014
- 2014-08-13 CN CN201410397348.9A patent/CN104182624B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103745116A (en) * | 2014-01-17 | 2014-04-23 | 清华大学 | DIMA (distributed integrated modular avionics) system evaluation and optimization method |
Non-Patent Citations (2)
Title |
---|
王鹏 等: "综合模块化航电系统失效模型分析", 《电讯技术》 * |
金德琨 等: "《民用飞机航空电子系统》", 31 December 2011 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105608247B (en) * | 2015-11-11 | 2018-08-28 | 北京航空航天大学 | AADL to ECPN model conversion methods towards the analysis of IMA resource resource securities |
CN105608247A (en) * | 2015-11-11 | 2016-05-25 | 北京航空航天大学 | IMA resource security analysis-oriented AADL to ECPN model conversion method |
CN105959090A (en) * | 2016-06-16 | 2016-09-21 | 国网信息通信产业集团有限公司 | Service processing method and device of power wireless private network |
CN106341276A (en) * | 2016-11-02 | 2017-01-18 | 中国航空无线电电子研究所 | IMA system configuration generating method based on constraint satisfaction theory |
CN106341276B (en) * | 2016-11-02 | 2019-10-29 | 中国航空无线电电子研究所 | A kind of IMA system configuration generation method based on constraint satisfaction theory |
CN107766650A (en) * | 2017-10-20 | 2018-03-06 | 中国民航大学 | The dynamic capability response avionics system vision simulation instrument implementation method of oriented mission |
CN107766650B (en) * | 2017-10-20 | 2021-07-06 | 中国民航大学 | Implementation method of task-oriented dynamic capability response avionics system visual simulation tool |
CN107908892A (en) * | 2017-11-28 | 2018-04-13 | 中国民航大学 | A kind of enhancing visual system Safety Analysis Method based on model |
CN107908892B (en) * | 2017-11-28 | 2021-07-06 | 中国民航大学 | A Model-Based Method for Security Analysis of Augmented Vision System |
CN112884337A (en) * | 2021-03-04 | 2021-06-01 | 中国航空工业集团公司西安航空计算技术研究所 | Method for defining generalized IMA platform typical failure condition directory |
CN112884337B (en) * | 2021-03-04 | 2024-01-16 | 中国航空工业集团公司西安航空计算技术研究所 | Method for defining typical failure condition catalog of generalized IMA platform |
CN114741133A (en) * | 2022-04-21 | 2022-07-12 | 中国航空无线电电子研究所 | Comprehensive modularized avionics system resource allocation and evaluation method based on model |
CN114741133B (en) * | 2022-04-21 | 2023-10-27 | 中国航空无线电电子研究所 | Comprehensive modularized avionics system resource allocation and assessment method based on model |
CN117593171A (en) * | 2024-01-15 | 2024-02-23 | 西安甘鑫科技股份有限公司 | Image acquisition, storage and processing method based on FPGA |
CN117593171B (en) * | 2024-01-15 | 2024-04-30 | 西安甘鑫科技股份有限公司 | Image acquisition, storage and processing method based on FPGA |
Also Published As
Publication number | Publication date |
---|---|
CN104182624B (en) | 2017-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104182624B (en) | Integrated modular avionics system service capability assessment method | |
US11010313B2 (en) | Method, apparatus, and system for an architecture for machine learning acceleration | |
WO2018176385A1 (en) | System and method for network slicing for service-oriented networks | |
DE112017004663T5 (en) | MULTIPLE CONNECTOR SUPPORT FOR USB-C | |
CN106598735B (en) | A kind of distributed computing method, main controlled node and computing system | |
DE112013007726T5 (en) | Improvements to an interconnect retimer | |
TWI735531B (en) | Processor power monitoring and control with dynamic load balancing | |
US11106998B2 (en) | System with hybrid communication strategy for large-scale distributed deep learning | |
CN109074281B (en) | Method and device for distributing graphics processor tasks | |
DE102018130369A1 (en) | PLANNING PERIODIC CORE CORE DIAGNOSTICS WITHIN AN OPERATING SYSTEM DURING THE TERM | |
CN104239147A (en) | Method and system for processing deadlock cycle | |
DE112021002386T5 (en) | DATA CENTER COOLANT QUALITY ANALYSIS AND DAMAGE CONTROL | |
CN108733464A (en) | A kind of method and device of the scheduling scheme of determining calculating task | |
DE102015214915A9 (en) | Flexible planning method and device in LIN communication | |
CN114902250A (en) | AI annotation based on signaling interaction | |
US11851076B2 (en) | Data processing device and method for driving assisting, and associated storage medium and vehicle | |
CN109032769A (en) | A kind of continuous integrating CI task processing method and device based on container | |
KR20160087274A (en) | An Electronic Control Unit multi-core architecture based on AUTOSAR(AUTomotive Open System Architecture) and Vehicle including the same | |
US7529953B1 (en) | Communication bus power state management | |
CN115048218A (en) | End cloud collaborative reasoning method and system in edge heterogeneous scene | |
CN118210634B (en) | Server system, resource scheduling method of server system, chip and core particle | |
DE102022111135A1 (en) | INTELLIGENT FLOW CONTROLLERS WITH HOT REPLACEABLE PLATES IN DATA CENTER COOLING SYSTEMS | |
CN110780886A (en) | Method and device for installing avionic software application, computer program and system | |
DE102019101114A1 (en) | A system, apparatus and method for providing a fabric for an accelerator | |
WO2022122093A1 (en) | Method for optimizing the transfer data rate in a sensor network in partial network operation in an ethernet network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170125 |