CN104180794A - 数字正射影像拉花区域的处理方法 - Google Patents

数字正射影像拉花区域的处理方法 Download PDF

Info

Publication number
CN104180794A
CN104180794A CN201410442529.9A CN201410442529A CN104180794A CN 104180794 A CN104180794 A CN 104180794A CN 201410442529 A CN201410442529 A CN 201410442529A CN 104180794 A CN104180794 A CN 104180794A
Authority
CN
China
Prior art keywords
garland
current
point
current detection
detection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410442529.9A
Other languages
English (en)
Other versions
CN104180794B (zh
Inventor
刘敏
郭永春
梁菲
姚春雨
左涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerial Photogrammetry and Remote Sensing Co Ltd
Original Assignee
Sian Coal and Aeronautics Information Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sian Coal and Aeronautics Information Industry Co Ltd filed Critical Sian Coal and Aeronautics Information Industry Co Ltd
Priority to CN201410442529.9A priority Critical patent/CN104180794B/zh
Publication of CN104180794A publication Critical patent/CN104180794A/zh
Application granted granted Critical
Publication of CN104180794B publication Critical patent/CN104180794B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • G06T7/49Analysis of texture based on structural texture description, e.g. using primitives or placement rules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • G06T7/344Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/38Registration of image sequences
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • G06T2207/10044Radar image

Abstract

本发明公开了一种数字正射影像拉花区域的处理方法,包括步骤:一、获取被测量区域的原始测量数据;二、正射影像的地面格网范围确定;三、拉花检测:对当前所处理航空摄影图像的纠正图像上的各格网点分别进行拉花检测,过程如下:301、投影光线方位确定;302、拉花判断:判断沿所确定投影光线上是否存在其它与当前检测点在原始影像上对应的像素点相同的格网点:当存在时,说明当前检测点为“拉花”点;反之,说明当前检测点为未“拉花”点;四、影像纠正:根据拉花检测结果,对当前所处理航空摄影图像进行纠正。本发明方法步骤简单、设计合理且效率高、使用效果好,能解决现有正射影像的拉花处理方法存在的效率低、使用效果较差等问题。

Description

数字正射影像拉花区域的处理方法
技术领域
本发明属于航空摄影测量技术领域,具体涉及一种数字正射影像拉花区域的处理方法。
背景技术
正射影像制作是指同时消除地形起伏和相片倾斜引起的影像变形的过程。正射影像是根据有关参数和数字高程模型(DEM),利用相应的构像方程式,计算地面点对应的像点坐标,并对原始影像进行灰度重采样,使得成为一幅既有正确平面位置又有丰富纹理信息的影像的技术。
正射影像是对原始影像进行微分纠正和灰度重采样的结果图,而原始影像由于中心投影和地形起伏的影响并不能保证地面上的每个位置都能在影像中成像。因此,在数字微分纠正中,重采样时对于摄影信息充足的区域采样较为稀疏,对于摄影信息匮乏区域采样过密或者重复采样,从而导致图像出现颗粒感或者拉伸的现象,沿一个方向拉伸过度时会出现区域纹理失真的现象,我们称之为“拉花”现象。根据中华人民共和国测绘行业标准《CH/T9008.3-2010》中“基础地理信息数字成果1:500、1:1000、1:2000数字正射影像图”的规定,数字正射影像的质量元素主要有空间参考系、位置精度、逻辑一致性、时间精度、影像质量、元数据质量、表征质量和附件质量。而“拉花”问题的存在严重影响了质量元素的位置精度和影像质量。
目前,在国内外文献和专利中,还没有针对“拉花”提出的自动化解决方案,在通常的生产过程中,当出现拉花现象的正射影像时,一般都要通过利用人工的方法对“拉花”区域进行寻找,并到相应的纠正影像图或者原图当中去定位,寻找相应的纹理对“拉花”区域进行替补,以此来解决“拉花”问题,但这种人工的处理方法非常费时费力,特别是在“拉花”区域比较多的情况下,生产效率非常低。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种数字正射影像拉花区域的处理方法,其方法步骤简单、设计合理且效率高、使用效果好,能有效解决现有正射影像的拉花处理方法存在的效率低、使用效果较差等问题。
为解决上述技术问题,本发明采用的技术方案是:一种数字正射影像拉花区域的处理方法,其特征在于该方法包括以下步骤:
步骤一、获取被测量区域的原始测量数据:对被测量区域进行航空摄影测量,摄取被测量区域的航空摄影图像,并获得被测量区域的原始测量数据;所述原始测量数据为DEM测量数据,所述DEM测量数据为数字高程数据;
步骤二、正射影像的地面格网范围确定:先根据步骤一中所述原始测量数据,获取步骤一中当前所处理航空摄影图像的纠正图像,所述纠正图像为根据当前所处理航空摄影图像在地面上的投影范围和需生成正射影像的地面分辨率进行划分所形成的格网图像,所述格网图像的大小与当前所处理航空摄影图像的正射影像的大小相同且所述格网图像上的各格网点分别与所述正射影像上的各像素点一一对应,所述正射影像为对所述航空摄影图像进行数字微分纠正和重采样后获得的影像,所述航空摄影图像为所述正射影像的原始影像;之后,根据当前所处理航空摄影图像的外方位元素和内方位元素,计算得出当前所处理航空摄影图像的四个角点的地面坐标;然后,根据计算得出的四个角点的地面坐标,确定所述纠正图像的格网范围;
当前所处理航空摄影图像的四个角点分别为点A、点B、点C和点D,点A、点B、点C和点D的地面坐标分别为(X1,Y1)、(X2,Y2)、(X3,Y3)和(X4,Y4);根据公式 X i = Xs + ( Z - Zs ) a 1 × x i + a 2 × y i - a 3 × f c 1 × x i + c 2 × y i - c 3 × f Y i = Ys + ( Z - Zs ) b 1 × x i + b 2 × y i - b 3 × f c 1 × x i + c 2 × y i - c 3 × f - - - ( 1 ) , 计算得出四个角点的地面坐标;公式(1)中,i为正整数且i=1、2、3、4;(XS,YS,ZS)为当前所处理航空摄影图像的所述外方位元素中的摄影中心点坐标,f为所述内方位元素中的一个参数且其为步骤一中对被测量区域进行航空摄影测量时所用航摄仪的焦距;(xi,yi)为当前所处理航空摄影图像上四个角点的二维平面坐标;Z为被测量区域的地面平均高度;
当前所处理航空摄影图像的旋转矩阵 R = a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ;
对所述纠正图像的格网范围进行确定时,根据公式 m = X max - X min gridsize n = Y max - Y min gridsize (2),计算得出所述纠正图像的格网范围;公式(2)中Xmin和Xmax分别为四个角点的地面坐标中横坐标的最小值和最大值,Ymin和Ymax分别为四个角点的地面坐标中纵坐标的最小值和最大值;gridsize为预先设定的所述正射影像的分辨率,所述正射影像的大小为m×n个像素点,所述纠正图像上包括m×n个格网点;其中,m和n分别为所述纠正图像中格网点的列数和行数;
步骤三、拉花检测:结合步骤一中所述的原始测量数据,对当前所处理纠正图像上的各格网点分别进行拉花检测,并且各格网点的拉花检测方法均相同;对任一个格网点进行拉花检测时,过程如下:
步骤301、摄影光线方位确定:根据公式 &alpha; = arctg ( Ys - Y p Xs - X p ) Xs - X p > 0 &alpha; = &pi; + arctg ( Ys - Y p Xs - X p ) Xs - X p < 0 - - - ( 3 ) , 对当前检测点的投影光线方位进行确定;其中,当前检测点为当前状态下进行拉花检测的格网点;公式(3)中,α为当前检测点的投影光线相对于投影中心的方位角,所述投影中心为当前所处理航空摄影图像的摄影中心点在地面上的投影点;(Xp,Yp)为当前检测点的地面坐标;
步骤302、拉花判断:判断当前所处理纠正图像中沿当前检测点的投影光线上,是否存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点:当判断得出存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点时,说明当前检测点为“拉花”点;反之,当判断得出不存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点时,说明当前检测点为未“拉花”点;
当前检测点的投影光线为步骤301中所确定当前检测点的摄影光线在所述纠正图像上的投影线;
步骤303、多次重复步骤301至步骤302,直至完成当前所处理纠正图像上所有格网点的拉花检测过程;
步骤四、步骤四、影像纠正:根据步骤三中的拉花检测结果,对当前所处理航空摄影图像的纠正图像进行纠正,获得纠正后的正射影像;
对当前所处理航空摄影图像的纠正图像进行纠正时,根据步骤三中对各格网点的拉花检测结果,对所述纠正图像上的各像素点分别进行数字微分纠正,并对各像素点的灰度值进行重采样。
上述数字正射影像拉花区域的处理方法,其特征是:步骤四中影像纠正完成后,还需对纠正后的正射影像进行高斯平滑处理。
上述数字正射影像拉花区域的处理方法,其特征是:步骤302中拉花判断完成后,还需根据拉花判断结果,对当前检测点或当前检测点所在的面元进行标记;其中,对当前检测点进行标记时,将当前检测点标记为“拉花”点或未“拉花”点;对当前检测点所在的面元进行标记时,将当前检测点所在的面元标记为“拉花”面元或未“拉花”面元;所述纠正图像上标记为“拉花”点的像素点所处区域为“拉花”区域,所述纠正图像上标记为未“拉花”点的像素点所处区域为非“拉花”区域。
上述数字正射影像拉花区域的处理方法,其特征是:步骤二中所述的(xi,yi)为当前所处理航空摄影图像上四个角点的像点坐标观测数据;
步骤301中所述的(Xp,Yp)为当前检测点的地面坐标,并且按照公式 X p = X min + i p &times; gridsize Y p = Y min + j p &times; gridsize - - - ( 4 ) , 对(Xp,Yp)进行计算;公式(4)中(xP,yP)为当前检测点的像点坐标观测数据,ip为当前待修复点在当前所检测纠正图像中所处的列数,jp为当前待修复点在当前所检测纠正图像中所处的行数。
上述数字正射影像拉花区域的处理方法,其特征是:步骤302中判断沿当前检测点的投影光线上是否存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点时,需采用一个检测窗口进行检测,且所采用检测窗口的尺寸为2×2个像素点~9×9个像素点。
上述数字正射影像拉花区域的处理方法,其特征是:步骤302中判断沿当前检测点的投影光线上是否存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点时,在所述未纠正的正射影像上沿当前检测点的投影光线由前至后移动所述检测窗口,并对各检测窗口分别进行拉花判断,并且沿当前检测点的投影光线上所有检测窗口的拉花判断过程均相同;其中,对沿当前检测点的投影光线上任一个检测窗口进行拉花判断时,过程如下:
步骤3021、像素坐标差值计算:对当前所判断检测窗口内的各格网点,相对于当前检测点在当前所处理航空摄影图像上的像素坐标差值分别进行计算;当前所判断检测窗口内的各格网点均为拉花判断点,并且当前所判断检测窗口内的所有拉花判断点在当前所处理航空摄影图像上的像素坐标差值的计算方法均相同;其中,对当前所判断检测窗口内任一个拉花判断点相对于当前检测点在当前所处理航空摄影图像上的像素坐标差值进行计算时,包括以下步骤:
步骤Ⅰ、当前所计算拉花判断点的地面坐标计算:根据公式 X q = X p + &Delta;s &times; cos &alpha; Y q = Y p + &Delta;s &times; sin &alpha; - - - ( 4 ) , 计算得出当前所计算拉花判断点的地面坐标(Xq,Yq);公式(4)中,(Xp,Yp)为当前检测点的地面坐标,Δs为当前所判断检测窗口的中心点到当前检测点的水平距离;
步骤Ⅱ、当前所计算拉花判断点的像点坐标计算:根据公式 x q = - f a 1 &times; ( X q - Xs ) + b 1 &times; ( Y q - Ys ) + c 1 &times; ( Z q - Zs ) a 3 &times; ( X q - Xs ) + b 3 &times; ( Y q - Ys ) + c 3 &times; ( Z q - Zs ) y q = - f a 2 &times; ( X q - Xs ) + b 2 &times; ( Y q - Ys ) + c 2 &times; ( Z q - Zs ) a 3 &times; ( X q - Xs ) + b 3 &times; ( Y q - Ys ) + c 3 &times; ( Z q - Zs ) - - - ( 7 ) , 计算得出当前所计算拉花判断点的像点坐标(xq,yq);公式(7)中,Zq为当前所计算拉花判断点的高程值;
步骤Ⅲ、当前所计算拉花判断点相对于当前检测点在航空摄影图像上的像素坐标差值计算:根据公式Δx=xq-xp和Δy=yq-yp,计算得出当前所计算拉花判断点相对于当前检测点在航空摄影图像上的像素坐标差值Δx和Δy;
其中,(xp,yp)为当前检测点的像点坐标,且(xp,yp)根据公式 x p = - f a 1 &times; ( X p - Xs ) + b 1 &times; ( Y p - Ys ) + c 1 &times; ( Z p - Zs ) a 3 &times; ( X p - Xs ) + b 3 &times; ( Y p - Ys ) + c 3 &times; ( Z p - Zs ) y p = - f a 2 &times; ( X p - Xs ) + b 2 &times; ( Y p - Ys ) + c 2 &times; ( Z p - Zs ) a 3 &times; ( X p - Xs ) + b 3 &times; ( Y p - Ys ) + c 3 &times; ( Z p - Zs ) - - - ( 6 ) , 进行计算;公式(6)中,,Zp为当前检测点的高程值;
步骤Ⅳ、多次重复步骤Ⅰ至步骤Ⅲ,直至计算出当前所判断检测窗口内所有拉花判断点相对于当前检测点在当前所处理航空摄影图像上的像素坐标差值;
步骤3022、拉花判断点的拉花判断:根据步骤3021中的像素坐标差值计算结果,对当前所判断检测窗口内的各拉花判断点分别进行拉花判断,并且当前所判断检测窗口内所有拉花判断点的拉花判断方法均相同;
对任一个拉花判断点进行拉花判断时,将步骤3021中计算得出的当前所判断拉花判断点的像素坐标差值Δx和Δy分别与阈值δ×pixelsize进行差值比较:当Δx<δ×pixelsize且Δy<δ×pixelsize时,说明当前所判断拉花判断点的拉花判断结果为拉花;否则,说明当前所判断拉花判断点的拉花判断结果为未拉花;其中,δ=1~2且pixelsize为所述原始影像上的像素大小;
步骤3023、检测窗口的拉花判断:根据步骤3022中当前所判断检测窗口内所有拉花判断点的拉花判断结果,对当前检测窗口进行拉花判断:当当前所判断检测窗口内所有拉花判断点的拉花判断结果均为未拉花时,说明当前所判断检测窗口的拉花判断结果为未拉花;否则,说明当前所判断检测窗口的拉花判断结果为拉花;
步骤3024、多次重复步骤2021至步骤2023,直至完成沿当前检测点的投影光线上所有检测窗口的拉花判断过程;其中,所述检测窗口在投影光线上的移动总长度为3×d_GSD~S,其中,d_GSD为所述正射影像的地面分辨率, 10 &times; d _ GSD < S < ( X p - Xs ) 2 + ( Y p - Ys ) 2 ;
步骤3025、当前检测点的拉花判断:根据步骤3024中的拉花判断结果,对当前检测点进行拉花判断:当沿当前检测点的投影光线上所有检测窗口的拉花判断结果均为未拉花时,说明当前检测点的拉花判断结果为未拉花;否则,说明当前检测点的拉花判断结果为拉花。
上述数字正射影像拉花区域的处理方法,其特征是:步骤一中所摄取被测量区域的航空摄影图像的数量为多张,当前所处理航空摄影图像为多张所述航空摄影图像的一张影像;步骤四中进行影像纠正过程中,对当前所处理航空摄影图像的纠正图像上的“拉花”点进行纠正时,利用航空摄影测量所摄取与当前所检测航空摄影图像存在重叠区域的航空摄影图像进行纠正。
上述数字正射影像拉花区域的处理方法,其特征是:对当前所处理航空摄影图像的纠正图像上的“拉花”点进行纠正时,利用当前所处理航空摄影图像的对角相邻影像进行数字微分纠正;
当前所处理航空摄影图像的对角相邻影像的方向角θ为或者接近于其中,对角相邻影像的方向角公式(7)中,(Xs',Ys',Zs')为所述对角相邻影像的摄影中心点坐标。
上述数字正射影像拉花区域的处理方法,其特征是:所述纠正图像上标记为“拉花”区域的数量为一个或多个;利用当前所处理航空摄影图像的对角相邻影像进行数字微分纠正后,对于所述纠正图像上剩余的未被纠正的“拉花”点,采用该“拉花”点所处“拉花”区域的平均高程对该该“拉花”点进行数字微分纠正。
上述数字正射影像拉花区域的处理方法,其特征是:步骤Ⅱ所述的Zq和步骤Ⅲ中所述的Zp均为步骤一中所述原始测量数据中的测量值。
本发明与现有技术相比具有以下优点:
1、方法步骤简单、设计合理且操作简单,实现方便。
2、处理效率较高,省时省力。
3、所采用的拉花检测方法步骤简单、设计合理且检测速度快、检测精度高,该方法为一种改进后的Z-buffer算法进行拉花判断。
4、使用效果好且实用价值高、实用性强,主要包括以下步骤:1)获取DEM数据、原始影像数据和外方位元素等参数,并计算正射纠正图像的地面格网范围;2)计算纠正点(即当前检测点)在成像时相对于投影中心的投影光线方位;3)沿当前检测点的投影光线方位采用一定的窗口且基于改进的Z-buffer方法计算是否存在同名像素,判断“拉花”,具体是先确定一个拉花判断的检测窗口,并通过在纠正点相对于投影中心的方位上检测窗口;4)对“拉花”点位或者面元进行标记;5)对未“拉花”的点位或面元采用数字微分纠正,对纠正图像中的拉花区域利用其相对于投影中心对角线上的相邻影像(即对角相邻影像)进行数字微分纠正;6)对剩余的拉花区域以相应的均高进行平面纠正;7)对纠正后的正射影像进行高斯平滑处理;消减拉花区域与非拉花区域的边界和图像的颗粒感,生成最终的数字正射影像。本发明所采用的技术方案针对“拉花”问题自动化处理的空白,有效解决了已有正射纠正技术中对于影像中存在“拉花”问题的处理,提出了一种在根据摄影方向和Z-buffer方法进行“拉花”检测的方法,并提出了利用对角相邻影像与拉花区域均高相结合进行纠正的方法对“拉花”区域纹理进行处理,有效解决了正射纠正中的“拉花”问题,大大减少了在实际生产过程中的人工修正工作量,提高了生产效率。综上,本发明提出了一种根据投影光线方向和改进的Z-buffer方法对纠正影像上的“拉花”区域进行判断,并提出了利用最佳对角相邻影像对“拉花”区域进行数字微分纠正和利用“拉花”区域局部均高进行纠正的方法,以对“拉花”区域的纹理进行修补,有效解决了正射影像生产过程中“拉花”问题导致的影像质量与位置精度的降低以及人工处理“拉花”区域效率低下问题。本发明可解决现有正射影像生产过程中存在的绝大部分“拉花”问题,大大减少了人工修正工作量,提高了制作正射影像地图的产品质量和生产效率。
5、适用面广,可用于到复杂地区正射影像图制作、国家基本比例尺地图更新、城市规划等多个领域。
综上所述,本发明方法步骤简单、设计合理且效率高、使用效果好,能有效解决现有正射影像的拉花处理方法存在的效率低、使用效果较差等问题。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明的方法流程框图。
图2为带“拉花”区域的数字正射影像。
图3为采用本发明对图2中“拉花”区域进行处理之后的数字正射影像。
具体实施方式
如图1所示的一种数字正射影像拉花区域的处理方法,包括以下步骤:
步骤一、获取被测量区域的原始测量数据:对被测量区域进行航空摄影测量,摄取被测量区域的航空摄影图像,并获得被测量区域的原始测量数据;所述原始测量数据为DEM测量数据,所述DEM测量数据为数字高程数据。
步骤二、正射影像的地面格网范围确定:先根据步骤一中所述原始测量数据,获取步骤一中当前所处理航空摄影图像的纠正图像,所述纠正图像为根据当前所处理航空摄影图像在地面上的投影范围和需生成正射影像的地面分辨率进行划分所形成的格网图像,所述格网图像的大小与当前所处理航空摄影图像的正射影像的大小相同且所述格网图像上的各格网点分别与所述正射影像上的各像素点一一对应,所述正射影像为对所述航空摄影图像进行数字微分纠正和重采样后获得的影像,所述航空摄影图像为所述正射影像的原始影像,并且所述格网图像上的各格网点分别与所述原始影像上的各像素点一一对应;之后,根据当前所处理航空摄影图像的外方位元素和内方位元素,计算得出当前所处理航空摄影图像的四个角点的地面坐标;然后,根据计算得出的四个角点的地面坐标,确定所述纠正图像的格网范围。其中,所述纠正图像的获取过程,参见由张剑清、潘励编写的《摄影测量学》(2009年5月第2版)中第八章第213页-215页所公开的内容。
当前所处理航空摄影图像的四个角点分别为点A、点B、点C和点D,点A、点B、点C和点D的地面坐标分别为(X1,Y1)、(X2,Y2)、(X3,Y3)和(X4,Y4);根据公式 X i = Xs + ( Z - Zs ) a 1 &times; x i + a 2 &times; y i - a 3 &times; f c 1 &times; x i + c 2 &times; y i - c 3 &times; f Y i = Ys + ( Z - Zs ) b 1 &times; x i + b 2 &times; y i - b 3 &times; f c 1 &times; x i + c 2 &times; y i - c 3 &times; f - - - ( 1 ) , 计算得出四个角点的地面坐标;公式(1)中,i为正整数且i=1、2、3、4;(XS,YS,ZS)为当前所处理航空摄影图像的所述外方位元素中的摄影中心点坐标,f为所述内方位元素中的一个参数且其为步骤一中对被测量区域进行航空摄影测量时所用航摄仪的焦距;(xi,yi)为当前所处理航空摄影图像上四个角点的二维平面坐标;Z为被测量区域的地面平均高度。
当前所处理航空摄影图像的旋转矩阵 R = a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 .
实际进行航空测量时,所述外方位元素包括外方位角元素ω和κ以及摄影中心点坐标(XS,YS,ZS);所述内方位元素包括x0、y0和f;求取内方位元素x0、y0和f的方法为相机检校和内定向等方法。
根据对外方位角元素ω和κ,便可计算得出当前所检测航空摄影图像的旋转矩阵R。
对所述纠正图像的格网范围(即所述正射影像的地面格网范围)进行确定时,根据公式 m = X max - X min gridsize n = Y max - Y min gridsize - - - ( 2 ) , 计算得出所述纠正图像的格网范围;公式(2)中Xmin和Xmax分别为四个角点的地面坐标中横坐标的最小值和最大值,Ymin和Ymax分别为四个角点的地面坐标中纵坐标的最小值和最大值;gridsize为预先设定的所述正射影像的分辨率,所述正射影像的大小为m×n个像素点,所述纠正图像上包括m×n个格网点,也就是说,所述纠正图像上的各格网点均对应一个像素点;其中,m和n分别为所述纠正图像中格网点的列数和行数。
其中,Xmin和Xmax分别为四个角点的地面坐标中最小的横坐标值和最大的横坐标值,Ymin和Ymax分别为四个角点的地面坐标中最小的纵坐标值和最大的纵坐标值。
步骤三、拉花检测:结合步骤一中所述的原始测量数据,对当前所处理纠正图像上的各格网点分别进行拉花检测,并且各格网点的拉花检测方法均相同;对任一个格网点进行拉花检测时,过程如下:
步骤301、摄影光线方位确定:根据公式 &alpha; = arctg ( Ys - Y p Xs - X p ) Xs - X p > 0 &alpha; = &pi; + arctg ( Ys - Y p Xs - X p ) Xs - X p < 0 - - - ( 3 ) , 对当前检测点的投影光线方位进行确定;其中,当前检测点为当前状态下进行拉花检测的格网点;公式(3)中,α为当前检测点的投影光线相对于投影中心的方位角,所述投影中心为当前所处理航空摄影图像的摄影中心点在地面上的投影点;(Xp,Yp)为当前检测点的地面坐标。
步骤302、拉花判断:判断当前所处理纠正图像中沿当前检测点的投影光线上,是否存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点:当判断得出存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点时,说明当前检测点为“拉花”点;反之,当判断得出不存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点时,说明当前检测点为未“拉花”点。
当前检测点的投影光线为步骤301中所确定当前检测点的摄影光线在所述纠正图像上的投影线。
实际使用过程中,可以根据需要需要,对与当前检测点在所述原始影像上对应的像素点相同的其它格网点的数量进行限定。本实施例中,所述其它格网点的数量为N2个,其中N2≥2。也就是说,当判断得出存在N个与当前检测点在所述原始影像上对应的像素点相同的格网点时,说明当前检测点为“拉花”点。也就是说,当沿当前检测点的投影光线上存在多个格网点并且多个所述格网点在所述原始影像上对应的像素点均相同时,说明当前检测点为“拉花”点。
步骤303、多次重复步骤301至步骤302,直至完成当前所处理纠正图像上所有格网点的拉花检测过程;
步骤四、影像纠正:根据步骤三中的拉花检测结果,对当前所处理航空摄影图像的纠正图像进行纠正,获得纠正后的正射影像;
对当前所处理航空摄影图像的纠正图像进行纠正时,根据步骤三中对各格网点的拉花检测结果,对所述纠正图像上的各像素点分别进行数字微分纠正,并对各像素点的灰度值进行重采样。
本实施例中,步骤二进行正射影像的地面格网范围确定、步骤三中进行拉花检测以及步骤四中进行影像纠正时,均采用数据处理器进行处理。
本实施例中,步骤四中影像纠正完成后,还需对纠正后的正射影像进行高斯平滑处理,以消减拉花区域与非拉花区域的边界和图像的颗粒感。其中,高斯平滑处理也称为低通滤波处理。
本实施例中,步骤302中拉花判断完成后,还需根据拉花判断结果,对当前检测点或当前检测点所在的面元进行标记;其中,对当前检测点进行标记时,将当前检测点标记为“拉花”点或未“拉花”点;对当前检测点所在的面元进行标记时,将当前检测点所在的面元标记为“拉花”面元或未“拉花”面元;所述纠正图像上标记为“拉花”点的像素点所处区域为“拉花”区域,所述纠正图像上标记为未“拉花”点的像素点所处区域为非“拉花”区域。
本实施例中,步骤三中进行拉花检测之前,还需建立用于记录拉花检测结果的标记矩阵,所述标记矩阵为m×n矩阵,且所述标记矩阵中记录有所述纠正图像中的m×n个格网点的拉花判断结果。
本实施例中,步骤二中所述的(xi,yi)为当前所处理航空摄影图像上四个角点的像点坐标观测数据。
步骤301中所述的(Xp,Yp)为当前检测点的地面坐标,并且按照公式 X p = X min + i p &times; gridsize Y p = Y min + j p &times; gridsize - - - ( 4 ) , 对(Xp,Yp)进行计算;公式(4)中(xP,yP)为当前检测点的像点坐标观测数据,ip为当前待修复点在当前所检测纠正图像中所处的列数,jp为当前待修复点在当前所检测纠正图像中所处的行数。
步骤302中判断沿当前检测点的投影光线上是否存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点时,需采用一个检测窗口进行检测,且所采用检测窗口的尺寸为2×2个像素点~9×9个像素点(即2×2个格网点~9×9个格网点)。本实施例中,所采用检测窗口的尺寸为3×3个像素点。实际使用过程中,可以根据具体需要,对所采用检测窗口的尺寸进行相应调整。
本实施例中,步骤三中进行拉花检测之前,未纠正的正射影像详见图2。而采用本发明处理后获得的正射图像详见图3,该正射影像为对当前所处理航空摄影图像进行微分纠正和灰度重采样后获得的影像数据。
本实施例中,步骤302中判断沿当前检测点的投影光线上是否存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点时,在所述未纠正的正射影像上沿当前检测点的投影光线由前至后移动所述检测窗口,并对各检测窗口分别进行拉花判断,并且沿当前检测点的投影光线上所有检测窗口的拉花判断过程均相同;其中,对沿当前检测点的投影光线上任一个检测窗口进行拉花判断时,过程如下:
步骤3021、像素坐标差值计算:对当前所判断检测窗口内的各格网点,相对于当前检测点在当前所处理航空摄影图像上的像素坐标差值分别进行计算;当前所判断检测窗口内的各格网点均为拉花判断点,并且当前所判断检测窗口内的所有拉花判断点在当前所处理航空摄影图像上的像素坐标差值的计算方法均相同;其中,对当前所判断检测窗口内任一个拉花判断点相对于当前检测点在当前所处理航空摄影图像上的像素坐标差值进行计算时,包括以下步骤:
步骤Ⅰ、当前所计算拉花判断点的地面坐标计算:根据公式 X q = X p + &Delta;s &times; cos &alpha; Y q = Y p + &Delta;s &times; sin &alpha; - - - ( 4 ) , 计算得出当前所计算拉花判断点的地面坐标(Xq,Yq);公式(4)中,(Xp,Yp)为当前检测点的地面坐标,Δs为当前所判断检测窗口的中心点到当前检测点的水平距离;
步骤Ⅱ、当前所计算拉花判断点的像点坐标计算:根据公式 x q = - f a 1 &times; ( X q - Xs ) + b 1 &times; ( Y q - Ys ) + c 1 &times; ( Z q - Zs ) a 3 &times; ( X q - Xs ) + b 3 &times; ( Y q - Ys ) + c 3 &times; ( Z q - Zs ) y q = - f a 2 &times; ( X q - Xs ) + b 2 &times; ( Y q - Ys ) + c 2 &times; ( Z q - Zs ) a 3 &times; ( X q - Xs ) + b 3 &times; ( Y q - Ys ) + c 3 &times; ( Z q - Zs ) - - - ( 7 ) , 计算得出当前所计算拉花判断点的像点坐标(xq,yq);公式(7)中,Zq为当前所计算拉花判断点的高程值;
步骤Ⅲ、当前所计算拉花判断点相对于当前检测点在航空摄影图像上的像素坐标差值计算:根据公式Δx=xq-xp和Δy=yq-yp,计算得出当前所计算拉花判断点相对于当前检测点在航空摄影图像上的像素坐标差值Δx和Δy;
其中,(xp,yp)为当前检测点的像点坐标,且(xp,yp)根据公式 x p = - f a 1 &times; ( X p - Xs ) + b 1 &times; ( Y p - Ys ) + c 1 &times; ( Z p - Zs ) a 3 &times; ( X p - Xs ) + b 3 &times; ( Y p - Ys ) + c 3 &times; ( Z p - Zs ) y p = - f a 2 &times; ( X p - Xs ) + b 2 &times; ( Y p - Ys ) + c 2 &times; ( Z p - Zs ) a 3 &times; ( X p - Xs ) + b 3 &times; ( Y p - Ys ) + c 3 &times; ( Z p - Zs ) - - - ( 6 ) , 进行计算;公式(6)中,,Zp为当前检测点的高程值;
步骤Ⅳ、多次重复步骤Ⅰ至步骤Ⅲ,直至计算出当前所判断检测窗口内所有拉花判断点相对于当前检测点在当前所处理航空摄影图像上的像素坐标差值;
步骤3022、拉花判断点的拉花判断:根据步骤3021中的像素坐标差值计算结果,对当前所判断检测窗口内的各拉花判断点分别进行拉花判断,并且当前所判断检测窗口内所有拉花判断点的拉花判断方法均相同;
对任一个拉花判断点进行拉花判断时,将步骤3021中计算得出的当前所判断拉花判断点的像素坐标差值Δx和Δy分别与阈值δ×pixelsize进行差值比较:当Δx<δ×pixelsize且Δy<δ×pixelsize时,说明当前所判断拉花判断点的拉花判断结果为拉花;否则,说明当前所判断拉花判断点的拉花判断结果为未拉花;其中,δ=1~2且pixelsize为所述原始影像上的像素大小;
步骤3023、检测窗口的拉花判断:根据步骤3022中当前所判断检测窗口内所有拉花判断点的拉花判断结果,对当前检测窗口进行拉花判断:当当前所判断检测窗口内所有拉花判断点的拉花判断结果均为未拉花时,说明当前所判断检测窗口的拉花判断结果为未拉花;否则,说明当前所判断检测窗口的拉花判断结果为拉花;
步骤3024、多次重复步骤2021至步骤2023,直至完成沿当前检测点的投影光线上所有检测窗口的拉花判断过程;其中,所述检测窗口在投影光线上的移动总长度为3×d_GSD~S,其中,d_GSD为所述正射影像的地面分辨率, 10 &times; d _ GSD < S < ( X p - Xs ) 2 + ( Y p - Ys ) 2 ;
也就是说,需采用所述检测窗口对沿当前检测点的投影光线上3×d_GSD~S的长度范围内进行拉花判断,实际进行拉花判断时,以当前检测点为起始点,由前至后沿当前检测点的投影光线移动所述检测窗口;
步骤3025、当前检测点的拉花判断:根据步骤3024中的拉花判断结果,对当前检测点进行拉花判断:当沿当前检测点的投影光线上所有检测窗口的拉花判断结果均为未拉花时,说明当前检测点的拉花判断结果为未拉花;否则,说明当前检测点的拉花判断结果为拉花。
其中,步骤Ⅱ所述的Zq和步骤Ⅲ中所述的Zp均为步骤一中所述原始测量数据中的测量值。
本实施例中,步骤一中所摄取被测量区域的航空摄影图像的数量为多张,当前所处理航空摄影图像为多张所述航空摄影图像的一张影像;步骤四中进行影像纠正过程中,对当前所处理航空摄影图像的纠正图像上的“拉花”点进行纠正时,利用航空摄影测量所摄取与当前所检测航空摄影图像存在重叠区域的航空摄影图像进行纠正。
其中,由于所述纠正图像上的各网格点分别与当前所处理航空摄影图像上的各像素点一一对应,因而所述纠正图像上的各“拉花”点分别对应当前所处理航空摄影图像上的各“拉花”点,而所述纠正图像上的各未“拉花”点分别对应当前所处理航空摄影图像上的各未“拉花”点。
本实施例中,对当前所处理航空摄影图像的纠正图像上的“拉花”点进行纠正时,利用航空摄影测量所摄取与当前所检测航空摄影图像存在重叠区域的航空摄影图像进行纠正;而对当前所处理航空摄影图像的纠正图像上的未“拉花”点进行纠正时,利用所述原始影像(即当前所处理航空摄影图像)进行纠正。
并且,对当前所处理航空摄影图像的纠正图像上的“拉花”点进行纠正时,利用当前所处理航空摄影图像的对角相邻影像进行数字微分纠正。
综上所述,对所述纠正图像上的未“拉花”点进行纠正时,利用其原始影像进行数字微分纠正和重采样;而对所述纠正图像上的“拉花”点进行纠正时,利用其原始图像的对角相邻影像进行数字微分纠正和重采样。
本实施例中,当前所处理航空摄影图像的对角相邻影像的方向角θ为或者接近于其中,对角相邻影像的方向角公式(7)中,(Xs',Ys',Zs')为所述对角相邻影像的摄影中心点坐标。
由于对“拉花”区域进行数字微分纠正时,必须选择对于“拉花”区域有丰富纹理信息的相邻影像进行纠正,而采用本发明所选取的对角相邻影像为与当前所处理航空摄影图像的摄影中心呈对角分布的相邻影像,对“拉花”区域进行纠正可满足要求。
本实施例中,所述纠正图像上标记为“拉花”区域的数量为一个或多个;利用当前所处理航空摄影图像的对角相邻影像进行数字微分纠正后,对于所述纠正图像上剩余的未被纠正的“拉花”点,采用该“拉花”点所处“拉花”区域的平均高程对该该“拉花”点进行数字微分纠正。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (10)

1.一种数字正射影像拉花区域的处理方法,其特征在于该方法包括以下步骤:
步骤一、获取被测量区域的原始测量数据:对被测量区域进行航空摄影测量,摄取被测量区域的航空摄影图像,并获得被测量区域的原始测量数据;所述原始测量数据为DEM测量数据,所述DEM测量数据为数字高程数据;
步骤二、正射影像的地面格网范围确定:先根据步骤一中所述原始测量数据,获取步骤一中当前所处理航空摄影图像的纠正图像,所述纠正图像为根据当前所处理航空摄影图像在地面上的投影范围和需生成正射影像的地面分辨率进行划分所形成的格网图像,所述格网图像的大小与当前所处理航空摄影图像的正射影像的大小相同且所述格网图像上的各格网点分别与所述正射影像上的各像素点一一对应,所述正射影像为对所述航空摄影图像进行数字微分纠正和重采样后获得的影像,所述航空摄影图像为所述正射影像的原始影像;之后,根据当前所处理航空摄影图像的外方位元素和内方位元素,计算得出当前所处理航空摄影图像的四个角点的地面坐标;然后,根据计算得出的四个角点的地面坐标,确定所述纠正图像的格网范围;
当前所处理航空摄影图像的四个角点分别为点A、点B、点C和点D,点A、点B、点C和点D的地面坐标分别为(X1,Y1)、(X2,Y2)、(X3,Y3)和(X4,Y4);根据公式 X i = Xs + ( Z - Zs ) a 1 &times; x i + a 2 &times; y i - a 3 &times; f c 1 &times; x i + c 2 &times; y i - c 3 &times; f Y i = Ys + ( Z - Zs ) b 1 &times; x i + b 2 &times; y i - b 3 &times; f c 1 &times; x i + c 2 &times; y i - c 3 &times; f - - - ( 1 ) , 计算得出四个角点的地面坐标;公式(1)中,i为正整数且i=1、2、3、4;(XS,YS,ZS)为当前所处理航空摄影图像的所述外方位元素中的摄影中心点坐标,f为所述内方位元素中的一个参数且其为步骤一中对被测量区域进行航空摄影测量时所用航摄仪的焦距;(xi,yi)为当前所处理航空摄影图像上四个角点的二维平面坐标;Z为被测量区域的地面平均高度;
当前所处理航空摄影图像的旋转矩阵 R = a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ;
对所述纠正图像的格网范围进行确定时,根据公式 m = X max - X min gridsize n = Y max - Y min gridsize (2),计算得出所述纠正图像的格网范围;公式(2)中Xmin和Xmax分别为四个角点的地面坐标中横坐标的最小值和最大值,Ymin和Ymax分别为四个角点的地面坐标中纵坐标的最小值和最大值;gridsize为预先设定的所述正射影像的分辨率,所述正射影像的大小为m×n个像素点,所述纠正图像上包括m×n个格网点;其中,m和n分别为所述纠正图像中格网点的列数和行数;
步骤三、拉花检测:结合步骤一中所述的原始测量数据,对当前所处理纠正图像上的各格网点分别进行拉花检测,并且各格网点的拉花检测方法均相同;对任一个格网点进行拉花检测时,过程如下:
步骤301、摄影光线方位确定:根据公式 &alpha; = arctg ( Ys - Y p Xs - X p ) Xs - X p > 0 &alpha; = &pi; + arctg ( Ys - Y p Xs - X p ) Xs - X p < 0 - - - ( 3 ) , 对当前检测点的投影光线方位进行确定;其中,当前检测点为当前状态下进行拉花检测的格网点;公式(3)中,α为当前检测点的投影光线相对于投影中心的方位角,所述投影中心为当前所处理航空摄影图像的摄影中心点在地面上的投影点;(Xp,Yp)为当前检测点的地面坐标;
步骤302、拉花判断:判断当前所处理纠正图像中沿当前检测点的投影光线上,是否存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点:当判断得出存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点时,说明当前检测点为“拉花”点;反之,当判断得出不存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点时,说明当前检测点为未“拉花”点;
当前检测点的投影光线为步骤301中所确定当前检测点的摄影光线在所述纠正图像上的投影线;
步骤303、多次重复步骤301至步骤302,直至完成当前所处理纠正图像上所有格网点的拉花检测过程;
步骤四、影像纠正:根据步骤三中的拉花检测结果,对当前所处理航空摄影图像的纠正图像进行纠正,获得纠正后的正射影像;
对当前所处理航空摄影图像的纠正图像进行纠正时,根据步骤三中对各格网点的拉花检测结果,对所述纠正图像上的各像素点分别进行数字微分纠正,并对各像素点的灰度值进行重采样。
2.按照权利要求1所述的数字正射影像拉花区域的处理方法,其特征在于:步骤四中影像纠正完成后,还需对纠正后的正射影像进行高斯平滑处理。
3.按照权利要求1或2所述的数字正射影像拉花区域的处理方法,其特征在于:步骤302中拉花判断完成后,还需根据拉花判断结果,对当前检测点或当前检测点所在的面元进行标记;其中,对当前检测点进行标记时,将当前检测点标记为“拉花”点或未“拉花”点;对当前检测点所在的面元进行标记时,将当前检测点所在的面元标记为“拉花”面元或未“拉花”面元;所述纠正图像上标记为“拉花”点的像素点所处区域为“拉花”区域,所述纠正图像上标记为未“拉花”点的像素点所处区域为非“拉花”区域。
4.按照权利要求1或2所述的数字正射影像拉花区域的处理方法,其特征在于:步骤二中所述的(xi,yi)为当前所处理航空摄影图像上四个角点的像点坐标观测数据;
步骤301中所述的(Xp,Yp)为当前检测点的地面坐标,并且按照公式 X p = X min + i p &times; gridsize Y p = Y min + j p &times; gridsize - - - ( 4 ) , 对(Xp,Yp)进行计算;公式(4)中(xP,yP)为当前检测点的像点坐标观测数据,ip为当前待修复点在当前所检测纠正图像中所处的列数,jp为当前待修复点在当前所检测纠正图像中所处的行数。
5.按照权利要求1或2所述的数字正射影像拉花区域的处理方法,其特征在于:步骤302中判断沿当前检测点的投影光线上是否存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点时,需采用一个检测窗口进行检测,且所采用检测窗口的尺寸为2×2个像素点~9×9个像素点。
6.按照权利要求5所述的数字正射影像拉花区域的处理方法,其特征在于:步骤302中判断沿当前检测点的投影光线上是否存在其它与当前检测点在所述原始影像上对应的像素点相同的格网点时,在所述未纠正的正射影像上沿当前检测点的投影光线由前至后移动所述检测窗口,并对各检测窗口分别进行拉花判断,并且沿当前检测点的投影光线上所有检测窗口的拉花判断过程均相同;其中,对沿当前检测点的投影光线上任一个检测窗口进行拉花判断时,过程如下:
步骤3021、像素坐标差值计算:对当前所判断检测窗口内的各格网点,相对于当前检测点在当前所处理航空摄影图像上的像素坐标差值分别进行计算;当前所判断检测窗口内的各格网点均为拉花判断点,并且当前所判断检测窗口内的所有拉花判断点在当前所处理航空摄影图像上的像素坐标差值的计算方法均相同;其中,对当前所判断检测窗口内任一个拉花判断点相对于当前检测点在当前所处理航空摄影图像上的像素坐标差值进行计算时,包括以下步骤:
步骤Ⅰ、当前所计算拉花判断点的地面坐标计算:根据公式 X q = X p + &Delta;s &times; cos &alpha; Y q = Y p + &Delta;s &times; sin &alpha; - - - ( 4 ) , 计算得出当前所计算拉花判断点的地面坐标(Xq,Yq);公式(4)中,(Xp,Yp)为当前检测点的地面坐标,Δs为当前所判断检测窗口的中心点到当前检测点的水平距离;
步骤Ⅱ、当前所计算拉花判断点的像点坐标计算:根据公式 x q = - f a 1 &times; ( X q - Xs ) + b 1 &times; ( Y q - Ys ) + c 1 &times; ( Z q - Zs ) a 3 &times; ( X q - Xs ) + b 3 &times; ( Y q - Ys ) + c 3 &times; ( Z q - Zs ) y q = - f a 2 &times; ( X q - Xs ) + b 2 &times; ( Y q - Ys ) + c 2 &times; ( Z q - Zs ) a 3 &times; ( X q - Xs ) + b 3 &times; ( Y q - Ys ) + c 3 &times; ( Z q - Zs ) - - - ( 7 ) , 计算得出当前所计算拉花判断点的像点坐标(xq,yq);公式(7)中,Zq为当前所计算拉花判断点的高程值;
步骤Ⅲ、当前所计算拉花判断点相对于当前检测点在航空摄影图像上的像素坐标差值计算:根据公式Δx=xq-xp和Δy=yq-yp,计算得出当前所计算拉花判断点相对于当前检测点在航空摄影图像上的像素坐标差值Δx和Δy;
其中,(xp,yp)为当前检测点的像点坐标,且(xp,yp)根据公式 x p = - f a 1 &times; ( X p - Xs ) + b 1 &times; ( Y p - Ys ) + c 1 &times; ( Z p - Zs ) a 3 &times; ( X p - Xs ) + b 3 &times; ( Y p - Ys ) + c 3 &times; ( Z p - Zs ) y p = - f a 2 &times; ( X p - Xs ) + b 2 &times; ( Y p - Ys ) + c 2 &times; ( Z p - Zs ) a 3 &times; ( X p - Xs ) + b 3 &times; ( Y p - Ys ) + c 3 &times; ( Z p - Zs ) - - - ( 6 ) , 进行计算;公式(6)中,,Zp为当前检测点的高程值;
步骤Ⅳ、多次重复步骤Ⅰ至步骤Ⅲ,直至计算出当前所判断检测窗口内所有拉花判断点相对于当前检测点在当前所处理航空摄影图像上的像素坐标差值;
步骤3022、拉花判断点的拉花判断:根据步骤3021中的像素坐标差值计算结果,对当前所判断检测窗口内的各拉花判断点分别进行拉花判断,并且当前所判断检测窗口内所有拉花判断点的拉花判断方法均相同;
对任一个拉花判断点进行拉花判断时,将步骤3021中计算得出的当前所判断拉花判断点的像素坐标差值Δx和Δy分别与阈值δ×pixelsize进行差值比较:当Δx<δ×pixelsize且Δy<δ×pixelsize时,说明当前所判断拉花判断点的拉花判断结果为拉花;否则,说明当前所判断拉花判断点的拉花判断结果为未拉花;其中,δ=1~2且pixelsize为所述原始影像上的像素大小;
步骤3023、检测窗口的拉花判断:根据步骤3022中当前所判断检测窗口内所有拉花判断点的拉花判断结果,对当前检测窗口进行拉花判断:当当前所判断检测窗口内所有拉花判断点的拉花判断结果均为未拉花时,说明当前所判断检测窗口的拉花判断结果为未拉花;否则,说明当前所判断检测窗口的拉花判断结果为拉花;
步骤3024、多次重复步骤2021至步骤2023,直至完成沿当前检测点的投影光线上所有检测窗口的拉花判断过程;其中,所述检测窗口在投影光线上的移动总长度为3×d_GSD~S,其中,d_GSD为所述正射影像的地面分辨率, 10 &times; d _ GSD < S < ( X p - Xs ) 2 + ( Y p - Ys ) 2 ;
步骤3025、当前检测点的拉花判断:根据步骤3024中的拉花判断结果,对当前检测点进行拉花判断:当沿当前检测点的投影光线上所有检测窗口的拉花判断结果均为未拉花时,说明当前检测点的拉花判断结果为未拉花;否则,说明当前检测点的拉花判断结果为拉花。
7.按照权利要求1或2所述的数字正射影像拉花区域的处理方法,其特征在于:步骤一中所摄取被测量区域的航空摄影图像的数量为多张,当前所处理航空摄影图像为多张所述航空摄影图像的一张影像;步骤四中进行影像纠正过程中,对当前所处理航空摄影图像的纠正图像上的“拉花”点进行纠正时,利用航空摄影测量所摄取的与当前所检测航空摄影图像存在重叠区域的航空摄影图像进行纠正。
8.按照权利要求7所述的数字正射影像拉花区域的处理方法,其特征在于:对当前所处理航空摄影图像的纠正图像上的“拉花”点进行纠正时,利用当前所处理航空摄影图像的对角相邻影像进行数字微分纠正;
当前所处理航空摄影图像的对角相邻影像的方向角θ为或者接近于其中,对角相邻影像的方向角公式(7)中,(Xs',Ys',Zs')为所述对角相邻影像的摄影中心点坐标。
9.按照权利要求3所述的数字正射影像拉花区域的处理方法,其特征在于:所述纠正图像上标记为“拉花”区域的数量为一个或多个;利用当前所处理航空摄影图像的对角相邻影像进行数字微分纠正后,对于所述纠正图像上剩余的未被纠正的“拉花”点,采用该“拉花”点所处“拉花”区域的平均高程对该该“拉花”点进行数字微分纠正。
10.按照权利要求6所述的数字正射影像拉花区域的处理方法,其特征在于:步骤Ⅱ所述的Zq和步骤Ⅲ中所述的Zp均为步骤一中所述原始测量数据中的测量值。
CN201410442529.9A 2014-09-02 2014-09-02 数字正射影像拉花区域的处理方法 Expired - Fee Related CN104180794B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410442529.9A CN104180794B (zh) 2014-09-02 2014-09-02 数字正射影像拉花区域的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410442529.9A CN104180794B (zh) 2014-09-02 2014-09-02 数字正射影像拉花区域的处理方法

Publications (2)

Publication Number Publication Date
CN104180794A true CN104180794A (zh) 2014-12-03
CN104180794B CN104180794B (zh) 2016-03-30

Family

ID=51962007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410442529.9A Expired - Fee Related CN104180794B (zh) 2014-09-02 2014-09-02 数字正射影像拉花区域的处理方法

Country Status (1)

Country Link
CN (1) CN104180794B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108230326A (zh) * 2018-02-08 2018-06-29 重庆市地理信息中心 基于gpu-cpu协同的卫星影像拉花变形快速检测方法
CN108257130A (zh) * 2018-02-08 2018-07-06 重庆市地理信息中心 一种航空正射影像全景图拉花区域快速检测方法
CN108269228A (zh) * 2018-02-08 2018-07-10 重庆市地理信息中心 基于gpu并行计算的无人机影像拉花区域自动探测方法
CN108282633A (zh) * 2018-01-09 2018-07-13 深圳飞马机器人科技有限公司 无人机实时视频图像坐标指示方法、系统和终端
CN108335261A (zh) * 2018-02-08 2018-07-27 重庆市地理信息中心 一种光学遥感卫星正射影像拉花区域自动检测方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381708A (zh) * 2002-05-31 2002-11-27 周一 数字正射影像的地物立体观察与测图
KR100544345B1 (ko) * 2005-11-30 2006-01-23 주식회사 한국지오매틱스 항공사진의 정사영상 제작방법
US20060233455A1 (en) * 2005-04-15 2006-10-19 Hu Cheng Method for image intensity correction using extrapolation and adaptive smoothing
EP1883040A1 (en) * 2006-07-28 2008-01-30 IEE International Electronics &amp; Engineering S.A.R.L. Pattern classification method
EP2096511A2 (de) * 2008-03-01 2009-09-02 Abb Ag Gerätebeschreibungsdatei, System und Verfahren zum Einrichten von Steuer- und/oder Regeleinrichtungen
CN101763658A (zh) * 2009-12-14 2010-06-30 煤航(香港)有限公司 全要素真三维大比例尺数字地图的制作方法
CN101777189A (zh) * 2009-12-30 2010-07-14 武汉大学 LiDAR三维立体环境下测图和质量检查方法
JP4702122B2 (ja) * 2006-03-15 2011-06-15 三菱電機株式会社 合成開口レーダ画像のオルソ補正装置
CN102175227A (zh) * 2011-01-27 2011-09-07 中国科学院遥感应用研究所 一种探测车在卫星图像上的快速定位方法
EP2535735A1 (en) * 2011-06-15 2012-12-19 Thales Alenia Space Italia S.p.A. Con Unico Socio Acquisition of sar images for computing a height or a digital elevation model by interferometric processing
CN103295202A (zh) * 2013-06-07 2013-09-11 中国科学院新疆生态与地理研究所 一种面向高山地区的遥感影像几何纠正方法
CN103363958A (zh) * 2013-07-05 2013-10-23 武汉华宇世纪科技发展有限公司 基于数字近景摄影测量的街道房屋立面图绘制方法
CN103606188A (zh) * 2013-11-15 2014-02-26 南京师范大学 基于影像点云的地理信息按需采集方法
CN103630121A (zh) * 2013-07-16 2014-03-12 中国人民解放军信息工程大学 一种基于最佳扫描行快速定位的线阵影像微分纠正方法
CN103810701A (zh) * 2014-01-15 2014-05-21 北京农业信息技术研究中心 一种无人机载成像高光谱几何校正的方法及系统
CN103871072A (zh) * 2014-04-04 2014-06-18 武汉大学 基于投影数字高程模型的正射影像镶嵌线自动提取方法
CN103886611A (zh) * 2014-04-08 2014-06-25 西安煤航信息产业有限公司 一种适合于航空摄影飞行质量自动检查的影像匹配方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1381708A (zh) * 2002-05-31 2002-11-27 周一 数字正射影像的地物立体观察与测图
US20060233455A1 (en) * 2005-04-15 2006-10-19 Hu Cheng Method for image intensity correction using extrapolation and adaptive smoothing
KR100544345B1 (ko) * 2005-11-30 2006-01-23 주식회사 한국지오매틱스 항공사진의 정사영상 제작방법
JP4702122B2 (ja) * 2006-03-15 2011-06-15 三菱電機株式会社 合成開口レーダ画像のオルソ補正装置
EP1883040A1 (en) * 2006-07-28 2008-01-30 IEE International Electronics &amp; Engineering S.A.R.L. Pattern classification method
EP2096511A2 (de) * 2008-03-01 2009-09-02 Abb Ag Gerätebeschreibungsdatei, System und Verfahren zum Einrichten von Steuer- und/oder Regeleinrichtungen
CN101763658A (zh) * 2009-12-14 2010-06-30 煤航(香港)有限公司 全要素真三维大比例尺数字地图的制作方法
CN101777189A (zh) * 2009-12-30 2010-07-14 武汉大学 LiDAR三维立体环境下测图和质量检查方法
CN102175227A (zh) * 2011-01-27 2011-09-07 中国科学院遥感应用研究所 一种探测车在卫星图像上的快速定位方法
EP2535735A1 (en) * 2011-06-15 2012-12-19 Thales Alenia Space Italia S.p.A. Con Unico Socio Acquisition of sar images for computing a height or a digital elevation model by interferometric processing
CN103295202A (zh) * 2013-06-07 2013-09-11 中国科学院新疆生态与地理研究所 一种面向高山地区的遥感影像几何纠正方法
CN103363958A (zh) * 2013-07-05 2013-10-23 武汉华宇世纪科技发展有限公司 基于数字近景摄影测量的街道房屋立面图绘制方法
CN103630121A (zh) * 2013-07-16 2014-03-12 中国人民解放军信息工程大学 一种基于最佳扫描行快速定位的线阵影像微分纠正方法
CN103606188A (zh) * 2013-11-15 2014-02-26 南京师范大学 基于影像点云的地理信息按需采集方法
CN103810701A (zh) * 2014-01-15 2014-05-21 北京农业信息技术研究中心 一种无人机载成像高光谱几何校正的方法及系统
CN103871072A (zh) * 2014-04-04 2014-06-18 武汉大学 基于投影数字高程模型的正射影像镶嵌线自动提取方法
CN103886611A (zh) * 2014-04-08 2014-06-25 西安煤航信息产业有限公司 一种适合于航空摄影飞行质量自动检查的影像匹配方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
刘军等: "基于数字建筑物模型的线阵推扫影像真正射纠正", 《遥感技术与应用》, vol. 24, no. 01, 15 February 2009 (2009-02-15) *
张大春等: "正射影像图技术在铁路勘测中的应用与发展", 《铁道工程学报》, no. 01, 28 January 2007 (2007-01-28) *
张祖勋: "从数字摄影测量工作站(DPW)到数字摄影测量网络(DPGrid)", 《武汉大学学报·信息科学版》, vol. 32, no. 7, 31 July 2007 (2007-07-31) *
张过,墙强,祝小勇,唐新明: "基于影像模拟的星载SAR影像正射纠正", 《测绘学报》, vol. 39, no. 6, 31 December 2010 (2010-12-31) *
马聪丽等: "行标《数字航空摄影测量 测图规范 第3部分:1∶25000 1∶50000 1∶100000数字高程模型 数字正射影像图 数字线划图》编写说明", 《测绘标准化》, no. 03, 27 September 2011 (2011-09-27) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282633A (zh) * 2018-01-09 2018-07-13 深圳飞马机器人科技有限公司 无人机实时视频图像坐标指示方法、系统和终端
CN108230326A (zh) * 2018-02-08 2018-06-29 重庆市地理信息中心 基于gpu-cpu协同的卫星影像拉花变形快速检测方法
CN108257130A (zh) * 2018-02-08 2018-07-06 重庆市地理信息中心 一种航空正射影像全景图拉花区域快速检测方法
CN108269228A (zh) * 2018-02-08 2018-07-10 重庆市地理信息中心 基于gpu并行计算的无人机影像拉花区域自动探测方法
CN108335261A (zh) * 2018-02-08 2018-07-27 重庆市地理信息中心 一种光学遥感卫星正射影像拉花区域自动检测方法
CN108230326B (zh) * 2018-02-08 2018-11-30 重庆市地理信息中心 基于gpu-cpu协同的卫星影像拉花变形快速检测方法
CN108335261B (zh) * 2018-02-08 2018-11-30 重庆市地理信息中心 一种光学遥感卫星正射影像拉花区域自动检测方法

Also Published As

Publication number Publication date
CN104180794B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
CN102506824B (zh) 一种城市低空无人机系统生成数字正射影像图的方法
CN103383773B (zh) 一种动态提取图像控制点的遥感卫星图像自动正射纠正的框架和方法
Xie et al. Study on construction of 3D building based on UAV images
US7944547B2 (en) Method and system of generating 3D images with airborne oblique/vertical imagery, GPS/IMU data, and LIDAR elevation data
EP3132231B1 (en) A method and system for estimating information related to a vehicle pitch and/or roll angle
CN104180794B (zh) 数字正射影像拉花区域的处理方法
CN108230326B (zh) 基于gpu-cpu协同的卫星影像拉花变形快速检测方法
CN102073990A (zh) 一种遥感图像自动几何纠正的系统框架和方法
CN107527328B (zh) 一种兼顾精度与速度的无人机影像几何处理方法
CN105606123B (zh) 一种低空航空摄影测量自动纠正数字地面高程模型的方法
CN106705962B (zh) 一种获取导航数据的方法及系统
CN104330074A (zh) 一种智能测绘平台及其实现方法
CN104392435A (zh) 鱼眼相机标定方法及标定装置
CN105571570A (zh) 一种航空摄影外业的方法及装置
CN106096497B (zh) 一种针对多元遥感数据的房屋矢量化方法
CN113971768A (zh) 一种基于无人机的输电线路违章建筑三维动态检测方法
CN106971408A (zh) 一种基于时空转换思想的摄像机标定方法
CN108919319A (zh) 海岛礁卫星影像无地面控制点定位方法及系统
CN111003214B (zh) 基于云控制的国产陆地观测卫星姿轨精化方法
CN104200527B (zh) 一种真正射影像的生成方法
CN103778610A (zh) 一种星载线阵传感器垂轨摆扫影像的几何预处理方法
CN105631849A (zh) 多边形目标的变化检测方法及装置
CN116958218A (zh) 一种基于标定板角点对齐的点云与图像配准方法及设备
CN108269228B (zh) 基于gpu并行计算的无人机影像拉花区域自动探测方法
CN113282695B (zh) 一种基于遥感影像的矢量地理信息采集方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171204

Address after: 710199 Shenzhou four road, space base, Xi'an, Shaanxi Province, No. 216

Patentee after: AERIAL PHOTOGRAMMETRY AND REMOTE SENSING Co.,Ltd.

Address before: Xi'an City, Shaanxi province 710054 Changsheng Street No. 78

Patentee before: XI'AN MEIHANG INFORMATION INDUSTRY CO.,LTD.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160330

Termination date: 20210902

CF01 Termination of patent right due to non-payment of annual fee