CN104167003A - Method for fast registering remote-sensing image - Google Patents

Method for fast registering remote-sensing image Download PDF

Info

Publication number
CN104167003A
CN104167003A CN201410434279.4A CN201410434279A CN104167003A CN 104167003 A CN104167003 A CN 104167003A CN 201410434279 A CN201410434279 A CN 201410434279A CN 104167003 A CN104167003 A CN 104167003A
Authority
CN
China
Prior art keywords
remote sensing
sensing image
point
corner
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410434279.4A
Other languages
Chinese (zh)
Other versions
CN104167003B (en
Inventor
郭太良
林志贤
郭明勇
林金堂
曾祥耀
曾世聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201410434279.4A priority Critical patent/CN104167003B/en
Publication of CN104167003A publication Critical patent/CN104167003A/en
Application granted granted Critical
Publication of CN104167003B publication Critical patent/CN104167003B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)

Abstract

The invention relates to a method for fast registering a remote-sensing image. The method comprises the following steps that S1, ORB feature points are extracted from the remote-sensing image to be registered and a reference remote-sensing image; S2, initial matching is carried out on the extracted ORB feature points, and wrongly-matched feature points are removed from the initially-matched feature points; S3, parameter solving is carried out on the remote-sensing image to be registered; S4, resampling is carried out on the remote-sensing image to be registered, and image registration is completed. The method is beneficial to improving the speed and precision of image registration.

Description

一种遥感影像的快速配准方法A Fast Registration Method for Remote Sensing Images

技术领域 technical field

本发明涉及图像处理技术领域,特别涉及一种对不同时间、不同视角以及不同传感器的两幅以上的遥感影像进行快速配准的方法。 The invention relates to the technical field of image processing, in particular to a method for quickly registering two or more remote sensing images at different times, different viewing angles and different sensors.

背景技术 Background technique

图像配准是图像处理技术里的一门重要课题,目前图像配准已广泛用于各个领域,如遥感图像分析、医学图像分析、图像融合、机器视觉以及其他领域。 Image registration is an important topic in image processing technology. At present, image registration has been widely used in various fields, such as remote sensing image analysis, medical image analysis, image fusion, machine vision and other fields.

图像配准作为遥感影像处理的一个基本问题,是影像数据融合,动态变化监测等遥感影像集成分析和应用的前提和基础。为了及时、准确的监测被测区变化,需要将获得的遥感影像进行实时配准。常用的影像配准方法通常分为两类:基于灰度的配准方法、以及基于特征(如特征点、特征曲线)的配准方法。基于灰度的配准方法利用图像灰度值度量图像之间的相似度,该类方法实现简单,但速度慢,并且由于遥感影像由不同的传感器、不同的视角以及不同天气等情况下获取,会出现尺度、旋转、光照等变化,将导致该类算法无法正确配准影像,而基于局部不变特征的方法不易受到影响。基于特征的配准方法根据需要配准图像间重要特征的几何关系确定配准参数,这类方法可以减少处理的数据量,而且对于图像的畸变、噪声等具有一定的鲁棒性。因此匹配性能的好坏在很大程度上取决于特征描述的方法和特征提取的质量。 As a basic problem of remote sensing image processing, image registration is the premise and foundation of integrated analysis and application of remote sensing images such as image data fusion and dynamic change monitoring. In order to timely and accurately monitor changes in the measured area, it is necessary to register the obtained remote sensing images in real time. Commonly used image registration methods are usually divided into two categories: registration methods based on grayscale, and registration methods based on features (such as feature points and characteristic curves). The grayscale-based registration method uses the image grayscale value to measure the similarity between images. This type of method is simple to implement, but the speed is slow, and because remote sensing images are acquired by different sensors, different viewing angles, and different weather conditions, etc., There will be changes in scale, rotation, illumination, etc., which will cause this type of algorithm to fail to correctly register images, while methods based on local invariant features are not easily affected. The feature-based registration method determines the registration parameters according to the geometric relationship of the important features between the images to be registered. This type of method can reduce the amount of processed data, and has certain robustness to image distortion and noise. Therefore, the quality of matching performance depends largely on the method of feature description and the quality of feature extraction.

目前针对图像存在尺寸缩放,旋转,平移的情况,主要使用SIFT提取特征点作为配准特征。而SIFT特征需要建立特征点向量的维数高,计算量大,因此无法满足遥感影像的实施配准。 At present, in view of image size scaling, rotation, and translation, SIFT is mainly used to extract feature points as registration features. However, the SIFT feature needs to establish a feature point vector with a high dimension and a large amount of calculation, so it cannot meet the requirements of remote sensing image registration.

Fast角点基于特征点周围的图像灰度值,检测候选特征点周围一圈的像素值,如果候选点周围领域内有足够多的像素点与该候选点的灰度值差别够大,则认为该候选点为一个特征点,即: Fast corner points are based on the gray value of the image around the feature point, and detect the pixel value of a circle around the candidate feature point. If there are enough pixels in the area around the candidate point and the gray value of the candidate point are large enough, it is considered The candidate point is a feature point, namely:

其中I(x)为圆周上任意一点的灰度,I(p)为圆心的灰度,ε d 为灰度值差的阈值,如果N大于给定阈值,一般为周围圆圈点的四分之三,则认为p是一个特征点。 Among them, I(x) is the gray level of any point on the circumference, I(p) is the gray level of the center of the circle, and ε d is the threshold value of the gray value difference. If N is greater than the given threshold value, it is generally a quarter of the surrounding circle points Three, it is considered that p is a feature point.

BRIEF描述子是在图像平滑后大小为31×31像素块内,选取服从N(N=128,256,512)组高斯分布随机点像素对,通过比较像素对的大小,遵循大为1,小为0 的准则,组成二进制串。 The BRIEF descriptor is to select random point pixel pairs that obey N (N=128, 256, 512) groups of Gaussian distribution in the image smoothed size of 31×31 pixel blocks. The criterion is 0 to form a binary string.

二进制检测定义为: Binary detection is defined as:

其中,p(x 1)、p(x 2)分别为像素块p中在x 1x 2位置的像素灰度值。 Among them, p ( x 1 ) and p ( x 2 ) are the pixel gray values at positions x 1 and x 2 in the pixel block p, respectively.

则BRIEF特征定义为n维二进制串向量,即: Then the BRIEF feature is defined as an n-dimensional binary string vector, namely:

ORB算法具有很好的旋转不变性,以Fast角点提取特征点,Fast角点是一种非常快速的角点提取方法,由于Fast不具备旋转不变性,因此ORB用质心法为ORB的角点添加方向信息,使得特征具备了旋转不变性。另外,为了使特征适用于尺寸缩放的情况,通过建立图像金字塔的方法,可以在图像大小不一致的情况下进行特征提取。另外,在建立特征点描述子时,采用Brief描述子进行描述,Brief描述子是一种二进制描述子,可以非常快速的进行匹配。因此基于ORB特征的图像配准适用于实时配准。 The ORB algorithm has good rotation invariance, and extracts feature points with Fast corner points. Fast corner points are a very fast corner point extraction method. Since Fast does not have rotation invariance, ORB uses the centroid method as the corner points of ORB Adding direction information makes the feature invariant to rotation. In addition, in order to make the features suitable for size scaling, feature extraction can be performed in the case of inconsistent image sizes by establishing an image pyramid. In addition, when the feature point descriptor is established, the Brief descriptor is used for description, and the Brief descriptor is a binary descriptor, which can be matched very quickly. Therefore, image registration based on ORB features is suitable for real-time registration.

发明内容 Contents of the invention

本发明的目的在于提供一种遥感影像的快速配准方法,该方法有利于提高图像配准的速度和精度。 The purpose of the present invention is to provide a rapid registration method of remote sensing images, which is beneficial to improve the speed and accuracy of image registration.

为实现上述目的,本发明的技术方案是:一种遥感影像的快速配准方法,包括以下步骤: In order to achieve the above object, the technical solution of the present invention is: a rapid registration method for remote sensing images, comprising the following steps:

步骤S1:分别对待配准遥感图像和参考遥感图像提取ORB特征点; Step S1: Extracting ORB feature points from the registration remote sensing image and the reference remote sensing image respectively;

步骤S2:对提取的ORB特征点进行初始匹配,对初始匹配的特征点剔除错误匹配的特征点; Step S2: Perform initial matching on the extracted ORB feature points, and remove incorrectly matched feature points from the initially matched feature points;

步骤S3:对所述待配准遥感图像进行参数求解; Step S3: solving the parameters of the remote sensing image to be registered;

步骤S4:对所述待配准遥感图像进行重采样,完成图像配准。 Step S4: Resampling the remote sensing image to be registered to complete the image registration.

进一步的,在步骤S1中,分别对待配准遥感图像和参考遥感图像建立图像金字塔,对每层图像金字塔提取ORB特征点。 Further, in step S1, image pyramids are respectively established for the remote sensing image to be registered and the reference remote sensing image, and ORB feature points are extracted for each layer of the image pyramid.

进一步的,在步骤S1中,提取ORB特征点的方法为:首先进行FAST角点检测,进行Harris角点检测,选取前N个最好的点,然后用非极大值抑制来验证角点,剔除伪边缘点,以使特征点分布均匀。 Further, in step S1, the method of extracting ORB feature points is: first perform FAST corner detection, perform Harris corner detection, select the first N best points, and then use non-maximum value suppression to verify the corner points, Eliminate false edge points to make the distribution of feature points even.

进一步的,在步骤S2中,对提取的ORB特征点采用基于双阈值的汉明距离特征点匹配方法进行初始匹配,对初始匹配的特征点采用角点方向夹角为约束条件,剔除错误匹配的特征点,具体方法为: Further, in step S2, the extracted ORB feature points are initially matched using the Hamming distance feature point matching method based on double thresholds, and the angle between the corner direction is used as a constraint condition for the initially matched feature points, and the incorrectly matched ones are eliminated. Feature points, the specific method is:

特征点的角点方向通过灰度质心法求得,即通过计算角点圆形邻域像素灰度的质心,由角点和质心形成的向量方向表征角点方向; The corner direction of the feature point is obtained by the gray-scale centroid method, that is, by calculating the centroid of the pixel gray scale of the corner circular neighborhood, the vector direction formed by the corner point and the centroid represents the corner direction;

定义角点圆形邻域矩为:,所述角点圆形邻域的质心为:,则角点与质心形成的向量方向即为特征点的角点方向:Define the circular neighborhood moments of corner points as: , the centroid of the circular neighborhood of the corner point is: , then the vector direction formed by the corner point and the centroid is the corner point direction of the feature point: ;

其中,mpq表示p+q阶矩,I(x, y)表示角点圆形邻域里像素点(x, y)的灰度值,(x, y)表示角点圆形邻域里的像素点坐标,m00表示零阶矩,m10和m01均表示一阶矩; Among them, m pq represents the p+q order moment, I(x, y) represents the gray value of the pixel point (x, y) in the corner circular neighborhood, and (x, y) represents the corner circular neighborhood The pixel coordinates of , m 00 represents the zero-order moment, m 10 and m 01 both represent the first-order moment;

Δθ i 为待配准遥感图像中一特征点的角点方向,Δθ i 为参考遥感图像中对应特征点的角点方向,则角点方向夹角为Δθ i  =Δθ i  -Δθ i Δ θ i is the corner direction of a feature point in the remote sensing image to be registered, Δ θ i ' is the corner direction of the corresponding feature point in the reference remote sensing image, and the angle between the corner directions is Δ θ i θ i - Δθ i ' ;

然后按如下步骤对提取的ORB特征点进行初始匹配,并剔除错误匹配的特征点: Then perform initial matching on the extracted ORB feature points according to the following steps, and remove the wrongly matched feature points:

a、对待配准遥感图像与参考遥感图像提取的角点建立rBRIEF描述子,设待配准遥感图像的特征点集合为{a1, a2, …, an1},参考遥感图像的特征点集合为{b1, b2, …, bn2}; a. The rBRIEF descriptor is established for the corner points extracted from the remote sensing image to be registered and the reference remote sensing image. The set of feature points of the remote sensing image to be registered is {a1, a2, …, an1}, and the set of feature points of the reference remote sensing image is { b1, b2, ..., bn2};

b、分别将待配准遥感图像的特征点a1的描述子与参考遥感图像的所有特征点b1, b2, …, bn2的描述子进行比较,计算a1的描述子与b1, b2, …, bn2的描述子的汉明距离,从b1, b2, …, bn2中选择出汉明距离最短的点,并算出最短汉明距离与次短汉明距离的比值,如果所述比值小于设定的较大阈值,则将汉明距离最短的点与a1保留为初始配对点,并计算其角点方向夹角Δθ 1,否则舍弃; b. Compare the descriptors of the feature point a1 of the remote sensing image to be registered with the descriptors of all feature points b1, b2, ..., bn2 of the reference remote sensing image, and calculate the descriptors of a1 and b1, b2, ..., bn2 The Hamming distance of the descriptor, select the point with the shortest Hamming distance from b1, b2, ..., bn2, and calculate the ratio of the shortest Hamming distance to the next shortest Hamming distance, if the ratio is smaller than the set comparison If the threshold is large, keep the point with the shortest Hamming distance and a1 as the initial pairing point, and calculate the angle Δ θ 1 between the direction of the corner point, otherwise discard it;

c、按照上述方法,依次求出待配准遥感图像的特征点a2, …, an1在参考遥感图像中的初始配对点,并计算相应的角点方向夹角Δθ 2, …, Δθ n c. According to the above method, calculate the initial pairing points of the feature points a2, ..., an1 of the remote sensing image to be registered in the reference remote sensing image in turn, and calculate the corresponding corner angles Δ θ 2 , ..., Δ θ n ;

d、对初始配对点按照最短汉明距离与次短汉明距离的比值从大到小进行排序,即特征点匹配质量从好到差进行排序,提取出最短汉明距离与次短汉明距离的比值小于设定的较小阈值的初始配对点; d. Sort the initial paired points according to the ratio of the shortest Hamming distance to the second shortest Hamming distance from large to small, that is, sort the matching quality of feature points from good to poor, and extract the shortest Hamming distance and the second shortest Hamming distance The initial pairing point whose ratio is smaller than the set smaller threshold;

e、将步骤d提取出的初始配对点通过最小二乘法求出最佳角点方向夹角Δθ m E, the initial pairing point that step d is extracted obtains optimal corner point direction included angle Δ θ m by least squares method;

f、将步骤b和c求出的所有初始配对点的角点方向夹角,以最佳角点方向夹角Δθ m 为约束条件,将偏离Δθ m 一定范围的初始配对点剔除。 f. Using the angles of the corner direction angles of all the initial pairing points obtained in steps b and c, the optimal corner direction angle Δθ m is used as a constraint condition, and the initial pairing points that deviate from a certain range of Δθ m are eliminated.

进一步的,在步骤S3中,对所述待配准遥感图像进行参数求解的方法为: Further, in step S3, the method for solving the parameters of the remote sensing image to be registered is:

设参考遥感图像的像素点为f(xy),待配准图像的像素点为g(x’y’),假设参考遥感图像上点的坐标为(x i y i ),与之相对应的待配准遥感图像上点的坐标为(x i y i ),则(x i y i )和(x i y i )之间的仿射变换表示为: Suppose the pixel point of the reference remote sensing image is f ( x , y ), the pixel point of the image to be registered is g ( x' , y' ), assuming that the coordinates of the point on the reference remote sensing image are ( x i , y i ), and The coordinates of the corresponding points on the remote sensing image to be registered are ( xi ' , y i ' ), then the affine transformation between ( xi , y i ) and ( xi ' , y i ' ) is expressed as :

式中,s为尺度因子,θ为旋转角度,Δx和Δy分别为两坐标轴的平移量; In the formula, s is the scale factor, θ is the rotation angle, Δ x and Δ y are the translation amounts of the two coordinate axes respectively;

在获取m个特征点以后,根据RANSAC算法求出最佳变换矩阵,即确定了配准参数sθ、Δx,ΔyAfter obtaining m feature points, the optimal transformation matrix is obtained according to the RANSAC algorithm, that is, the registration parameters s , θ , Δ x , Δ y are determined;

根据配准参数对待配准遥感图像进行重采样,即完成图像配准。 According to the registration parameters, the remote sensing image to be registered is resampled, that is, the image registration is completed.

本发明的有益效果是针对遥感影像间存在不同形变、光照等情况,为了及时反映监测区动态变化,提出了一种遥感影像的快速配准方法,该方法可以有效剔除误配点,保证了图像配准的精度,具有很强的实用性和广阔的应用前景。 The beneficial effect of the present invention is that in order to reflect the dynamic changes of the monitoring area in time for the situations of different deformation and illumination among the remote sensing images, a rapid registration method of remote sensing images is proposed, which can effectively eliminate mis-matched points and ensure the accuracy of image registration. Accurate precision, strong practicability and broad application prospects.

附图说明 Description of drawings

图1是本发明实施例的实现流程图。 Fig. 1 is an implementation flow chart of the embodiment of the present invention.

图2是本发明实施例中的参考遥感图像。 Fig. 2 is a reference remote sensing image in the embodiment of the present invention.

图3是本发明实施例中的待配准遥感图像。 Fig. 3 is a remote sensing image to be registered in the embodiment of the present invention.

图4是本发明实施例中的初始特征点匹配图。 Fig. 4 is an initial feature point matching diagram in an embodiment of the present invention.

图5是本发明实施例中的误配点剔除后的特征点匹配图。 FIG. 5 is a matching diagram of feature points after removing mismatched points in an embodiment of the present invention.

图6是本发明实施例中待配准遥感图像配准后和参考遥感图像融合后的图。 Fig. 6 is a diagram of the registration of the remote sensing image to be registered and the fusion of the reference remote sensing image in the embodiment of the present invention.

具体实施方式 Detailed ways

下面结合附图及具体实施例对本发明作进一步的详细说明。 The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.

本发明遥感影像的快速配准方法,如图1所示,包括以下步骤: The rapid registration method of remote sensing image of the present invention, as shown in Figure 1, comprises the following steps:

步骤S1:分别对待配准遥感图像(图3)和参考遥感图像(图2)建立图像金字塔,对每层图像金字塔提取ORB特征点。提取ORB特征点的方法为:首先进行FAST角点检测,由于FAST提取的角点数目太多,并且包含边缘点及伪角点,Harris角点检测算法是一个稳定的角点检测器,进行Harris角点检测,选取前N个最好的点,然后用非极大值抑制来验证角点,剔除伪边缘点,以使特征点分布均匀。 Step S1: Establish image pyramids for the registration remote sensing image (Fig. 3) and the reference remote sensing image (Fig. 2), and extract ORB feature points for each layer of the image pyramid. The method of extracting ORB feature points is as follows: First, perform FAST corner detection. Since the number of corner points extracted by FAST is too large, and contains edge points and pseudo corner points, the Harris corner detection algorithm is a stable corner detector. For corner point detection, select the top N best points, and then use non-maximum value suppression to verify the corner points and eliminate false edge points to make the distribution of feature points even.

步骤S2:为了得到尽量多的匹配正确的特征点,对提取的ORB特征点采用基于双阈值的汉明距离特征点匹配方法进行初始匹配,对初始匹配的特征点采用角点方向夹角为约束条件,剔除错误匹配的特征点。具体方法为: Step S2: In order to obtain as many correctly matched feature points as possible, use the Hamming distance feature point matching method based on double thresholds for initial matching on the extracted ORB feature points, and use the corner angle as a constraint on the initially matched feature points Conditions to remove incorrectly matched feature points. The specific method is:

特征点的角点方向通过灰度质心法求得,即通过计算角点圆形邻域像素灰度的质心,由角点和质心形成的向量方向表征角点方向; The corner direction of the feature point is obtained by the gray-scale centroid method, that is, by calculating the centroid of the pixel gray scale of the corner circular neighborhood, the vector direction formed by the corner point and the centroid represents the corner direction;

定义角点圆形邻域矩为:,所述角点圆形邻域的质心为:,则角点与质心形成的向量方向即为特征点的角点方向:Define the circular neighborhood moments of corner points as: , the centroid of the circular neighborhood of the corner point is: , then the vector direction formed by the corner point and the centroid is the corner point direction of the feature point: ;

其中,mpq表示p+q阶矩,p、q分别为一系数,I(x, y)表示角点圆形邻域里像素点(x, y)的灰度值,(x, y)表示角点圆形邻域里的像素点坐标,m00表示零阶矩,m10和m01均表示一阶矩; Among them, m pq represents the p+q order moment, p and q are a coefficient respectively, I(x, y) represents the gray value of the pixel point (x, y) in the circular neighborhood of the corner point, (x, y) Represents the pixel coordinates in the circular neighborhood of the corner point, m 00 represents the zero-order moment, m 10 and m 01 represent the first-order moment;

Δθ i 为待配准遥感图像中一特征点的角点方向,Δθ i 为参考遥感图像中对应特征点的角点方向,则角点方向夹角为Δθ i  =Δθ i  -Δθ i Δ θ i is the corner direction of a feature point in the remote sensing image to be registered, Δ θ i ' is the corner direction of the corresponding feature point in the reference remote sensing image, and the angle between the corner directions is Δ θ i θ i - Δθ i ' ;

然后按如下步骤对提取的ORB特征点进行初始匹配,并剔除错误匹配的特征点: Then perform initial matching on the extracted ORB feature points according to the following steps, and remove the wrongly matched feature points:

a、对待配准遥感图像与参考遥感图像提取的角点建立rBRIEF描述子,设待配准遥感图像的特征点集合为{a1, a2, …, an1},参考遥感图像的特征点集合为{b1, b2, …, bn2}; a. The rBRIEF descriptor is established for the corner points extracted from the remote sensing image to be registered and the reference remote sensing image. The set of feature points of the remote sensing image to be registered is {a1, a2, …, an1}, and the set of feature points of the reference remote sensing image is { b1, b2, ..., bn2};

b、采用Brute-Force算法,分别将待配准遥感图像的特征点a1的描述子与参考遥感图像的所有特征点b1, b2, …, bn2的描述子进行比较,计算a1的描述子与b1, b2, …, bn2的描述子的汉明距离,从b1, b2, …, bn2中选择出汉明距离最短的点,并算出最短汉明距离与次短汉明距离的比值,设定较大阈值为0.8,如果所述比值小于设定的较大阈值,则将汉明距离最短的点与a1保留为初始配对点,并计算其角点方向夹角Δθ 1,否则舍弃; b. Using the Brute-Force algorithm, compare the descriptors of the feature point a1 of the remote sensing image to be registered with the descriptors of all feature points b1, b2, ..., bn2 of the reference remote sensing image, and calculate the descriptor of a1 and b1 , b2, …, bn2 descriptors’ Hamming distance, select the point with the shortest Hamming distance from b1, b2, …, bn2, and calculate the ratio of the shortest Hamming distance to the next shortest Hamming distance, and set The maximum threshold is 0.8. If the ratio is smaller than the set maximum threshold, the point with the shortest Hamming distance and a1 will be reserved as the initial pairing point, and the angle Δ θ 1 between the direction of the corner point will be calculated, otherwise it will be discarded;

c、按照上述方法,依次求出待配准遥感图像的特征点a2, …, an1在参考遥感图像中的初始配对点,如图4所示,并计算相应的角点方向夹角Δθ 2, …, Δθ n c. According to the above method, sequentially calculate the initial pairing points of the feature points a2, ..., an1 of the remote sensing image to be registered in the reference remote sensing image, as shown in Figure 4, and calculate the corresponding corner angle Δ θ 2 , …, Δ θ n ;

d、对初始配对点按照最短汉明距离与次短汉明距离的比值从大到小进行排序,即特征点匹配质量从好到差进行排序,设定较小阈值为0.5,提取出最短汉明距离与次短汉明距离的比值小于设定的较小阈值的初始配对点; d. Sort the initial pairing points according to the ratio of the shortest Hamming distance to the second shortest Hamming distance from large to small, that is, sort the matching quality of feature points from good to bad, set the minimum threshold to 0.5, and extract the shortest Hamming The ratio of the Hamming distance to the next shortest Hamming distance is less than the initial pairing point of the set smaller threshold;

e、将步骤d提取出的初始配对点通过最小二乘法求出最佳角点方向夹角Δθ m E, the initial pairing point that step d is extracted obtains optimal corner point direction included angle Δ θ m by least squares method;

f、将步骤b和c求出的所有初始配对点的角点方向夹角,以最佳角点方向夹角Δθ m 为约束条件,将偏离Δθ m 一定范围的初始配对点剔除,如图5所示。 f. With the corner point direction angles of all the initial pairing points obtained in steps b and c, the optimal corner point direction angle Δθ m is used as a constraint condition, and the initial pairing points that deviate from a certain range of Δ θ m are eliminated, such as Figure 5 shows.

步骤S3:对所述待配准遥感图像进行参数求解。 Step S3: solving the parameters of the remote sensing image to be registered.

考虑到待配准遥感图像与参考遥感图像之间存在旋转、尺寸等变换,确定图像之间的变换矩阵为H,H表示为: Considering that there are transformations such as rotation and size between the remote sensing image to be registered and the reference remote sensing image, the transformation matrix between the images is determined to be H, and H is expressed as:

采用RANSAC算法求出最佳变换参数,过程如下: The RANSAC algorithm is used to find the optimal transformation parameters, and the process is as follows:

1)在匹配的特征点对中随机抽取m个样本,由这m个样本求出变换矩阵H,再根据变换矩阵H求出待配准遥感图像中的特征点在参考遥感影像中的同名点,再求出由变换矩阵H得到的同名点和由汉明距离匹配得出的匹配点的距离,将距离小于阈值的点作为内点; 1) Randomly select m samples from the matched feature point pairs, obtain the transformation matrix H from these m samples, and then obtain the same-name points of the feature points in the remote sensing image to be registered in the reference remote sensing image according to the transformation matrix H , and then find the distance between the point with the same name obtained by the transformation matrix H and the matching point obtained by the Hamming distance matching, and use the point whose distance is smaller than the threshold as the interior point;

2)将上述步骤重复k次,选择包含内点数目最多的一个点集; 2) Repeat the above steps k times, and select a point set containing the largest number of interior points;

3)用选取的点集中的样本重新计算变换矩阵H,从而得到符合大多数匹配点的最佳变换模型。 3) Recalculate the transformation matrix H with the samples in the selected point set, so as to obtain the best transformation model that matches most of the matching points.

设参考遥感图像的像素点为f(xy),待配准图像的像素点为g(x’y’),假设参考遥感图像上点的坐标为(x i y i ),与之相对应的待配准遥感图像上点的坐标为(x i y i ),则(x i y i )和(x i y i )之间的仿射变换表示为: Suppose the pixel point of the reference remote sensing image is f ( x , y ), the pixel point of the image to be registered is g ( x' , y' ), assuming that the coordinates of the point on the reference remote sensing image are ( x i , y i ), and The coordinates of the corresponding points on the remote sensing image to be registered are ( xi ' , y i ' ), then the affine transformation between ( xi , y i ) and ( xi ' , y i ' ) is expressed as :

式中,s为尺度因子,θ为旋转角度,Δx和Δy分别为两坐标轴的平移量; In the formula, s is the scale factor, θ is the rotation angle, Δ x and Δ y are the translation amounts of the two coordinate axes respectively;

在获取m(m≥4)个特征点以后,根据RANSAC算法求出最佳变换矩阵,即确定了配准参数sθ、Δx,ΔyAfter obtaining m (m≥4) feature points, the optimal transformation matrix is obtained according to the RANSAC algorithm, that is, the registration parameters s , θ , Δ x , Δ y are determined.

步骤S4:根据配准参数对所述待配准遥感图像采用双线性插值进行重采样,完成图像配准。 Step S4: Resampling the remote sensing image to be registered using bilinear interpolation according to the registration parameters to complete the image registration.

对待配准遥感图像用求出的变换矩阵H进行缩放、旋转等变换,并采用双线性插值进行重采样,两幅图像按0.5×参考图像+0.5×待配准图像的方式融合,如图6所示,完成图像配准。 The remote sensing image to be registered is scaled and rotated using the calculated transformation matrix H, and resampled by bilinear interpolation. The two images are fused according to the method of 0.5×reference image+0.5×image to be registered, as shown in the figure As shown in 6, the image registration is completed.

以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。 The above are the preferred embodiments of the present invention, and all changes made according to the technical solution of the present invention, when the functional effect produced does not exceed the scope of the technical solution of the present invention, all belong to the protection scope of the present invention.

Claims (5)

1.一种遥感影像的快速配准方法,其特征在于,包括以下步骤: 1. A fast registration method for remote sensing images, comprising the following steps: 步骤S1:分别对待配准遥感图像和参考遥感图像提取ORB特征点; Step S1: Extracting ORB feature points from the registration remote sensing image and the reference remote sensing image respectively; 步骤S2:对提取的ORB特征点进行初始匹配,对初始匹配的特征点剔除错误匹配的特征点; Step S2: Perform initial matching on the extracted ORB feature points, and remove incorrectly matched feature points from the initially matched feature points; 步骤S3:对所述待配准遥感图像进行参数求解; Step S3: solving the parameters of the remote sensing image to be registered; 步骤S4:对所述待配准遥感图像进行重采样,完成图像配准。 Step S4: Resampling the remote sensing image to be registered to complete the image registration. 2.根据权利要求1所述的一种遥感影像的快速配准方法,其特征在于,在步骤S1中,分别对待配准遥感图像和参考遥感图像建立图像金字塔,对每层图像金字塔提取ORB特征点。 2. The rapid registration method of a remote sensing image according to claim 1, wherein in step S1, an image pyramid is established for the remote sensing image to be registered and the reference remote sensing image respectively, and the ORB feature is extracted for each layer of the image pyramid point. 3.根据权利要求1所述的一种遥感影像的快速配准方法,其特征在于,在步骤S1中,提取ORB特征点的方法为:首先进行FAST角点检测,进行Harris角点检测,选取前N个最好的点,然后用非极大值抑制来验证角点,剔除伪边缘点,以使特征点分布均匀。 3. A kind of fast registration method of remote sensing image according to claim 1, it is characterized in that, in step S1, the method for extracting ORB feature point is: first carry out FAST corner point detection, carry out Harris corner point detection, select The top N best points, and then use non-maximum suppression to verify the corner points and remove false edge points to make the distribution of feature points uniform. 4.根据权利要求1所述的一种遥感影像的快速配准方法,其特征在于,在步骤S2中,对提取的ORB特征点采用基于双阈值的汉明距离特征点匹配方法进行初始匹配,对初始匹配的特征点采用角点方向夹角为约束条件,剔除错误匹配的特征点,具体方法为: 4. The rapid registration method of a kind of remote sensing image according to claim 1, characterized in that, in step S2, the extracted ORB feature points are initially matched using the Hamming distance feature point matching method based on double thresholds, For the feature points of the initial match, the angle between the direction of the corner point is used as the constraint condition, and the feature points of the wrong match are eliminated. The specific method is as follows: 特征点的角点方向通过灰度质心法求得,即通过计算角点圆形邻域像素灰度的质心,由角点和质心形成的向量方向表征角点方向; The corner direction of the feature point is obtained by the gray-scale centroid method, that is, by calculating the centroid of the pixel gray scale of the corner circular neighborhood, the vector direction formed by the corner point and the centroid represents the corner direction; 定义角点圆形邻域矩为:,所述角点圆形邻域的质心为:,则角点与质心形成的向量方向即为特征点的角点方向:Define the circular neighborhood moments of corner points as: , the centroid of the circular neighborhood of the corner point is: , then the vector direction formed by the corner point and the centroid is the corner point direction of the feature point: ; 其中,mpq表示p+q阶矩,I(x, y)表示角点圆形邻域里像素点(x, y)的灰度值,(x, y)表示角点圆形邻域里的像素点坐标,m00表示零阶矩,m10和m01均表示一阶矩; Among them, m pq represents the p+q order moment, I(x, y) represents the gray value of the pixel point (x, y) in the corner circular neighborhood, and (x, y) represents the corner circular neighborhood The pixel coordinates of , m 00 represents the zero-order moment, m 10 and m 01 both represent the first-order moment; Δθ i 为待配准遥感图像中一特征点的角点方向,Δθ i 为参考遥感图像中对应特征点的角点方向,则角点方向夹角为Δθ i  =Δθ i  -Δθ i Δ θ i is the corner direction of a feature point in the remote sensing image to be registered, Δ θ i ' is the corner direction of the corresponding feature point in the reference remote sensing image, and the angle between the corner directions is Δ θ i θ i - Δθ i ' ; 然后按如下步骤对提取的ORB特征点进行初始匹配,并剔除错误匹配的特征点: Then perform initial matching on the extracted ORB feature points according to the following steps, and remove the wrongly matched feature points: a、对待配准遥感图像与参考遥感图像提取的角点建立rBRIEF描述子,设待配准遥感图像的特征点集合为{a1, a2, …, an1},参考遥感图像的特征点集合为{b1, b2, …, bn2}; a. The rBRIEF descriptor is established for the corner points extracted from the remote sensing image to be registered and the reference remote sensing image. The set of feature points of the remote sensing image to be registered is {a1, a2, …, an1}, and the set of feature points of the reference remote sensing image is { b1, b2, ..., bn2}; b、分别将待配准遥感图像的特征点a1的描述子与参考遥感图像的所有特征点b1, b2, …, bn2的描述子进行比较,计算a1的描述子与b1, b2, …, bn2的描述子的汉明距离,从b1, b2, …, bn2中选择出汉明距离最短的点,并算出最短汉明距离与次短汉明距离的比值,如果所述比值小于设定的较大阈值,则将汉明距离最短的点与a1保留为初始配对点,并计算其角点方向夹角Δθ 1,否则舍弃; b. Compare the descriptors of the feature point a1 of the remote sensing image to be registered with the descriptors of all feature points b1, b2, ..., bn2 of the reference remote sensing image, and calculate the descriptors of a1 and b1, b2, ..., bn2 The Hamming distance of the descriptor, select the point with the shortest Hamming distance from b1, b2, ..., bn2, and calculate the ratio of the shortest Hamming distance to the next shortest Hamming distance, if the ratio is smaller than the set comparison If the threshold is large, keep the point with the shortest Hamming distance and a1 as the initial pairing point, and calculate the angle Δ θ 1 between the direction of the corner point, otherwise discard it; c、按照上述方法,依次求出待配准遥感图像的特征点a2, …, an1在参考遥感图像中的初始配对点,并计算相应的角点方向夹角Δθ 2, …, Δθ n c. According to the above method, calculate the initial pairing points of the feature points a2, ..., an1 of the remote sensing image to be registered in the reference remote sensing image in turn, and calculate the corresponding corner angles Δ θ 2 , ..., Δ θ n ; d、对初始配对点按照最短汉明距离与次短汉明距离的比值从大到小进行排序,即特征点匹配质量从好到差进行排序,提取出最短汉明距离与次短汉明距离的比值小于设定的较小阈值的初始配对点; d. Sort the initial paired points according to the ratio of the shortest Hamming distance to the second shortest Hamming distance from large to small, that is, sort the matching quality of feature points from good to poor, and extract the shortest Hamming distance and the second shortest Hamming distance The initial pairing point whose ratio is smaller than the set smaller threshold; e、将步骤d提取出的初始配对点通过最小二乘法求出最佳角点方向夹角Δθ m E, the initial pairing point that step d is extracted obtains optimal corner point direction included angle Δ θ m by least squares method; f、将步骤b和c求出的所有初始配对点的角点方向夹角,以最佳角点方向夹角Δθ m 为约束条件,将偏离Δθ m 一定范围的初始配对点剔除。 f. Using the angles of the corner direction angles of all the initial pairing points obtained in steps b and c, the optimal corner direction angle Δθ m is used as a constraint condition, and the initial pairing points that deviate from a certain range of Δθ m are eliminated. 5.根据权利要求1所述的一种遥感影像的快速配准方法,其特征在于,在步骤S3中,对所述待配准遥感图像进行参数求解的方法为: 5. The rapid registration method of a remote sensing image according to claim 1, characterized in that, in step S3, the method for solving the parameters of the remote sensing image to be registered is: 设参考遥感图像的像素点为f(xy),待配准图像的像素点为g(x’y’),假设参考遥感图像上点的坐标为(x i y i ),与之相对应的待配准遥感图像上点的坐标为(x i y i ),则(x i y i )和(x i y i )之间的仿射变换表示为: Suppose the pixel point of the reference remote sensing image is f ( x , y ), the pixel point of the image to be registered is g ( x' , y' ), assuming that the coordinates of the point on the reference remote sensing image are ( x i , y i ), and The coordinates of the corresponding points on the remote sensing image to be registered are ( xi ' , y i ' ), then the affine transformation between ( xi , y i ) and ( xi ' , y i ' ) is expressed as : 式中,s为尺度因子,θ为旋转角度,Δx和Δy分别为两坐标轴的平移量; In the formula, s is the scale factor, θ is the rotation angle, Δ x and Δ y are the translation amounts of the two coordinate axes respectively; 在获取m个特征点以后,根据RANSAC算法求出最佳变换矩阵,即确定了配准参数sθ、Δx,ΔyAfter obtaining m feature points, the optimal transformation matrix is obtained according to the RANSAC algorithm, that is, the registration parameters s , θ , Δ x , Δ y are determined; 根据配准参数对待配准遥感图像进行重采样,即完成图像配准。 According to the registration parameters, the remote sensing image to be registered is resampled, that is, the image registration is completed.
CN201410434279.4A 2014-08-29 2014-08-29 Method for fast registering remote-sensing image Active CN104167003B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410434279.4A CN104167003B (en) 2014-08-29 2014-08-29 Method for fast registering remote-sensing image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410434279.4A CN104167003B (en) 2014-08-29 2014-08-29 Method for fast registering remote-sensing image

Publications (2)

Publication Number Publication Date
CN104167003A true CN104167003A (en) 2014-11-26
CN104167003B CN104167003B (en) 2017-01-18

Family

ID=51910794

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410434279.4A Active CN104167003B (en) 2014-08-29 2014-08-29 Method for fast registering remote-sensing image

Country Status (1)

Country Link
CN (1) CN104167003B (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105427263A (en) * 2015-12-21 2016-03-23 努比亚技术有限公司 Method and terminal for realizing image registering
CN105844616A (en) * 2016-03-17 2016-08-10 湖南优象科技有限公司 Binocular stereo matching algorithm under laser scattering spot auxiliary and apparatus thereof
TWI571805B (en) * 2016-04-15 2017-02-21 元智大學 Progressive image matching method and device based on hashing function
CN106651756A (en) * 2016-11-16 2017-05-10 浙江工业大学 Image registration method based on SIFT and authentication mechanism
CN106683046A (en) * 2016-10-27 2017-05-17 山东省科学院情报研究所 Real-time image splicing method for police unmanned aerial vehicle investigation and evidence obtaining
CN107240130A (en) * 2017-06-06 2017-10-10 苍穹数码技术股份有限公司 Remote Sensing Image Matching method, apparatus and system
CN107345812A (en) * 2016-05-06 2017-11-14 湖北淦德智能消防科技有限公司 A kind of image position method, device and mobile phone
CN107403127A (en) * 2016-05-20 2017-11-28 重庆电信系统集成有限公司 A kind of vehicle unloading state monitoring method based on image ORB features
CN107968916A (en) * 2017-12-04 2018-04-27 国网山东省电力公司电力科学研究院 A kind of fast video digital image stabilization method suitable for on-fixed scene
CN107993258A (en) * 2017-11-23 2018-05-04 浙江大华技术股份有限公司 A kind of method for registering images and device
CN108495089A (en) * 2018-04-02 2018-09-04 北京京东尚科信息技术有限公司 vehicle monitoring method, device, system and computer readable storage medium
CN108510530A (en) * 2017-02-28 2018-09-07 深圳市朗驰欣创科技股份有限公司 A kind of three-dimensional point cloud matching process and its system
CN108596867A (en) * 2018-05-09 2018-09-28 五邑大学 A kind of picture bearing calibration and system based on ORB algorithms
CN108805812A (en) * 2018-06-04 2018-11-13 东北林业大学 Multiple dimensioned constant ORB algorithms for image mosaic
CN109102534A (en) * 2018-08-29 2018-12-28 长光卫星技术有限公司 Optical remote sensing image registration method and system under the conditions of haze weather
CN109389630A (en) * 2018-09-30 2019-02-26 北京精密机电控制设备研究所 Visible images and the determination of Infrared Image Features point set, method for registering and device
CN109727279A (en) * 2018-06-04 2019-05-07 南京师范大学 An automatic registration method of vector data and remote sensing images
CN110009670A (en) * 2019-03-28 2019-07-12 上海交通大学 Heterologous image registration method based on FAST feature extraction and PIIFD feature description
CN110084784A (en) * 2019-03-30 2019-08-02 天津大学 Corner feature real-time detection and matching process on star
CN111445389A (en) * 2020-02-24 2020-07-24 山东省科学院海洋仪器仪表研究所 A fast stitching method for high-resolution images with wide viewing angle
CN111882594A (en) * 2020-07-27 2020-11-03 北京环境特性研究所 ORB feature point-based polarization image rapid registration method and device
CN112037193A (en) * 2020-08-28 2020-12-04 长安大学 A kind of power line feature marking method and device
CN113192113A (en) * 2021-04-30 2021-07-30 山东产研信息与人工智能融合研究院有限公司 Binocular visual feature point matching method, system, medium and electronic device
CN113256653A (en) * 2021-05-25 2021-08-13 南京信息工程大学 High-rise ground object-oriented heterogeneous high-resolution remote sensing image registration method
CN113269817A (en) * 2021-06-04 2021-08-17 北京中航世科电子技术有限公司 Real-time remote sensing map splicing method and device combining spatial domain and frequency domain
CN113645443A (en) * 2021-07-16 2021-11-12 南京理工大学 FPGA-based Surround Video Splicing Display Method and System
CN114004770A (en) * 2022-01-04 2022-02-01 成都国星宇航科技有限公司 Method and device for accurately correcting satellite space-time diagram and storage medium
US11354883B2 (en) 2019-12-30 2022-06-07 Sensetime International Pte. Ltd. Image processing method and apparatus, and electronic device
CN116152532A (en) * 2023-04-14 2023-05-23 中国地质大学(武汉) A remote sensing image feature extraction and matching method, device and electronic equipment
CN116434072A (en) * 2023-06-12 2023-07-14 山东省国土空间生态修复中心(山东省地质灾害防治技术指导中心、山东省土地储备中心) Geological disaster early identification method and device based on multi-source data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张云生等: "基于改进 ORB 算法的遥感图像自动配准方法", 《国土资源遥感》 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105427263A (en) * 2015-12-21 2016-03-23 努比亚技术有限公司 Method and terminal for realizing image registering
CN105844616A (en) * 2016-03-17 2016-08-10 湖南优象科技有限公司 Binocular stereo matching algorithm under laser scattering spot auxiliary and apparatus thereof
TWI571805B (en) * 2016-04-15 2017-02-21 元智大學 Progressive image matching method and device based on hashing function
CN107345812A (en) * 2016-05-06 2017-11-14 湖北淦德智能消防科技有限公司 A kind of image position method, device and mobile phone
CN107403127A (en) * 2016-05-20 2017-11-28 重庆电信系统集成有限公司 A kind of vehicle unloading state monitoring method based on image ORB features
CN106683046A (en) * 2016-10-27 2017-05-17 山东省科学院情报研究所 Real-time image splicing method for police unmanned aerial vehicle investigation and evidence obtaining
CN106683046B (en) * 2016-10-27 2020-07-28 山东省科学院情报研究所 Image real-time splicing method for police unmanned aerial vehicle reconnaissance and evidence obtaining
CN106651756A (en) * 2016-11-16 2017-05-10 浙江工业大学 Image registration method based on SIFT and authentication mechanism
CN106651756B (en) * 2016-11-16 2020-05-01 浙江工业大学 An Image Registration Method Based on SIFT and Verification Mechanism
CN108510530A (en) * 2017-02-28 2018-09-07 深圳市朗驰欣创科技股份有限公司 A kind of three-dimensional point cloud matching process and its system
CN107240130A (en) * 2017-06-06 2017-10-10 苍穹数码技术股份有限公司 Remote Sensing Image Matching method, apparatus and system
CN107993258A (en) * 2017-11-23 2018-05-04 浙江大华技术股份有限公司 A kind of method for registering images and device
CN107993258B (en) * 2017-11-23 2021-02-02 浙江大华技术股份有限公司 Image registration method and device
CN107968916A (en) * 2017-12-04 2018-04-27 国网山东省电力公司电力科学研究院 A kind of fast video digital image stabilization method suitable for on-fixed scene
CN108495089A (en) * 2018-04-02 2018-09-04 北京京东尚科信息技术有限公司 vehicle monitoring method, device, system and computer readable storage medium
CN108596867A (en) * 2018-05-09 2018-09-28 五邑大学 A kind of picture bearing calibration and system based on ORB algorithms
CN109727279A (en) * 2018-06-04 2019-05-07 南京师范大学 An automatic registration method of vector data and remote sensing images
CN108805812A (en) * 2018-06-04 2018-11-13 东北林业大学 Multiple dimensioned constant ORB algorithms for image mosaic
CN109727279B (en) * 2018-06-04 2022-07-29 南京师范大学 Automatic registration method of vector data and remote sensing image
CN109102534A (en) * 2018-08-29 2018-12-28 长光卫星技术有限公司 Optical remote sensing image registration method and system under the conditions of haze weather
CN109102534B (en) * 2018-08-29 2020-09-01 长光卫星技术有限公司 Optical remote sensing image registration method and system under haze weather condition
CN109389630A (en) * 2018-09-30 2019-02-26 北京精密机电控制设备研究所 Visible images and the determination of Infrared Image Features point set, method for registering and device
CN109389630B (en) * 2018-09-30 2020-10-23 北京精密机电控制设备研究所 Method and device for determining and registering feature point set of visible light image and infrared image
CN110009670A (en) * 2019-03-28 2019-07-12 上海交通大学 Heterologous image registration method based on FAST feature extraction and PIIFD feature description
CN110084784A (en) * 2019-03-30 2019-08-02 天津大学 Corner feature real-time detection and matching process on star
US11354883B2 (en) 2019-12-30 2022-06-07 Sensetime International Pte. Ltd. Image processing method and apparatus, and electronic device
CN111445389A (en) * 2020-02-24 2020-07-24 山东省科学院海洋仪器仪表研究所 A fast stitching method for high-resolution images with wide viewing angle
CN111882594A (en) * 2020-07-27 2020-11-03 北京环境特性研究所 ORB feature point-based polarization image rapid registration method and device
CN112037193A (en) * 2020-08-28 2020-12-04 长安大学 A kind of power line feature marking method and device
CN113192113A (en) * 2021-04-30 2021-07-30 山东产研信息与人工智能融合研究院有限公司 Binocular visual feature point matching method, system, medium and electronic device
CN113192113B (en) * 2021-04-30 2022-12-23 山东产研信息与人工智能融合研究院有限公司 Binocular visual feature point matching method, system, medium and electronic device
CN113256653A (en) * 2021-05-25 2021-08-13 南京信息工程大学 High-rise ground object-oriented heterogeneous high-resolution remote sensing image registration method
CN113256653B (en) * 2021-05-25 2023-05-09 南京信息工程大学 A heterogeneous high-resolution remote sensing image registration method for high-rise ground objects
CN113269817A (en) * 2021-06-04 2021-08-17 北京中航世科电子技术有限公司 Real-time remote sensing map splicing method and device combining spatial domain and frequency domain
CN113645443A (en) * 2021-07-16 2021-11-12 南京理工大学 FPGA-based Surround Video Splicing Display Method and System
CN113645443B (en) * 2021-07-16 2022-05-13 南京理工大学 FPGA-based surround video splicing display method and system
CN114004770B (en) * 2022-01-04 2022-04-26 成都国星宇航科技有限公司 Method and device for accurately correcting satellite space-time diagram and storage medium
CN114004770A (en) * 2022-01-04 2022-02-01 成都国星宇航科技有限公司 Method and device for accurately correcting satellite space-time diagram and storage medium
CN116152532A (en) * 2023-04-14 2023-05-23 中国地质大学(武汉) A remote sensing image feature extraction and matching method, device and electronic equipment
CN116434072A (en) * 2023-06-12 2023-07-14 山东省国土空间生态修复中心(山东省地质灾害防治技术指导中心、山东省土地储备中心) Geological disaster early identification method and device based on multi-source data
CN116434072B (en) * 2023-06-12 2023-08-18 山东省国土空间生态修复中心(山东省地质灾害防治技术指导中心、山东省土地储备中心) Geological disaster early identification method and device based on multi-source data

Also Published As

Publication number Publication date
CN104167003B (en) 2017-01-18

Similar Documents

Publication Publication Date Title
CN104167003B (en) Method for fast registering remote-sensing image
CN107301661B (en) High-resolution remote sensing image registration method based on edge point features
CN104463108B (en) A kind of monocular real time target recognitio and pose measuring method
CN103400384B (en) The wide-angle image matching process of calmodulin binding domain CaM coupling and some coupling
CN103400388B (en) Method for eliminating Brisk key point error matching point pair by using RANSAC
CN106355577B (en) Fast Image Matching Method and System Based on Feature State and Global Consistency
CN104036480B (en) Quick elimination Mismatching point method based on surf algorithm
CN104200461B (en) The remote sensing image registration method of block and sift features is selected based on mutual information image
CN108122256B (en) A method of it approaches under state and rotates object pose measurement
CN105160686B (en) A kind of low latitude various visual angles Remote Sensing Images Matching Method based on improvement SIFT operators
CN103295232B (en) Based on the SAR image registration method in straight line and region
CN104851095B (en) The sparse solid matching method of workpiece image based on modified Shape context
CN103593849B (en) Method for quickly recognizing and tracking image sequence oval artificial target points
CN103020945A (en) Remote sensing image registration method of multi-source sensor
CN110334762A (en) A Feature Matching Method Based on Quadtree Combining ORB and SIFT
CN102800099B (en) Multi-feature multi-level visible light and high-spectrum image high-precision registering method
CN106446894A (en) Method for recognizing position of spherical object based on contour
CN105631872B (en) Remote sensing image registration method based on multi-characteristic points
CN103955950B (en) Image tracking method utilizing key point feature matching
CN106709500A (en) A Method of Image Feature Matching
CN101833763B (en) Method for detecting reflection image on water surface
CN115471682A (en) An Image Matching Method Based on SIFT Fusion ResNet50
CN110009670A (en) Heterologous image registration method based on FAST feature extraction and PIIFD feature description
CN106682674B (en) An automatic reading method of pointer instrument based on intelligent inspection robot
CN104408721B (en) Stamper image extracting method based on background density estimation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant