CN104166134A - Real beam foresight scanning radar target two-dimension locating method - Google Patents
Real beam foresight scanning radar target two-dimension locating method Download PDFInfo
- Publication number
- CN104166134A CN104166134A CN201410422691.4A CN201410422691A CN104166134A CN 104166134 A CN104166134 A CN 104166134A CN 201410422691 A CN201410422691 A CN 201410422691A CN 104166134 A CN104166134 A CN 104166134A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- target
- mfrac
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000003384 imaging method Methods 0.000 claims abstract description 38
- 230000033001 locomotion Effects 0.000 claims abstract description 32
- 239000013598 vector Substances 0.000 claims abstract description 30
- 238000012545 processing Methods 0.000 claims abstract description 21
- 238000004088 simulation Methods 0.000 claims abstract description 10
- 238000001914 filtration Methods 0.000 claims abstract description 8
- 238000005070 sampling Methods 0.000 claims description 25
- 239000011159 matrix material Substances 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000007906 compression Methods 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 7
- 230000005012 migration Effects 0.000 claims description 7
- 238000013508 migration Methods 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 4
- 102000016550 Complement Factor H Human genes 0.000 claims description 3
- 108010053085 Complement Factor H Proteins 0.000 claims description 3
- 238000004422 calculation algorithm Methods 0.000 claims description 3
- 230000001427 coherent effect Effects 0.000 claims 2
- 239000000654 additive Substances 0.000 claims 1
- 230000000996 additive effect Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 230000035485 pulse pressure Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/66—Radar-tracking systems; Analogous systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种实波束前视扫描雷达目标二维定位方法,包括以下步骤:S1:成像系统参数初始化,计算成像区域任意点目标与运动平台的距离,设置实波束扫描雷达点目标仿真参数;S2:进行距离向匹配滤波;S3:进行距离向运动补偿处理;S4:对扫描雷达方位向回波信号进行建模;S5:构造加权最小二乘目标函数;S6:进行目标方位定位。本发明利用发射信号和天线方向图参数信息,将目标幅度估计问题转化为目标函数关于加权向量wn的最优解的问题,通过求解目标函数的最优解求解出目标方位维的位置信息;有效的解决了运动平台前视作用区域中目标方位维定位精度低的问题,实现了运动平台前视区域目标距离维和方位维的二维精确定位。
The invention discloses a two-dimensional positioning method of a real-beam forward-looking scanning radar target, comprising the following steps: S1: Initializing imaging system parameters, calculating the distance between a target at any point in the imaging area and a moving platform, and setting simulation parameters of a real-beam scanning radar point target ; S2: Perform range matching filtering; S3: Perform range motion compensation processing; S4: Model the scanning radar azimuth echo signal; S5: Construct weighted least squares objective function; S6: Perform target azimuth positioning. The present invention utilizes the transmission signal and the antenna pattern parameter information to transform the target amplitude estimation problem into the problem of the optimal solution of the target function with respect to the weighted vector w n , and solves the position information of the target azimuth dimension by solving the optimal solution of the target function; It effectively solves the problem of low positioning accuracy of the target azimuth dimension in the forward-looking area of the moving platform, and realizes the two-dimensional precise positioning of the distance dimension and azimuth dimension of the target in the forward-looking area of the moving platform.
Description
技术领域technical field
本发明属于雷达技术领域,特别涉及一种实波束前视扫描雷达目标二维定位方法。The invention belongs to the technical field of radar, in particular to a two-dimensional positioning method for a real beam forward-looking scanning radar target.
背景技术Background technique
雷达由于不受恶劣天气因素的影响,并能够全天时工作,因此在军事侦察、海洋及水文观测、陆/海追踪与救援等军用和民用领域发挥了不可或缺的作用。对实现运动平台前视区域目标的精确定位,对敌我目标侦察与探测、目标追踪与打击、海面目标搜救等功能的实现具有重要的意义。Because radar is not affected by bad weather and can work around the clock, it plays an indispensable role in military and civilian fields such as military reconnaissance, ocean and hydrological observation, land/sea tracking and rescue. It is of great significance to realize the precise positioning of the target in the forward-looking area of the moving platform, and the realization of functions such as enemy and enemy target reconnaissance and detection, target tracking and strike, and sea surface target search and rescue.
运动平台前视区域目标的距离维高精度定位可以通过发射大带宽的线性调频信号和使用脉冲压缩技术处理实现。然而对于前视成像区域的方位维,由于平台与成像区域内目标相对运动产生的多普勒频率梯度几乎为零,使得现有的合成孔径等成像技术很难实现方位维目标的准确定位只能通过扫描成像的方式获得方位维目标的低精度定位结果。由于该方式目标位置的定位和和幅度的估计精度低,严重影响了运动平台的侦察、监视、定位和识别能力。The range-dimensional high-precision positioning of the target in the forward-looking area of the motion platform can be realized by transmitting a large-bandwidth chirp signal and processing it with pulse compression technology. However, for the azimuth dimension of the forward-looking imaging area, because the Doppler frequency gradient generated by the relative motion between the platform and the target in the imaging area is almost zero, it is difficult to achieve accurate positioning of the azimuth dimension target with existing synthetic aperture and other imaging technologies. The low-precision positioning results of azimuth-dimensional targets are obtained by means of scanning imaging. Due to the low accuracy of target position positioning and amplitude estimation in this way, the reconnaissance, surveillance, positioning and identification capabilities of the motion platform are seriously affected.
针对运动平台前视区域二维目标定位问题,特别是如何提高方位维目标的定位能力,一般采用两种方法。其一如文献:Blair W D,Brandt-Pearce M.Monopulse DOA estimation oftwo unresolved Rayleigh targets[J].Aerospace and Electronic Systems,IEEE Transactions on,2001,37(2):452-469.所采用单脉冲技术进行方位维处理。该技术基于单脉冲测角原理,主要适用于单个强点目标的定位,虽然对特定条件下的两点目标有效,但对于存在多散射中心的复杂目标环境下,目标定位会存在严重偏差,甚至会产生虚假目标等现象;其二如文献:Mahafza B R,Knight D L,Audeh N F.Forward-looking SAR imaging using a linear array withtransverse motion[C]//Southeastcon'93,Proceedings.,IEEE.IEEE,1993:4 p.的方法,该文章提出一种线性阵列合成孔径雷达前视成像方法,利用线性阵列与前视区域内目标之间的相对运动产生多普勒带宽,再利用匹配滤波技术实现目标方位定位。但该方法需要尽量长的线阵以增加孔径尺寸,同时,由于前视区域内目标的多普勒带宽很小,能够获得的目标定位精度依然有限。For the two-dimensional target positioning problem in the forward-looking area of the motion platform, especially how to improve the positioning ability of the azimuth dimension target, two methods are generally adopted. It is like the literature: Blair W D, Brandt-Pearce M. Monopulse DOA estimation of two unresolved Rayleigh targets[J]. Aerospace and Electronic Systems, IEEE Transactions on, 2001,37(2):452-469. The monopulse technique used Perform azimuth processing. This technology is based on the principle of single-pulse angle measurement, and is mainly suitable for the positioning of a single strong point target. Although it is effective for two-point targets under certain conditions, for complex target environments with multiple scattering centers, there will be serious deviations in target positioning, and even False targets and other phenomena will be generated; the second is the literature: Mahafza B R, Knight D L, Audeh N F. Forward-looking SAR imaging using a linear array withtransverse motion[C]//Southeastcon'93,Proceedings.,IEEE.IEEE , 1993: 4 p. method, this article proposes a linear array synthetic aperture radar forward-looking imaging method, using the relative motion between the linear array and the target in the forward-looking area to generate Doppler bandwidth, and then using matched filtering technology to achieve Target orientation. However, this method requires a linear array as long as possible to increase the aperture size. At the same time, due to the small Doppler bandwidth of the target in the forward-looking area, the target positioning accuracy that can be obtained is still limited.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种通过求解目标函数的最优解求解出目标方位维的位置信息,有效的解决了运动平台前视作用区域中目标方位维定位精度低的问题,实现了运动平台前视区域目标距离维和方位维的二维精确定位的实波束前视扫描雷达目标二维定位方法。The purpose of the present invention is to overcome the deficiencies of the prior art, provide a method to obtain the position information of the target azimuth dimension by solving the optimal solution of the objective function, and effectively solve the problem of low positioning accuracy of the target azimuth dimension in the forward-looking area of the moving platform The problem is to realize the two-dimensional precise positioning method of the real-beam forward-looking scanning radar target in the distance and azimuth dimensions of the forward-looking area of the moving platform.
本发明的目的是通过以下技术方案来实现的:一种实波束前视扫描雷达目标二维定位方法,包括以下步骤:The purpose of the present invention is achieved by the following technical solutions: a real beam forward scanning radar target two-dimensional positioning method, comprising the following steps:
S1:成像系统参数初始化,计算成像区域任意点目标与运动平台的距离,设置实波束扫描雷达点目标仿真参数;S1: Initialize the parameters of the imaging system, calculate the distance between the target at any point in the imaging area and the moving platform, and set the simulation parameters of the real beam scanning radar point target;
S2:进行距离向匹配滤波;S2: Perform distance matched filtering;
S3:进行距离向运动补偿处理;S3: Perform distance motion compensation processing;
S4:对扫描雷达方位向回波信号进行建模;S4: Modeling the azimuth echo signal of the scanning radar;
S5:构造加权最小二乘目标函数;S5: Construct a weighted least squares objective function;
S6:进行目标方位定位。S6: Carry out target orientation positioning.
进一步地,所述的步骤S1中计算成像区域任意点目标与运动平台的距离的具体方法为:运动平台零时刻位置记为(0,0,h),运动平台沿y轴运动,运动速度为V,目标相对平台的方位角记为q,雷达天线下视角记为雷达天线扫描速度记为ω;则t时刻时运动平台与场景中目标距离通过系统参数表示为:Further, the specific method for calculating the distance between the target at any point in the imaging area and the motion platform in the step S1 is as follows: the zero moment position of the motion platform is recorded as (0,0,h), the motion platform moves along the y-axis, and the motion speed is V, the azimuth angle of the target relative to the platform is denoted as q, and the angle of view under the radar antenna is denoted as The scanning speed of the radar antenna is recorded as ω; then the distance between the moving platform and the target in the scene at time t is expressed by system parameters as:
其中,R0为运动平台与目标之间的初始距离;Among them, R0 is the initial distance between the motion platform and the target;
设置实波束扫描雷达点目标仿真参数的具体方法为:假设在扫描区域中同一距离R处的不同方位采样位置上都幅值,令产生这些运动幅值的目标的位置参数为θ=(θ1,θ2,...θN),幅度参数为σ=(σ1,σ2,...,σN),雷达发射信号为线性调频信号,扫描雷达作用区域的回波经过相干解调记为S(t,τ):The specific method for setting the simulation parameters of the real beam scanning radar point target is as follows: assuming that the sampling positions at different azimuths at the same distance R in the scanning area have amplitude values, let the position parameters of the targets that generate these motion amplitude values be θ=(θ 1 ,θ 2 ,...θ N ), the amplitude parameter is σ=(σ 1 ,σ 2 ,...,σ N ), the radar transmission signal is a chirp signal, and the echo of the scanning radar active area is coherently demodulated Denoted as S(t,τ):
其中,τ为距离向时间变量,rect(·)和a(·)分别代表距离时间窗和方位时间窗,K是发射信号的时间调频斜率,c为光速,R(τ)代表运动平台与成像区域内各目标之间的距离变化;Among them, τ is the range time variable, rect(·) and a(·) represent the range time window and azimuth time window respectively, K is the time frequency modulation slope of the transmitted signal, c is the speed of light, R(τ) represents the motion platform and imaging Changes in the distance between targets in the area;
扫描雷达成像区域的方位时间向量记为:The azimuth time vector of the scanning radar imaging area is recorded as:
Ta=[-PRI·Na/2,-PRI·(Na/2-1),…,PRI·(Na/2-1)]T a =[-PRI · N a /2, -PRI · (N a /2-1),..., PRI · (N a /2-1)]
距离时间向量为:The distance-time vector is:
Tr=[-1/fr·Nr/2,-1/fr·(Nr/2-1),…,1fr·(Nr/2-1)]T r =[-1/ fr ·N r /2,-1/ fr ·(N r /2-1),...,1fr · (N r /2-1)]
其中fr为距离向采样率,PRI为发射信号脉冲重复间隔,Na为方位向采样点数,Nr为距离向采样点数。。Where f r is the sampling rate in the range direction, PRI is the pulse repetition interval of the transmitted signal, N a is the number of sampling points in the azimuth direction, and N r is the number of sampling points in the range direction. .
进一步地,所述的步骤S2中距离向匹配滤波具体包括以下子步骤:Further, the range matched filtering in step S2 specifically includes the following sub-steps:
S21:对经过相干解调的回波S(t,τ)进行距离向脉冲压缩处理,获得距离维目标高分辨率,并通过距离向FFT得到距离向频域、方位向时域的回波信号S(fr,τ):S21: Perform range pulse compression processing on the coherently demodulated echo S(t,τ) to obtain high resolution of the target in the range dimension, and obtain echo signals in the range frequency domain and azimuth time domain through range FFT S(f r ,τ):
S22:构造距离向匹配滤波函数H(fr):S22: Construct the range-wise matched filter function H(f r ):
S23:将H(fr)与回波信号S(fr,τ)相乘得到距离压缩后的距离向频域、方位向时域的回波信号S1(fr,τ):S23: Multiply H( fr ) and the echo signal S( fr ,τ) to obtain the echo signal S 1 ( fr ,τ) in the range frequency domain and azimuth time domain after range compression:
进一步地,所述的步骤S3中进行距离向运动补偿处理具体包括以下子步骤:Further, the range motion compensation processing in step S3 specifically includes the following sub-steps:
S31:将步骤S1中的进行泰勒展开;S31: the step S1 Perform Taylor expansion;
S32:忽略展开后的距离关系表达式中的二次项,同时由于与较小,所以cosθ≈1,因此,使得R(x,y,t)≈R0-Vt;S32: Ignore the quadratic term in the expanded distance relation expression, and at the same time due to the smaller, so cosθ≈1, therefore, making R(x,y,t)≈R 0 -Vt;
S33:构造距离徙动因子H(fr,t):S33: Construct distance migration factor H( fr ,t):
S34:将H(fr,t)与S1(fr,τ)相乘消除雷达平台运动造成的距离徙动,并进行距离向IFFT变换得到高距离定位精度和低方位定位精度的二维时域信号S2(t,τ):S34: Multiply H( fr ,t) and S 1 ( fr ,τ) to eliminate the range migration caused by the movement of the radar platform, and perform range-to-IFFT transformation to obtain a two-dimensional position with high range positioning accuracy and low azimuth positioning accuracy Time domain signal S 2 (t,τ):
进一步地,所述的步骤S4中建模的具体方法为:对于各距离单元,方位扫描成像的回波模型及处理方式是相同的,因此任意选取任一距离单元的回波数据进行信号建模,方位向回波信号向量y表示为:Further, the specific method of modeling in step S4 is as follows: for each distance unit, the echo model and processing method of azimuth scanning imaging are the same, so the echo data of any distance unit is arbitrarily selected for signal modeling , the azimuth echo signal vector y is expressed as:
y=A(θ)x+ny=A(θ)x+n
其中,为方向矩阵,由各个方位采样点对应的方向向量组成,a(n)=[a1,…,aN]∈RL×1为天线方向图序列,N为一个波束宽度的采样点数,x=[x1,...,xN]表示方位向离散目标的幅度信息,M为方位向采样点数,y=[y1,...,yM]为方位向接收的回波信号,n为附加噪声向量。in, is the direction matrix, which is composed of direction vectors corresponding to each azimuth sampling point, a(n)=[a 1 ,...,a N ]∈R L×1 is the antenna pattern sequence, N is the number of sampling points of a beam width, x =[x 1 ,...,x N ] represents the amplitude information of discrete targets in azimuth, M is the number of sampling points in azimuth, y=[y 1 ,...,y M ] is the echo signal received in azimuth, n is the additional noise vector.
进一步地,所述的步骤S5中构造加权最小二乘目标函数的具体方法为:对该距离单元的第n个目标,构造M×1维的加权向量wn,令并建立求该目标幅值的目标函数的最小二乘解:Further, the specific method of constructing the weighted least squares objective function in the step S5 is as follows: construct an M×1-dimensional weighted vector w n for the nth object of the distance unit, so that And establish the least squares solution of the objective function for the target magnitude:
其中,K为扫描雷达扫过目标场景的扫描次数,xn为第n个目标的幅值,展开目标函数得到:Among them, K is the number of times the scanning radar scans the target scene, x n is the amplitude of the nth target, and the objective function is expanded to obtain:
其中,
进一步地,所述的步骤S6中进行目标方位定位具体包括以下子步骤:Further, the target azimuth positioning in the step S6 specifically includes the following sub-steps:
S61:求等式
S62:将等式的目标幅度最优估计函数代入到式
S63:求目标函数关J1(w)关于加权向量wn的最优解,其计算方法为:求目标函数关J1(w)关于wn的导数并令其为零,得到关于wn的最优解:S63: Find the optimal solution of the objective function J 1 (w) with respect to the weighted vector w n , the calculation method is: find the derivative of the objective function J 1 (w) with respect to w n and make it zero, and obtain the optimal solution with respect to w n The optimal solution for :
S64:将wn的计算结果代入到等式
S65:利用步骤S63和S64的方法计算出该距离单元的所有目标幅度,并定位目标的角度,实现目标方位维的精确定位,再将算法应用到整个扫描雷达作用区域中,逐距离单元对整个面目标场景处理,实现成像区域内目标的二维精确定位。S65: Utilize the methods of steps S63 and S64 to calculate all the target amplitudes of the range unit, and locate the angle of the target to realize the precise positioning of the target azimuth dimension, and then apply the algorithm to the entire scanning radar action area, and calculate the entire range unit by range unit. Surface target scene processing to achieve two-dimensional precise positioning of targets in the imaging area.
进一步地,所述的方位向采样点数M的计算方法为:Further, the calculation method of the number of azimuth sampling points M is:
其中,PRF为脉冲重复频率,ω为扫描速度,Φ为扫描范围。Among them, PRF is the pulse repetition frequency, ω is the scanning speed, and Φ is the scanning range.
本发明的有益效果是:本发明中采用实波束雷达以匀速扫描模式工作,雷达发射线性调频信号,利用发射信号和天线方向图参数信息,首先通过对回波信号的距离维匹配滤波处理获得目标距离维的精度定位,再进行运动补偿消除平台运动对回波信号的影响,实现目标距离维的高精度定位,随后建立实波束前视扫描雷达的信号回波模型,并基于加权最小二乘准则,构造了关于求解方位目标位置的目标函数,将目标幅度估计问题转化为目标函数关于加权向量wn的最优解的问题,通过求解目标函数的最优解求解出目标方位维的位置信息;有效的解决了运动平台前视作用区域中目标方位维定位精度低的问题,最终实现了运动平台前视区域目标距离维和方位维的二维精确定位,与传统二维目标定位方法相比,目标方位维定位精度更高,幅度的复原更准确。本发明可以应用于动目标追踪、精确制导等领域。The beneficial effects of the present invention are: in the present invention, the real-beam radar is adopted to work in the uniform-speed scanning mode, and the radar transmits a chirp signal, and utilizes the transmission signal and the antenna pattern parameter information, firstly obtains the target through the range-dimension matched filter processing of the echo signal Accurate positioning in the distance dimension, and then perform motion compensation to eliminate the influence of platform motion on the echo signal, to achieve high-precision positioning in the distance dimension of the target, and then establish the signal echo model of the real-beam forward-looking scanning radar, and based on the weighted least squares criterion , constructing the objective function about solving the azimuth target position, transforming the target amplitude estimation problem into the optimal solution problem of the objective function about the weighted vector w n , and solving the position information of the target azimuth dimension by solving the optimal solution of the objective function; It effectively solves the problem of low positioning accuracy of the target azimuth dimension in the forward-looking area of the moving platform, and finally realizes the two-dimensional accurate positioning of the distance and azimuth dimensions of the target in the forward-looking area of the moving platform. Compared with the traditional two-dimensional target positioning method, the target The positioning accuracy of the azimuth dimension is higher, and the recovery of the amplitude is more accurate. The invention can be applied to the fields of moving target tracking, precise guidance and the like.
附图说明Description of drawings
图1为本发明的定位方法流程图;Fig. 1 is the flowchart of positioning method of the present invention;
图2为本发明实施例采用的实波束扫描雷达成像系统结构图;Fig. 2 is the structural diagram of the real beam scanning radar imaging system adopted by the embodiment of the present invention;
图3为本发明的实施实施例采用的仿真目标场景布置图;FIG. 3 is a layout diagram of a simulation target scene adopted in an embodiment of the present invention;
图4为本发明的根据系统参数生成的二维回波信号;Fig. 4 is the two-dimensional echo signal generated according to the system parameters of the present invention;
图5为本发明实施例的距离向脉压后的数据加入SNR=20dB高斯白噪声图形;Fig. 5 adds SNR=20dB Gaussian white noise pattern to the data after the distance phase pulse pressure of the embodiment of the present invention;
图6为本发明实施例的距离向脉压后数据加入SNR=20dB高斯白噪声沿方位向的剖面图;Fig. 6 is the sectional view along the azimuth direction of adding SNR=20dB Gaussian white noise to the data after the pulse pressure of the distance phase according to the embodiment of the present invention;
图7为本发明的实施例图3中9个点目标进行二维目标定位处理的结果;Fig. 7 is the result of two-dimensional target positioning processing of nine point targets in Fig. 3 according to an embodiment of the present invention;
图8为本发明对应图6的处理结果沿方位向的剖面图。FIG. 8 is a sectional view along the azimuth direction corresponding to the processing result of FIG. 6 according to the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例进一步说明本发明的技术方案,但本发明所保护的内容不局限于以下所述。The technical solution of the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, but the protected content of the present invention is not limited to the following description.
如图1所示,一种实波束前视扫描雷达目标二维定位方法,包括以下步骤:As shown in Figure 1, a real-beam forward-looking scanning radar target two-dimensional positioning method includes the following steps:
S1:成像系统参数初始化,计算成像区域任意点目标与运动平台的距离,设置实波束扫描雷达点目标仿真参数;S1: Initialize the parameters of the imaging system, calculate the distance between the target at any point in the imaging area and the moving platform, and set the simulation parameters of the real beam scanning radar point target;
S2:进行距离向匹配滤波;S2: Perform distance matched filtering;
S3:进行距离向运动补偿处理;S3: Perform distance motion compensation processing;
S4:对扫描雷达方位向回波信号进行建模;S4: Modeling the azimuth echo signal of the scanning radar;
S5:构造加权最小二乘目标函数;S5: Construct a weighted least squares objective function;
S6:进行目标方位定位。S6: Perform target orientation positioning.
进一步地,所述的步骤S1中计算成像区域任意点目标与运动平台的距离的具体方法为:运动平台零时刻位置记为(0,0,h),其中,0、0和h分别为接收站的x轴、y轴和z轴坐标;运动平台沿y轴运动,运动速度为V,目标相对平台的方位角记为θ,雷达天线下视角记为雷达天线扫描速度记为ω;则t时刻时运动平台与场景中目标距离通过系统参数表示为:Further, the specific method for calculating the distance between the target at any point in the imaging area and the moving platform in the step S1 is as follows: the position of the moving platform at zero time is recorded as (0,0,h), where 0, 0 and h are the received The x-axis, y-axis and z-axis coordinates of the station; the moving platform moves along the y-axis, the moving speed is V, the azimuth angle of the target relative to the platform is denoted as θ, and the angle of view under the radar antenna is denoted as The scanning speed of the radar antenna is recorded as ω; then the distance between the moving platform and the target in the scene at time t is expressed by system parameters as:
其中,R0为运动平台与目标之间的初始距离;Among them, R0 is the initial distance between the motion platform and the target;
设置实波束扫描雷达点目标仿真参数的具体方法为:假设在扫描区域中同一距离R处的不同方位采样位置上都幅值,令产生这些运动幅值的目标的位置参数为θ=(θ1,θ2,...θN),幅度参数为σ=(σ1,σ2,...,σN),雷达发射信号为线性调频信号,扫描雷达作用区域的回波经过相干解调记为S(t,τ):The specific method for setting the simulation parameters of real beam scanning radar point targets is as follows: assuming that the sampling positions at different azimuths at the same distance R in the scanning area have amplitudes, let the position parameters of the targets that generate these moving amplitudes be θ=(θ 1 ,θ 2 ,...θ N ), the amplitude parameter is σ=(σ 1 ,σ 2 ,...,σ N ), the radar transmission signal is a chirp signal, and the echo of the scanning radar active area is coherently demodulated Denoted as S(t,τ):
其中,τ为距离向时间变量,rect(·)和a(·)分别代表距离时间窗和方位时间窗,K是发射信号的时间调频斜率,c为光速,R(τ)代表运动平台与成像区域内各目标之间的距离变化;Among them, τ is the range time variable, rect(·) and a(·) represent the range time window and azimuth time window respectively, K is the time frequency modulation slope of the transmitted signal, c is the speed of light, R(τ) represents the motion platform and imaging Changes in the distance between targets in the area;
扫描雷达成像区域的方位时间向量记为:The azimuth time vector of the scanning radar imaging area is recorded as:
Ta=[-PRI·Na/2,-PRI·(Na/2-1),…,PRI·(Na/2-1)]T a =[-PRI · N a /2, -PRI · (N a /2-1),..., PRI · (N a /2-1)]
距离时间向量为:The distance-time vector is:
Tr=[-1/fr·Nr/2,-1/fr·(Nr/2-1),…,1/fr·(Nr/2-1)]T r =[-1/f r ·N r /2,-1/f r ·(N r /2-1),...,1/f r ·(N r /2-1)]
其中fr为距离向采样率,PRI为发射信号脉冲重复间隔,Na为方位向采样点数,Nr为距离向采样点数。Where f r is the sampling rate in the range direction, PRI is the pulse repetition interval of the transmitted signal, N a is the number of sampling points in the azimuth direction, and N r is the number of sampling points in the range direction.
进一步地,所述的步骤S2中距离向匹配滤波具体包括以下子步骤:Further, the range matched filtering in step S2 specifically includes the following sub-steps:
S21:对经过相干解调的回波S(t,τ)进行距离向脉冲压缩处理,获得距离维目标高分辨率,并通过距离向FFT得到距离向频域、方位向时域的回波信号S(fr,τ):S21: Perform range pulse compression processing on the coherently demodulated echo S(t,τ) to obtain high resolution of the target in the range dimension, and obtain echo signals in the range frequency domain and azimuth time domain through range FFT S(f r ,τ):
S22:构造距离向匹配滤波函数H(fr):S22: Construct the range-wise matched filter function H(f r ):
S23:将H(fr)与回波信号S(fr,τ)相乘得到距离压缩后的距离向频域、方位向时域的回波信号S1(fr,τ):S23: Multiply H( fr ) and the echo signal S( fr ,τ) to obtain the echo signal S 1 ( fr ,τ) in the range frequency domain and azimuth time domain after range compression:
进一步地,所述的步骤S3中进行距离向运动补偿处理具体包括以下子步骤:Further, the range motion compensation processing in step S3 specifically includes the following sub-steps:
S31:将步骤S1中的进行泰勒展开;S31: the step S1 Perform Taylor expansion;
S32:忽略展开后的距离关系表达式中的二次项,同时由于与较小,所以cosθ≈1,因此,使得R(x,y,t)≈R0-Vt;S32: Ignore the quadratic term in the expanded distance relation expression, and at the same time due to the smaller, so cosθ≈1, therefore, making R(x,y,t)≈R 0 -Vt;
S33:构造距离徙动因子H(fr,t):S33: Construct distance migration factor H( fr ,t):
S34:将H(fr,t)与S1(fr,τ)相乘消除雷达平台运动造成的距离徙动,并进行距离向S34: Multiply H( fr ,t) and S 1 ( fr ,τ) to eliminate the range migration caused by the movement of the radar platform, and perform range
IFFT变换得到高距离定位精度和低方位定位精度的二维时域信号S2(t,τ):The two-dimensional time-domain signal S 2 (t,τ) with high distance positioning accuracy and low azimuth positioning accuracy is obtained by IFFT transformation:
进一步地,所述的步骤S4中建模的具体方法为:对于各距离单元,方位扫描成像的回波模型及处理方式是相同的,因此任意选取任一距离单元的回波数据进行信号建模,方位向回波信号向量y表示为:Further, the specific method of modeling in step S4 is as follows: for each distance unit, the echo model and processing method of azimuth scanning imaging are the same, so the echo data of any distance unit is arbitrarily selected for signal modeling , the azimuth echo signal vector y is expressed as:
y=A(θ)x+ny=A(θ)x+n
其中,为方向矩阵,由各个方位采样点对应的方向向量组成,a(n)=[a1,…,aN]∈RL×1为天线方向图序列,N为一个波束宽度的采样点数,x=[x1,...,xN]表示方位向离散目标的幅度信息,M为方位向采样点数,y=[y1,...,yM]为方位向接收的回波信号,n为附加噪声向量。in, is the direction matrix, which is composed of direction vectors corresponding to each azimuth sampling point, a(n)=[a 1 ,...,a N ]∈R L×1 is the antenna pattern sequence, N is the number of sampling points of a beam width, x =[x 1 ,...,x N ] represents the amplitude information of discrete targets in azimuth, M is the number of sampling points in azimuth, y=[y 1 ,...,y M ] is the echo signal received in azimuth, n is the additional noise vector.
进一步地,所述的步骤S5中构造加权最小二乘目标函数的具体方法为:对该距离单元的第n个目标,构造M×1维的加权向量wn,令并建立求该目标幅值的目标函数的最小二乘解:Further, the specific method of constructing the weighted least squares objective function in the step S5 is as follows: construct an M×1-dimensional weighted vector w n for the nth object of the distance unit, so that And establish the least squares solution of the objective function for the target magnitude:
其中,K为扫描雷达扫过目标场景的扫描次数,xn为第n个目标的幅值,展开目标函数得到:Among them, K is the number of times the scanning radar scans the target scene, x n is the amplitude of the nth target, and the objective function is expanded to obtain:
其中,
进一步地,所述的步骤S6中进行目标方位定位具体包括以下子步骤:Further, the target azimuth positioning in the step S6 specifically includes the following sub-steps:
S61:求等式
S62:将等式的目标幅度最优估计函数代入到式
S63:通过上述操作,将目标幅度估计问题转化为求目标函数J1(w)关于加权向量wn的最优解问题,求目标函数关J1(w)关于加权向量wn的最优解的计算方法为:求目标函数关J1(w)关于wn的导数并令其为零,得到关于wn的最优解:S63: Through the above operations, transform the target amplitude estimation problem into the problem of finding the optimal solution of the objective function J 1 (w) with respect to the weighted vector w n , and find the optimal solution of the objective function J 1 (w) with respect to the weighted vector w n The calculation method of is: find the derivative of the objective function J 1 (w) with respect to w n and make it zero, and obtain the optimal solution with respect to w n :
S64:将wn的计算结果代入到等式
S65:利用步骤S63和S64的方法计算出该距离单元的所有目标幅度,并定位目标的角度,实现目标方位维的精确定位,再将算法应用到整个扫描雷达作用区域中,逐距离单元对整个面目标场景处理,实现成像区域内目标的二维精确定位。S65: Utilize the methods of steps S63 and S64 to calculate all the target amplitudes of the range unit, and locate the angle of the target to realize the precise positioning of the target azimuth dimension, and then apply the algorithm to the entire scanning radar action area, and calculate the entire range unit by range unit. Surface target scene processing to achieve two-dimensional precise positioning of targets in the imaging area.
进一步地,所述的方位向采样点数M的计算方法为:Further, the calculation method of the number of azimuth sampling points M is:
其中,PRF为脉冲重复频率,ω为扫描速度,Φ为扫描范围。Among them, PRF is the pulse repetition frequency, ω is the scanning speed, and Φ is the scanning range.
下面结合具体实施例对本发明的技术方案进行进一步说明,主要采用仿真实验的方法进行验证,所有步骤、结论都在Matlab2010上验证正确性。Below in conjunction with specific embodiment technical scheme of the present invention is further described, mainly adopt the method for simulation experiment to verify, and all steps, conclusion all verify correctness on Matlab2010.
步骤一:对成像区域任意点目标,计算目标与运动平台的距离,设置实波束扫描雷达点目标仿真参数,本发明采用如图2所示的实波束扫描雷达成像系统结构图,对应的雷达成像系统参数如表一所示。Step 1: For any point target in the imaging area, calculate the distance between the target and the moving platform, and set the real beam scanning radar point target simulation parameters. The present invention adopts the real beam scanning radar imaging system structure diagram as shown in Figure 2, and the corresponding radar imaging The system parameters are shown in Table 1.
表一Table I
本实施例采用的成像场景如图3所示,途中圆点为布置与地面上的3×3的点目标,沿y轴正方向,幅度依次为1、0.9、0.8,点目标沿方位向位置分别为-4°、2°和3.5°;沿x轴方向间隔为500m,雷达平台初始时刻位置坐标为(0,0,5km),xoy平面内目标散射函数记为f(x,y),t时刻xoy平面内的点(x,y)与雷达平台d的距离记为R(x,y,t)。The imaging scene used in this embodiment is shown in Figure 3. The dots on the way are 3×3 point targets arranged on the ground, along the positive direction of the y-axis, the amplitudes are 1, 0.9, and 0.8 in sequence, and the position of the point target along the azimuth direction They are -4°, 2° and 3.5° respectively; the interval along the x-axis direction is 500m, the initial position coordinates of the radar platform are (0,0,5km), and the target scattering function in the xoy plane is recorded as f(x,y), The distance between the point (x, y) in the xoy plane and the radar platform d at time t is denoted as R(x, y, t).
步骤二:根据步骤一设置的成像系统参数和成像场景产生回波矩阵S(t,τ)并进行距离向FFT得到S(fr,τ),再根据发射信号调频斜率K和距离向参考时间τ,在频域构造距离向脉压参考函数,将S(fr,τ)与脉压参考函数进行最大自相关运算,完成距离向脉冲压缩,脉压后的距离向频域方位向时域的二维回波数据表示为S1(fr,τ),生成的回波信号如图4所示。Step 2: Generate the echo matrix S(t,τ) according to the imaging system parameters and imaging scene set in step 1, and perform range FFT to obtain S( fr ,τ), and then according to the frequency modulation slope K of the transmitted signal and the range reference time τ, constructing the range-wise pulse pressure reference function in the frequency domain, and performing the maximum autocorrelation operation between S( fr ,τ) and the pulse pressure reference function to complete the range-wise pulse compression, and the range-wise frequency domain azimuth direction after the pulse pressure The two-dimensional echo data of is denoted as S 1 ( fr ,τ), and the generated echo signal is shown in Fig. 4 .
步骤三:根据前视区域内目标的斜距距离历史R(x,y,t)的泰勒级数展开结果R(x,y,t)≈R0-Vt,对数据S1(fr,τ)进行尺度变换和消除雷达平台运动造成的距离徙动,并进行距离向IFFT变换得到二维时域信号S2(t,τ)。为了模拟存在噪声的实际情况,在数据S2(t,τ)中加入SNR=20dB的高斯白噪声,相应的结果如图5所示,沿方位向剖面如图6所示。Step 3: According to the Taylor series expansion result R(x,y,t)≈R 0 -Vt of the slant distance history R(x,y,t) of the target in the forward-looking area, for the data S 1 (f r , τ) performs scale transformation and eliminates the range migration caused by the radar platform movement, and performs range-to-IFFT transformation to obtain a two-dimensional time-domain signal S 2 (t,τ). In order to simulate the actual situation with noise, Gaussian white noise with SNR=20dB is added to the data S 2 (t,τ), the corresponding results are shown in Figure 5, and the profile along the azimuth is shown in Figure 6.
步骤四:利用系统设置的扫描速度、脉冲重复时间、天线波束宽度等系统参数等生成方向向量a(θk)和方向矩阵A。Step 4: Generate direction vector a(θ k ) and direction matrix A by using system parameters such as scanning speed, pulse repetition time, and antenna beam width set by the system.
步骤五:根据生成的回波信号,利用公式
步骤六:针对该距离单元第n个目标,首先,将步骤五计算出的协方差矩阵R和向量g代入到表达式中计算矩阵并将计算结果和构造的方向向量h(θn)代入到等式
最后用步骤三到步骤五的方法逐距离单元对整个扫描雷达前视作用区域的距离向进行处理,得到整个运动平台扫描雷达前视成像区域内目标二维定位结果,成像结果如图7、图8所示,图示中,三个目标的方位定位位置分别为-4°、2.045°和3.459°,定位误差分别为0°、0.045°和0.041°。从图中可以看出,本发明可以实现运动平台扫描雷达前视区域进行二维目标定位处理,可以显著提高实波束扫描雷达目标二维定位精度,定位误差低,处理结果对于目标的方位维定位、相邻目标的分辨等具有良好的改善效果。Finally, use the method from step 3 to step 5 to process the distance direction of the entire scanning radar forward-looking area by distance unit, and obtain the two-dimensional positioning results of the target in the scanning radar forward-looking imaging area of the entire moving platform. The imaging results are shown in Fig. 7 and Fig. As shown in 8, in the illustration, the azimuth positioning positions of the three targets are -4°, 2.045° and 3.459° respectively, and the positioning errors are 0°, 0.045° and 0.041° respectively. It can be seen from the figure that the present invention can realize the two-dimensional target positioning processing of the moving platform scanning radar forward-looking area, can significantly improve the two-dimensional positioning accuracy of the real beam scanning radar target, and the positioning error is low, and the processing result is accurate for the azimuth dimension positioning of the target , the resolution of adjacent targets, etc. have a good improvement effect.
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those skilled in the art will appreciate that the embodiments described here are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410422691.4A CN104166134A (en) | 2014-08-25 | 2014-08-25 | Real beam foresight scanning radar target two-dimension locating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410422691.4A CN104166134A (en) | 2014-08-25 | 2014-08-25 | Real beam foresight scanning radar target two-dimension locating method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104166134A true CN104166134A (en) | 2014-11-26 |
Family
ID=51910034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410422691.4A Pending CN104166134A (en) | 2014-08-25 | 2014-08-25 | Real beam foresight scanning radar target two-dimension locating method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104166134A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104977582A (en) * | 2015-06-10 | 2015-10-14 | 电子科技大学 | Deconvolution method for realizing scanning radar azimuth super-resolution imaging |
CN106680817A (en) * | 2016-12-26 | 2017-05-17 | 电子科技大学 | Method of realizing high-resolution imaging of forwarding looking radar |
CN108226891A (en) * | 2018-01-26 | 2018-06-29 | 中国电子科技集团公司第三十八研究所 | A kind of scanning radar echo computational methods |
CN109765554A (en) * | 2018-11-14 | 2019-05-17 | 北京遥感设备研究所 | A radar forward-looking imaging system and method |
CN110402548A (en) * | 2017-03-20 | 2019-11-01 | 华为技术有限公司 | Equipment based on user equipment positioning accuracy configuration reference signal wave beam |
RU2741333C1 (en) * | 2019-10-28 | 2021-01-25 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" | Method of determining position of working radio frequency transceiver by passive multibeam direction finder |
CN117234217A (en) * | 2023-11-13 | 2023-12-15 | 华中科技大学 | Three-dimensional time-space domain-based water surface unmanned ship track tracking guidance method and system |
CN118707522A (en) * | 2024-08-28 | 2024-09-27 | 中国人民解放军国防科技大学 | A forward-looking high-resolution radar imaging method based on Chirp beam scanning |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103412305A (en) * | 2013-07-15 | 2013-11-27 | 电子科技大学 | Scanning radar super-resolution imaging method |
CN103869311A (en) * | 2014-03-18 | 2014-06-18 | 电子科技大学 | Real beam scanning radar super-resolution imaging method |
-
2014
- 2014-08-25 CN CN201410422691.4A patent/CN104166134A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103412305A (en) * | 2013-07-15 | 2013-11-27 | 电子科技大学 | Scanning radar super-resolution imaging method |
CN103869311A (en) * | 2014-03-18 | 2014-06-18 | 电子科技大学 | Real beam scanning radar super-resolution imaging method |
Non-Patent Citations (1)
Title |
---|
YIN ZHANG 等: "WEIGHTED LEAST SQUARES METHOD FOR FORWARD-LOOKING IMAGING OF SCANNING RADAR", 《GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014 IEEE INTERNATIONAL》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104977582B (en) * | 2015-06-10 | 2018-09-04 | 电子科技大学 | A kind of deconvolution method for realizing the imaging of scanning radar Azimuth super-resolution |
CN104977582A (en) * | 2015-06-10 | 2015-10-14 | 电子科技大学 | Deconvolution method for realizing scanning radar azimuth super-resolution imaging |
CN106680817B (en) * | 2016-12-26 | 2020-09-15 | 电子科技大学 | A method for realizing high-resolution imaging of forward-looking radar |
CN106680817A (en) * | 2016-12-26 | 2017-05-17 | 电子科技大学 | Method of realizing high-resolution imaging of forwarding looking radar |
CN110402548A (en) * | 2017-03-20 | 2019-11-01 | 华为技术有限公司 | Equipment based on user equipment positioning accuracy configuration reference signal wave beam |
CN110402548B (en) * | 2017-03-20 | 2021-05-04 | 华为技术有限公司 | Device for configuring reference signal beam based on positioning accuracy of user equipment |
US11082104B2 (en) | 2017-03-20 | 2021-08-03 | Huawei Technologies Co., Ltd. | Apparatus for configuring reference signal beams based on accuracy of user equipment localization |
CN108226891A (en) * | 2018-01-26 | 2018-06-29 | 中国电子科技集团公司第三十八研究所 | A kind of scanning radar echo computational methods |
CN108226891B (en) * | 2018-01-26 | 2021-09-03 | 中国电子科技集团公司第三十八研究所 | Scanning radar echo calculation method |
CN109765554A (en) * | 2018-11-14 | 2019-05-17 | 北京遥感设备研究所 | A radar forward-looking imaging system and method |
RU2741333C1 (en) * | 2019-10-28 | 2021-01-25 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" | Method of determining position of working radio frequency transceiver by passive multibeam direction finder |
CN117234217A (en) * | 2023-11-13 | 2023-12-15 | 华中科技大学 | Three-dimensional time-space domain-based water surface unmanned ship track tracking guidance method and system |
CN117234217B (en) * | 2023-11-13 | 2024-02-02 | 华中科技大学 | Three-dimensional time-space domain-based water surface unmanned ship track tracking guidance method and system |
CN118707522A (en) * | 2024-08-28 | 2024-09-27 | 中国人民解放军国防科技大学 | A forward-looking high-resolution radar imaging method based on Chirp beam scanning |
CN118707522B (en) * | 2024-08-28 | 2024-11-22 | 中国人民解放军国防科技大学 | Radar forward-looking high-resolution imaging method based on Chirp beam scanning |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103869311B (en) | Real beam scanning radar super-resolution imaging method | |
CN104166134A (en) | Real beam foresight scanning radar target two-dimension locating method | |
CN103439693B (en) | A kind of linear array SAR sparse reconstructs picture and phase error correction approach | |
CN103529437B (en) | Method used for captive-balloon-borne phased array radar to distinguish open space targets under multi-target condition | |
CN104833972B (en) | A Frequency Scaling Imaging Method for Bistatic FM Continuous Wave Synthetic Aperture Radar | |
CN105891828B (en) | A kind of detection method of airborne CSSAR radar moving targets | |
CN102749621B (en) | Bistatic synthetic aperture radar (BSAR) frequency domain imaging method | |
CN103412310B (en) | Bistatic forward-looking synthetic aperture radar ground moving target detecting method and imaging method | |
CN103207387B (en) | Method for quickly simulating airborne phased array pulse Doppler (PD) radar clutter | |
CN102004250B (en) | Frequency domain expansion based spaceborne/airborne hybrid bistatic synthetic aperture radar imaging method | |
CN104914415A (en) | Single-pulse radar coherent jamming method based on target range profile template matching | |
CN112904326B (en) | Satellite-borne passive positioning method based on virtual aperture | |
CN106093870A (en) | The SAR GMTI clutter suppression method of hypersonic aircraft descending branch | |
CN102608587B (en) | Air Maneuvering Target Detection Method Based on Nonlinear Least Squares | |
CN105487074B (en) | A Bistatic Synthetic Aperture Radar Numerical Range Doppler Imaging Method | |
CN103135100B (en) | Moving-target parameter estimation method of common-rail bistatic synthetic aperture radar (SAR) | |
CN104166129A (en) | Real beam radar iteration minimum mean square error angle super-resolution method | |
CN106483516A (en) | Radar clutter space-time adaptive processing method based on priori | |
CN105445711A (en) | Sea level essential factor SAR original data simulation method based on inverse Omega-K algorithm | |
CN102778681A (en) | Method for imaging stationary transmitter bistatic foresight synthetic aperture radar (ST-BFSAR) | |
CN105652271B (en) | A kind of Lagrangian real Beam radar angle super-resolution processing method of augmentation | |
CN106646395B (en) | A kind of radar return deduction method of airbound target | |
CN105044667A (en) | Double-satellite tracking method, device and system for moving target | |
CN1299123C (en) | Parameter estimation method for modelling noise Doppler of airborne radar | |
CN103760540B (en) | Based on moving target detect and the method for parameter estimation of reconstruction signal and 1-norm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20141126 |
|
RJ01 | Rejection of invention patent application after publication |