CN104158242B - 一种轨道交通制动能量储存利用装置 - Google Patents

一种轨道交通制动能量储存利用装置 Download PDF

Info

Publication number
CN104158242B
CN104158242B CN201410378206.8A CN201410378206A CN104158242B CN 104158242 B CN104158242 B CN 104158242B CN 201410378206 A CN201410378206 A CN 201410378206A CN 104158242 B CN104158242 B CN 104158242B
Authority
CN
China
Prior art keywords
module
energy
charge
battery
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410378206.8A
Other languages
English (en)
Other versions
CN104158242A (zh
Inventor
武华军
徐长勤
段军山
安刚虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QINGDAO HAINENG ALPINE RAIL POWER EQUIPMENT ENGINEERING TECHNOLOGY Co Ltd
Original Assignee
QINGDAO HAINENG ALPINE RAIL POWER EQUIPMENT ENGINEERING TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QINGDAO HAINENG ALPINE RAIL POWER EQUIPMENT ENGINEERING TECHNOLOGY Co Ltd filed Critical QINGDAO HAINENG ALPINE RAIL POWER EQUIPMENT ENGINEERING TECHNOLOGY Co Ltd
Priority to CN201410378206.8A priority Critical patent/CN104158242B/zh
Publication of CN104158242A publication Critical patent/CN104158242A/zh
Application granted granted Critical
Publication of CN104158242B publication Critical patent/CN104158242B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明属于轨道交通再生能量储存利用技术领域,涉及一种新型的轨道交通制动能量储存利用装置,其装置包括硬件组成系统和控制系统,硬件组成系统中各功能模块电信息组合连通,控制系统采用集散控制方式,每个控制单元结合采集的数据和信号独立对功能模块实现控制;车辆制动时多相交错斩波模块吸收再生电能,并对超级电容模块和蓄电池模块充电,当车辆启动加速和惯性行驶时超级电容模块的电能再通过多相交错斩波模块对蓄电池模块充电,逆变模块把蓄电池模块中的直流电转换成交流电后输出给高速充电机,实现高速充电机对电动汽车快速充电;其整体结构简单,组装原理可靠,储能效率高,能量利用广泛,节能效果明显,应用环境友好。

Description

一种轨道交通制动能量储存利用装置
技术领域:
本发明属于轨道交通再生能量储存利用技术领域,涉及一种新型的制动能量储存和电动汽车高速充电装置,特别是一种节能减排和再生能源综合利用的轨道交通制动能量储存利用装置。
背景技术:
目前,在轨道交通领域中,车辆已普遍采用再生电制动,国内外对再生制动能量的处理方式多种多样;国内主要以电阻耗能和混合逆变(逆变回馈+电阻耗能)形式为主,其中逆变回馈主要以站内400V用电网络和整流变压器二次侧为回馈节点,而纯逆变模式因上述节点功率容量问题,在国内还未有工程先列;国际上,近几年已出现各种再生能量的储能模式,如德国的飞轮储能和超级电容储能;如日本的超级电容储能和锂离子电池储能;韩国的超级电容储能等。当然,这些国家的纯逆变回馈技术也已相当成熟,有不少成功案例,各种储能方式都有自己的优缺点和实现难度,有待于继续完善和改进。纵观现状,无论是逆变回馈方式还是储能方式,再生能量的流向全都局限于轨道交通供电系统内部,并未向其它领域拓展。
高速充电站(充电桩)是近几年随着人们节能环保的意识和电动汽车的普及而出现的新型供电项目,在国内外已有不少示范点,但因蓄电池的续航里程和充电时间问题还未完全普及,EV车用蓄电池的容量、续航里程、使用寿命和充电时间等直接影响着电动汽车的普及速度,进而影响高速充电站的普及范围;对于高速充电机来说主要任务是在不影响电池寿命的情况下尽可能快速向蓄电池充电,欧美和日本等发达国家的高速充电机可在15~30分钟内使蓄电池达到满充电状态,更有甚者,可在5~8分钟内达到50%~80%容量充电状态,虽说不影响使用寿命,但对蓄电池的寿命影响有多大,还有待于考察和实证。所以,在现有技术基础上寻求设计提供一种新的再生制动能量储存机制和应用方式,即轨道车辆再生电能向电动汽车快速充电的系统装置很有社会和经济价值。
发明内容:
本发明的目的在于克服现有轨道车辆再生电能储存利用范围单一缺点,寻求设计一种吸收储存并有效利用轨道交通制动能量的新型系统装置,该装置将轨道交通车辆的再生制动能量通过专用的储能器储存起来,给设在轨道车辆供电站附近的电动汽车快速充电站内高速充电机进行供电,并通过高速充电机在15~20分钟内完成对电动汽车的快速充电;该装置的能量流向没有局限于轨道车辆供电系统内部,而是由轨道车辆流向EV电动汽车;通过本装置的桥梁作用,不仅延伸了绿色能源的应用途径,还为今后绿色能源的分布式管理提供新思路;本装置采用高速充电机充电,不仅节省时间,并且节约市电电能消耗;将轨道交通车辆电制动时产生的再生能量变废为宝,并通过高速充电扩大电动汽车的普及范围,进而实现节能减排、绿色环保的功效;储能器和高速充电机是整个装置的核心部件,储能器被安装在轨道车辆供电站内,其主要功能是将轨道列车刹车过程中产生的再生制动能量吸收并储存,高速充电站建设在列车供电站或列车停靠站附近交通便利的位置,以方便电动汽车充电前后的行驶与停泊;本装置的核心技术特征在于:一是使轨道车辆的制动能量推广应用到电动汽车;二是采用超级电容和蓄电池对再生制动能量混合吸收存储;三是采用变频变宽高速蓄电池充电机。
为了实现上述发明目的,本发明涉及的系统装置的硬件组成系统的主体结构包括预充电模块、第一多相交错斩波模块、并联吸收电阻模块、超级电容模块、第二多相交错斩波模块、蓄电池模块、逆变模块、双电源转换模块、高速充电站和高速充电机,各模块与高速充电站和高速充电机电信息组合连通构成如图1所示的主体系统装置;本系统装置的控制系统分为上位机综合监控系统、再生能量吸收控制系统、蓄电池管理控制系统和充电站管理系统,控制系统通过再生能量吸收控制系统与变电站自动化系统电信息连通;上位机综合监控系统与显示系统电信息连通;各系统电信息连通构成轨道交通制动能量储存和利用装置;储能采用超级电容和锂电池储能的复合结构,超级电容模块和蓄电池模块组合成储能器,车辆制动时储能器通过第一多相交错斩波模块和第二多相交错斩波模块同时对超级电容模块和蓄电池模块充电,第一多相交错斩波模块吸收总的再生制动电能,第二多相交错斩波模块吸收属于蓄电池模块的再生电能,剩余部分电能自动储存于超级电容模块中,第二多相交错斩波模块的吸收作用拓展超级电容储存容量的功能;通过多相交错斩波对超级电容模块和蓄电池模块充电,降低电感量的同时又能获得良好的动态响应和纹波系数,有利于再生制动能量的吸收控制;在车辆的启动加速和惯性行驶时间段内超级电容模块的电位能量持续通过第二多相交错斩波模块对蓄电池模块进行充电,腾空超级电容模块的储能空间,为下一周期再生制动能量的存储做准备,并且进一步增加蓄电池模块的储电能量,提高蓄电池模块对高速充电机的供电能力;高速充电机给电动汽车进行高速充电,高速充电机设置有高速充电的智能控制功能,通过变频调制和脉宽调制,输出可变频率、可变脉宽的脉动电流,向车载蓄电池充电;变频调制是结合蓄电池不同荷电状态,提供不同的充放电速率,不同荷电状态下蓄电池的电荷结合速率不同;脉宽调制是结合蓄电池不同SOC(充放电深度)状态,提供不同的充放电功率,不同SOC状态下蓄电池的电荷接纳能力不同,控制系统根据蓄电池的端电压、动态内阻、充放电电流、内部温度和荷电状态的相关参数得出当前的最佳充放电频率和脉宽,保证车载蓄电池的充电速率的同时保证蓄电池模块的安全和使用寿命;高速充电机设有与车载电池管理系统的通讯接口,用于所需信号的采集,详见附图3所示高速充电机结构原理示意框图。
本发明涉及的硬件组成系统中预充电模块的功能是向第一多相交错斩波模块中的毎相前置滤波电容进行预充电,预充电流的大小由整流单元输出端的充电电阻大小决定;第一多相交错斩波模块的主要功能是吸收再生电能,通过直流母线电压吸收设定值和吸收电流最大设定值进行定电压和定电流双环PID控制,电压环在外、电流环在内,采用多相交错并联电路,毎相的平波电感量和体积小,输出总电流的纹波系数小;并联吸收电阻模块是当超级电容模块和蓄电池模块接近满充电状态,但再生还没结束时进行剩余能量的能耗吸收,超级电容模块和蓄电池模块的容量设计合理时并联吸收电阻模块的投入几率很小,并联吸收电阻模块的另一作用是超级电容器模块和蓄电池模块进行维护时提供电能的释放回路;超级电容模块的功能是储存大功率的再生能量,由于超级电容模块的功率密度大,当第一多相交错斩波模块工作时大部分能量储存于超级电容模块中,超级电容模块具有对超级电容单体的均压、过温和过压的保护功能;第二多相交错斩波模块的功能是向蓄电池模块进行快速充电,采用电流脉冲变频控制方式,随着电池充放电深度(soc)的增加,电流正脉冲、间歇脉冲、负脉冲的脉宽会减小,频率会加大;蓄电池模块中设置有蓄电池管理系统,内部含有快速放电模块、电池状态监测和保护模块,第二多相交错斩波模块与蓄电池模块中的蓄电池管理系统保持实时通讯,保证蓄电池模块的安全和快速充电;蓄电池模块的功能是存储超级电容模块吸收的再生能量,再生结束后第一多相交错斩波模块停止工作,第二多相交错斩波模块继续工作,直到超级电容模块中存储的能量全部转移到蓄电池模块中,以便在下一周期制动时超级电容模块能够再次吸收能量,蓄电池模块的容量为超级电容容量的5~10倍;逆变模块是把蓄电池模块中的直流电转换为适合高速充电机使用的交流电,逆变模块结合高速充电站的规模设计成小功率逆变单元模块,每个小功率逆变单元模块配置1~2台高速充电机;双电源转换模块是对逆变器模块的输出和市电输入进行切换,当高速充电站的负荷过大使蓄电池模块的电能供应不足时切换到市电输入,正常情况下市电输入几率很少,只作为后备方案;高速充电站中设有多台高速充电机,构成电动汽车的快速充电平台,规模根据当地轨道车辆供电站分布情况和电动车的普及状况确定,为提高电能利用率,再生电能的吸收量和电动汽车的充电量需要达到平衡,以蓄电池模块不过充和不过放为准;高速充电机向EV电动汽车进行快速充电,结合电动汽车的蓄电池管理系统,在15~30分钟内对电动车进行满充电,高速充电机为整套系统的核心,能否快速充电直接关系到蓄电池模块的容量大小,充电越快蓄电池模块的容量越小,反之亦然。
本发明涉及的控制系统采用集散控制方式,每个控制单元模块具有独立的控制功能,统一受控于上位机综合监控系统,分而自治,综合协调,每个控制单元模块的失效或退出不会使整个控制系统瘫痪;再生能量吸收控制系统结合本身数据采集信号与变电站自动化信号,实现再生能量的吸收控制,包括预充电控制、斩波控制和超级电容控制功能;蓄电池管理控制系统结合本身数据采集信号与蓄电池模块的管理系统数据,实现对蓄电池的快速充放电控制,包括多相斩波充电控制、蓄电池管理和保护、逆变模块控制和双电源转换控制;充电站管理系统为高速充电站的监控平台,实现对各台高速充电机的监控和管理;上位机综合监控系统协调管理再生能量吸收控制系统、蓄电池管理控制系统和充电站管理系统三个子系统,每个子系统向上兼容于上位机综合监控系统,向下又分出多个功能模块,再生能量吸收控制系统向下分出信号采集、预充电控制和斩波控制模块。
本发明涉及的高速充电机由交直流功率变换模块、DC/DC功率变换模块、整流滤波模块和充放电控制模块电连通组合而成,交直流功率变换模块把输入交流电转换为供DC/DC功率变换模块使用的直流电;DC/DC功率变换模块根据系统装置中设置的微处理器单元给出的信号变换出充放电控制模块所需的直流电能,经整流滤波后供充放电控制模块向车载蓄电池快速充电;系统装置中设置的微处理器单元通过与EV车电池管理系统通讯,检测车载蓄电池模块的端电压、动态内阻、荷电状态、SOC和温度的信息,并结合本身数据得出每种车载蓄电池模块的最佳快充曲线,根据快充曲线和蓄电池的实时状态信息不断调整充放电控制模块输出的充电电流脉冲、间歇脉冲、放电脉冲的宽度及频率,使蓄车载电池模块在最佳状态下完成快速充电;每种车载蓄电池的充放电特性不相同,控制系统中设有记忆功能,对不同类型车载蓄电池具有针对性的充放电对策,实现该修复时修复、该充电时充电、该放电时放电的功效,使车载蓄电池时刻保持最佳状态的同时不影响蓄电池的使用寿命。
本发明与现有技术相比,其整体结构简单,组装原理可靠,储能效率高,能量利用广泛,节能效果明显,应用环境友好。
附图说明:
图1为本发明的主体结构硬件组成系统电路连接原理示意图。
图2为本发明的控制系统结构原理示意框图。
图3为本发明的高速充电机结构原理示意框图。
具体实施方式:
下面通过实施例并结合附图进一步说明。
本实施例涉及的系统装置的硬件组成系统的主体结构包括预充电模块1、第一多相交错斩波模块2、并联吸收电阻模块3、超级电容模块4、第二多相交错斩波模块5、蓄电池模块6、逆变模块7、双电源转换模块8、高速充电站9和高速充电机10,各模块与高速充电站9和高速充电机10电信息组合连通构成如图1所示的主体系统装置;本系统装置的控制系统分为上位机综合监控系统15、再生能量吸收控制系统12、蓄电池管理控制系统13和充电站管理系统14,控制系统通过再生能量吸收控制系统12与变电站自动化系统11电信息连通;上位机综合监控系统15与显示系统16电信息连通;各系统电信息连通构成轨道交通制动能量回收储存和电动车利用的系统装置;储能采用超级电容和锂电池储能的复合结构,超级电容模块4和蓄电池模块6组合成储能器,车辆制动时储能器通过第一多相交错斩波模块2和第二多相交错斩波模块5同时对超级电容模块4和蓄电池模块6充电,第一多相交错斩波模块2吸收总的再生制动电能,第二多相交错斩波模块5吸收属于蓄电池模块6的再生电能,剩余部分电能自动储存于超级电容模块4中,第二多相交错斩波模块5的吸收作用拓展超级电容储存容量的功能;通过多相交错斩波对超级电容模块4和蓄电池模块6充电,降低电感量的同时又能获得良好的动态响应和纹波系数,有利于再生制动能量的吸收控制;在车辆的启动加速和惯性行驶时间段内超级电容模块4的电位能量持续通过第二多相交错斩波模块5对蓄电池模块6进行充电,腾空超级电容模块4的储能空间,为下一周期再生制动能量的存储做准备,并且进一步增加蓄电池模块6的储电能量,提高蓄电池模块6对高速充电机10的供电能力;高速充电机10给电动汽车进行高速充电,高速充电机10设置有高速充电的智能控制功能,通过变频调制和脉宽调制,输出可变频率、可变脉宽的脉动电流,向车载蓄电池充电;变频调制是结合蓄电池不同荷电状态,提供不同的充放电速率,不同荷电状态下蓄电池的电荷结合速率不同;脉宽调制是结合蓄电池不同SOC(充放电深度)状态,提供不同的充放电功率,不同SOC状态下蓄电池的电荷接纳能力不同,控制系统根据蓄电池的端电压、动态内阻、充放电电流、内部温度和荷电状态的相关参数得出当前的最佳充放电频率和脉宽,保证车载蓄电池的充电速率的同时保证蓄电池模块的安全和使用寿命;高速充电机10设有与车载电池管理系统的通讯接口,用于所需信号的采集,详见附图3所示高速充电机结构原理示意框图。
本实施例涉及的硬件组成系统中预充电模块1的功能是向第一多相交错斩波模块2中的毎相前置滤波电容进行预充电,预充电流的大小由整流单元输出端的充电电阻大小决定;第一多相交错斩波模块2的主要功能是吸收再生电能,通过直流母线电压吸收设定值和吸收电流最大设定值进行定电压和定电流双环PID控制,电压环在外、电流环在内,采用多相交错并联电路,毎相的平波电感量和体积小,输出总电流的纹波系数小;并联吸收电阻模块3是当超级电容模块4和蓄电池模块6接近满充电状态,但再生还没结束时进行剩余能量的能耗吸收,超级电容模块4和蓄电池模块6的容量设计合理时并联吸收电阻模块3的投入几率很小,并联吸收电阻模块3的另一作用是超级电容器模块4和蓄电池模块6进行维护时提供电能的释放回路;超级电容模块4的功能是储存大功率的再生能量,由于超级电容模块4的功率密度大,当第一多相交错斩波模块2工作时大部分能量储存于超级电容模块4中,超级电容模块4具有对超级电容单体的均压、过温和过压的保护功能;第二多相交错斩波模块5的功能是向蓄电池模块6进行快速充电,采用电流脉冲变频控制方式,随着电池充放电深度(soc)的增加,电流正脉冲、间歇脉冲、负脉冲的脉宽会减小,频率会加大;蓄电池模块6中设置有蓄电池管理系统,内部含有快速放电模块、电池状态监测和保护模块,第二多相交错斩波模块5与蓄电池模块6中的蓄电池管理系统保持实时通讯,保证蓄电池模块6的安全和快速充电;蓄电池模块6的功能是存储超级电容模块吸收的再生能量,再生结束后第一多相交错斩波模块2停止工作,第二多相交错斩波模块5继续工作,直到超级电容模块4中存储的能量全部转移到蓄电池模块6中,以便在下一周期制动时超级电容模块4能够再次吸收能量,蓄电池模块6的容量为超级电容容量的5~10倍;逆变模块7是把蓄电池模块6中的直流电转换为适合高速充电机10使用的交流电,逆变模块7结合高速充电站9的规模设计成小功率逆变单元模块,每个小功率逆变单元模块配置1~2台高速充电机;双电源转换模块8是对逆变器模块7的输出和市电输入进行切换,当高速充电站9的负荷过大使蓄电池模块6的电能供应不足时切换到市电输入,正常情况下市电输入几率很少,只作为后备方案;高速充电站9中设有多台高速充电机10,构成电动汽车的快速充电平台,规模根据当地轨道车辆供电站分布情况和电动车的普及状况确定,为提高电能利用率,再生电能的吸收量和电动汽车的充电量需要达到平衡,以蓄电池模块6不过充和不过放为准;高速充电机10向EV电动汽车进行快速充电,结合电动汽车的蓄电池管理系统,在15~30分钟内对电动车进行满充电,高速充电机为整套系统的核心,能否快速充电直接关系到蓄电池模块6的容量大小,充电越快蓄电池模块6的容量越小,反之亦然。
本实施例涉及的控制系统采用集散控制方式,每个控制单元模块具有独立的控制功能,统一受控于上位机综合监控系统,分而自治,综合协调,每个控制单元模块的失效或退出不会使整个控制系统瘫痪;再生能量吸收控制系统结合本身数据采集信号与变电站自动化信号,实现再生能量的吸收控制系统12,包括预充电控制、斩波控制和超级电容控制功能;蓄电池管理控制系统13结合本身数据采集信号与蓄电池模块6的管理系统数据,实现对蓄电池的快速充放电控制,包括多相斩波充电控制、蓄电池管理和保护、逆变模块控制和双电源转换控制;充电站管理系统14为高速充电站9的监控平台,实现对各台高速充电机10的监控和管理;上位机综合监控系统15协调管理再生能量吸收控制系统12、蓄电池管理控制系统13和充电站管理系统14三个子系统,每个子系统向上兼容于上位机综合监控系统15,向下又分出多个功能模块,再生能量吸收控制系统12向下分出信号采集、预充电控制和斩波控制模块。
本实施例涉及的高速充电机10由交直流功率变换模块17、DC/DC功率变换模块18、整流滤波模块19和充放电控制模块20电连通组合而成,交直流功率变换模块17把输入交流电转换为供DC/DC功率变换模块18使用的直流电;DC/DC功率变换模块18根据系统中设置的微处理器单元给出的信号变换出充放电控制模块20所需的直流电能,经整流滤波后供充放电控制模块20向车载蓄电池快速充电;系统装置中设置的微处理器单元通过与EV车电池管理系统通讯,检测车载蓄电池模块的端电压、动态内阻、荷电状态、SOC和温度的信息,并结合本身数据得出每种车载蓄电池模块的最佳快充曲线,根据快充曲线和蓄电池的实时状态信息不断调整充放电控制模块输出的充电电流脉冲、间歇脉冲、放电脉冲的宽度及频率,使蓄车载电池模块在最佳状态下完成快速充电;每种车载蓄电池的充放电特性不相同,控制系统中设有记忆功能,对不同类型车载蓄电池具有针对性的充放电对策,实现该修复时修复、该充电时充电、该放电时放电的功效,使车载蓄电池时刻保持最佳状态的同时不影响蓄电池的使用寿命。
实施例:
本实施例的变电站直流母线通过隔离开关QS和高速断路器QF与本装置的主回路连接,由DPT1电压传感器检测变电站直流母线电压,当变电站直流母线电压在允许范围内(1500V系统1000~1800V、750V系统500~900V)时,通过预充电模块1向第一多相交错斩波模块2的毎相支撑电容C11、C12、C13、…进行充电,当支撑电容电压与变电站直流母线电压相差50V左右时闭合本装置的接触器KM1,并退出预充电模块1,此时本装置已进入待运行状态;当有车辆制动使母线电压升高至本装置的吸收设定值(1680V)以上时第一多相交错斩波模块2和第二多相交错斩波模块5工作,吸收车辆的再生电能,第一多相交错斩波模块2的毎相吸收电流最大值600A,毎相纹波系数60%,当采用三相交错时得20%纹波系数,第二多相交错斩波模块5的吸收电流结合蓄电池模块6的充电电流特性设置,本实施例设置为200A;当超级电容模块4达到满充电状态,但变电站母线电压还高于吸收设定值时,并联吸收电阻模块3投入;超级电容模块4的电压变化范围600~1200V,容量24F,由超级电容模组串并联而成,蓄电池模块6的额定电压600V,蓄电池模块6的储电量设计为超级电容模块4储电量的10倍,当蓄电池模块6不向外放电时储存7.5次超级电容模块4的电能;再生结束后超级电容模块4通过第二多相交错斩波模块5继续向蓄电池模块6进行充电,直至超级电容模块4的电压降到600V,至此再生能量吸收控制系统12、蓄电池管理控制系统13的工作已完成,剩余充电站管理系统14的工作内容;充电站管理系统14的工作内容是通过高速充电机10向EV电动车进行快速充电,电能来源是蓄电池模块6储存的再生电能,由逆变模块7完成再生电能的逆变输出,双电源转换模块8的市电切入功能在本实施例中只是作为后备方案使用,只要蓄电池模块6的容量和高速充电机10的充电容量结合完美,就不会切入市电。

Claims (4)

1.一种轨道交通制动能量储存利用装置,其特征在于包括硬件组成系统和控制系统,硬件组成系统的主体结构包括预充电模块、第一多相交错斩波模块、并联吸收电阻模块、超级电容模块、第二多相交错斩波模块、蓄电池模块、逆变模块、双电源转换模块、高速充电站和高速充电机,上述各模块与包括多台并联结构的高速充电机的高速充电站电信息组合连通构成主体系统装置;其中,第一多相交错斩波模块、超级电容模块、第二多相交错斩波模块、蓄电池模块、逆变模块和双电源转换模块依次串联后输出连接于高速充电站、第一多相交错斩波模块的输入端上并接有预充电模块,输出端上并接有并联吸收电阻模块;控制系统由上位机综合监控系统、再生能量吸收控制系统、蓄电池管理控制系统和充电站管理系统电信息连通构成,控制系统通过再生能量吸收控制系统与变电站自动化系统电信息连通;上位机综合监控系统与显示系统电信息连通;超级电容模块和蓄电池模块组合成储能器,蓄电池模块采用锂电池储能;车辆制动时通过第一多相交错斩波模块和第二多相交错斩波模块同时对超级电容模块和蓄电池模块充电,第一多相交错斩波模块吸收总的再生制动电能,第二多相交错斩波模块吸收属于蓄电池模块的再生电能,第二多相交错斩波模块的吸收作用拓展超级电容储存容量的功能;通过第一和第二多相交错斩波模块分别对超级电容模块和蓄电池模块充电,降低电感量的同时又能获得良好的动态响应和纹波系数,有利于再生制动能量的吸收控制;在车辆的启动加速和惯性行驶时间段内超级电容模块的电位能量持续通过第二多相交错斩波模块对蓄电池模块进行充电,腾空超级电容模块的储能空间,为下一周期再生制动能量的存储做准备,并且进一步增加蓄电池模块的储电能量,提高蓄电池模块对高速充电机的供电能力;高速充电机给EV电动车进行高速充电,高速充电机设置有高速充电的智能控制功能,通过变频调制和脉宽调制,输出可变频率、可变脉宽的脉动电流,向车载蓄电池充电;变频调制是结合车载蓄电池不同荷电状态,提供不同的充放电速率,不同荷电状态下车载蓄电池的电荷结合速率不同;脉宽调制是结合车载蓄电池不同充放电深度状态,提供不同的充放电功率,不同充放电深度状态下车载蓄电池的电荷接纳能力不同,控制系统根据车载蓄电池的端电压、动态内阻、充放电电流、内部温度和荷电状态的相关参数得出当前的最佳充放电频率和脉宽,保证车载蓄电池的充电速率的同时保证蓄电池模块的安全和使用寿命;高速充电机设有与车载电池管理系统的通讯接口,用于所需信号的采集。
2.根据权利要求1所述的轨道交通制动能量储存利用装置,其特征在于硬件组成系统中预充电模块的功能是向第一多相交错斩波模块中的毎相前置滤波电容进行预充电,预充电流的大小由充电电阻大小决定;第一多相交错斩波模块的功能是吸收再生电能,通过直流母线电压吸收设定值和吸收电流最大设定值进行定电压和定电流双环PID控制,电压环在外、电流环在内;并联吸收电阻模块是当超级电容模块和蓄电池模块接近满充电状态,但再生还没结束时进行剩余能量的能耗吸收,并联吸收电阻模块的另一作用是超级电容模块和蓄电池模块进行维护时提供电能的释放回路;超级电容模块的功能是储存大功率的再生能量,由于超级电容模块的功率密度大,当第一多相交错斩波模块工作时大部分能量储存于超级电容模块中,超级电容模块具有对超级电容模块单体的均压、过温和过压的保护功能;第二多相交错斩波模块的功能是向蓄电池模块进行快速充电,采用电流脉冲变频控制方式,随着电池充放电深度的增加,电流正脉冲、间歇脉冲、负脉冲的脉宽会减小,频率会加大;蓄电池模块中设置有蓄电池管理系统,内部含有快速放电模块、电池状态监测和保护模块,第二多相交错斩波模块与蓄电池模块中的蓄电池管理系统保持实时通讯,保证蓄电池模块的安全和快速充电;蓄电池模块的功能是存储超级电容模块吸收的再生能量,再生结束后第一多相交错斩波模块停止工作,第二多相交错斩波模块继续工作,直到超级电容模块中存储的能量全部转移到蓄电池模块中,以便在下一周期制动时超级电容模块能够再次吸收能量,蓄电池模块的容量为超级电容模块容量的5~10倍;逆变模块是把蓄电池模块中的直流电转换为适合高速充电机使用的交流电,逆变模块结合高速充电站的规模设计成小功率逆变单元模块,每个小功率逆变单元模块配置1~2台高速充电机;双电源转换模块是对逆变器模块的输出和市电输入进行切换,当高速充电站的负荷过大使蓄电池模块的电能供应不足时切换到市电输入;高速充电站中设有多台并联结构的高速充电机,构成EV电动车的快速充电平台,规模根据当地轨道车辆供电站分布情况和EV电动车的普及状况确定,为提高电能利用率,再生电能的吸收量和EV电动车的充电量需要达到平衡,以蓄电池模块不过充和不过放为准;高速充电机向EV电动车进行快速充电,结合EV电动车的蓄电池管理系统,在15~30分钟内对EV电动车进行满充电,高速充电机为整套系统的核心,能否快速充电直接关系到蓄电池模块的容量大小,充电越快蓄电池模块的容量越小,反之亦然。
3.根据权利要求1所述的轨道交通制动能量储存利用装置,其特征在于控制系统采用集散控制方式,统一受控于上位机综合监控系统,分而自治,综合协调;再生能量吸收控制系统结合本身数据采集信号与变电站自动化信号,实现再生能量的吸收控制,包括预充电控制、斩波控制和超级电容控制功能;蓄电池管理控制系统结合本身数据采集信号与蓄电池模块的管理系统数据,实现对蓄电池的快速充放电控制,包括多相斩波充电控制、蓄电池管理和保护、逆变模块控制和双电源转换控制;充电站管理系统为高速充电站的监控平台,实现对各台高速充电机的监控和管理;上位机综合监控系统协调管理再生能量吸收控制系统、蓄电池管理控制系统和充电站管理系统三个子系统,每个子系统向上兼容于上位机综合监控系统,向下又分出多个功能模块,再生能量吸收控制系统向下分出信号采集、预充电控制和斩波控制模块。
4.根据权利要求1所述的轨道交通制动能量储存利用装置,其特征在于高速充电机由交直流功率变换模块、DC/DC功率变换模块、整流滤波模块和充放电控制模块依次顺序电连通组合构成,交直流功率变换模块把输入交流电转换为供DC/DC功率变换模块使用的直流电;DC/DC功率变换模块根据系统装置中设置的微处理器单元给出的信号变换出充放电控制模块所需的直流电能,经整流滤波模块后供充放电控制模块向车载蓄电池快速充电;系统装置中设置的微处理器单元通过与EV电动车电池管理系统通讯,检测车载蓄电池的端电压、动态内阻、荷电状态、SOC和温度的信息,并结合本身数据得出每种车载蓄电池的最佳快充曲线,根据快充曲线和车载蓄电池的实时状态信息不断调整充放电控制模块输出的充电电流脉冲、间歇脉冲、放电脉冲的宽度及频率,使车载蓄电池在最佳状态下完成快速充电;每种车载蓄电池的充放电特性不相同,控制系统中设有记忆功能,对不同类型车载蓄电池具有针对性的充放电对策,实现该修复时修复、该充电时充电、该放电时放电的功效,使车载蓄电池时刻保持最佳状态的同时不影响车载蓄电池的使用寿命。
CN201410378206.8A 2014-08-01 2014-08-01 一种轨道交通制动能量储存利用装置 Active CN104158242B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410378206.8A CN104158242B (zh) 2014-08-01 2014-08-01 一种轨道交通制动能量储存利用装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410378206.8A CN104158242B (zh) 2014-08-01 2014-08-01 一种轨道交通制动能量储存利用装置

Publications (2)

Publication Number Publication Date
CN104158242A CN104158242A (zh) 2014-11-19
CN104158242B true CN104158242B (zh) 2016-08-17

Family

ID=51883684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410378206.8A Active CN104158242B (zh) 2014-08-01 2014-08-01 一种轨道交通制动能量储存利用装置

Country Status (1)

Country Link
CN (1) CN104158242B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105730251B (zh) * 2014-12-09 2018-08-21 株洲南车时代电气股份有限公司 应用于列车的过压斩波能耗均衡控制系统
CN105356593A (zh) * 2015-08-06 2016-02-24 谢宗洺 锂离子电池作为储能器件的变电所直流电源装置
DE102015221359A1 (de) * 2015-10-30 2017-05-04 Schmidhauser Ag Netzrückspeiseeinheit und elektrisches Antriebssystem
CN105365585A (zh) * 2015-11-19 2016-03-02 深圳市华力特电气股份有限公司 基于超级电容的城市轨道交通列车制动方法及系统
CN105620295B (zh) * 2016-01-28 2018-04-24 北京北交思远科技发展有限公司 一种地铁列车车载储能装置及其控制方法
CN106936201A (zh) * 2017-04-14 2017-07-07 江西韵动新能源科技有限公司 一种高能快充模块化复合型动力电池组
US10501095B2 (en) 2017-05-02 2019-12-10 Progress Rail Locomotive Inc. Power system for a locomotive
CN107379981B (zh) * 2017-06-23 2019-07-26 广东亿纬赛恩斯新能源系统有限公司 一种带有车载充电系统的新能源车的智能充电控制方法
US10124680B1 (en) * 2017-06-28 2018-11-13 Lear Corporation Methods and systems for pre-charging on-board charger of vehicle
CN109449963B (zh) * 2018-12-19 2021-11-19 南京亚派科技股份有限公司 一种混合型再生电能吸收利用装置的容量配置与控制方法
FR3093248B1 (fr) * 2019-02-21 2021-02-12 Commissariat Energie Atomique Système et procédé de précharge d’un condensateur par une batterie comportant une résistance de précharge et un dispositif hacheur
CN110138029A (zh) * 2019-05-10 2019-08-16 湖南科技大学 匹配隧道工程电机车的大功率超级电容模组
CN111660878B (zh) * 2020-06-12 2021-07-27 中车青岛四方车辆研究所有限公司 制动能量回收和应急牵引储能系统、供电系统及控制方法
CN114336871B (zh) * 2021-12-31 2024-04-12 江苏国传电气有限公司 一种提升机应急供电减速制动控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099535A (ja) * 2006-10-11 2008-04-24 Hyundai Motor Co Ltd ハイブリッド燃料電池バスのパワーシステム及びその制御方法
CN101249802A (zh) * 2008-03-27 2008-08-27 上海工程技术大学 城市轨道交通车辆制动能量回收系统
CN101407180A (zh) * 2007-10-11 2009-04-15 李尔公司 用于交通工具系统的双储能设备
CN201484208U (zh) * 2009-08-24 2010-05-26 青岛易特优电子有限公司 铁路轨道再生制动能量储存装置
CN102347686A (zh) * 2010-07-29 2012-02-08 上海诚跃电气科技有限公司 交错单相有源功率因数校正电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9013168B2 (en) * 2012-06-07 2015-04-21 General Electric Company System for transferring energy from an energy source and method of making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099535A (ja) * 2006-10-11 2008-04-24 Hyundai Motor Co Ltd ハイブリッド燃料電池バスのパワーシステム及びその制御方法
CN101407180A (zh) * 2007-10-11 2009-04-15 李尔公司 用于交通工具系统的双储能设备
CN101249802A (zh) * 2008-03-27 2008-08-27 上海工程技术大学 城市轨道交通车辆制动能量回收系统
CN201484208U (zh) * 2009-08-24 2010-05-26 青岛易特优电子有限公司 铁路轨道再生制动能量储存装置
CN102347686A (zh) * 2010-07-29 2012-02-08 上海诚跃电气科技有限公司 交错单相有源功率因数校正电路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1500V城轨系统再生制动能量的储存利用;黄舰等;《都市快轨交通》;20100631;第23卷(第03期);第98页-第101页 *
再生制动能量的储能方式分析;钟勇等;《福建工程学院学报》;20081220;第6卷;第110页-第113页 *

Also Published As

Publication number Publication date
CN104158242A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
CN104158242B (zh) 一种轨道交通制动能量储存利用装置
CN204131153U (zh) 一种轨道交通制动能量储存利用装置
CN108162989B (zh) 一种城市轨道交通车辆用牵引辅助一体化车载储能系统
CN103481787A (zh) 接触网、动力包和储能装置混合供电的动车组牵引系统
CN203372078U (zh) 接触网、动力包和储能装置混合供电的动车组牵引系统
CN106080223A (zh) 一种锂电池与超级电容器双能源功率分配控制系统及方法
CN105244931B (zh) 基于城市基础设施的电动车辆充电管理方法及系统
CN106329572A (zh) 一种混合储能变流器装置及控制方法
CN206186811U (zh) 一种有轨电车充电系统
CN108340788A (zh) 一种燃料电池混合动力有轨电车联合制动系统及方法
CN104135062B (zh) 超级电容和蓄电池相结合的电动汽车快速充电方法及装置
CN102111077A (zh) 充电电源系统
CN104901579A (zh) 一种四象限变流型再生能量逆变回馈装置
CN102983614A (zh) 一种双向换电站充放电系统
CN108001275A (zh) 一种燃料电池电动汽车电力耦合驱动系统及其控制方法
CN204674395U (zh) 基于预测控制的双能量源电动汽车能量管理系统
CN110752654A (zh) 一种有轨电车混合储能系统能量调度方法
CN203372079U (zh) 一种接触网和储能装置混合供电的动车组牵引系统
Gao et al. Control strategy for wayside supercapacitor energy storage system in railway transit network
CN204145012U (zh) 一种用于超级电容储能式有轨电车的地面成套充电装置
CN106877479A (zh) 一种车载超级电容储能系统控制方法
CN206149004U (zh) 一种轨道电力机车可再生能量吸收与存储装置
CN204179732U (zh) 基于v2g的多功能车载充放电器
CN109768721A (zh) 一种智能化能量双向流动的三电平变流器控制方法
CN206202005U (zh) 一种用于纯电动车的动力系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant