CN104158199B - Power system real-time status is carried out the system and method for reactive power and voltage control - Google Patents
Power system real-time status is carried out the system and method for reactive power and voltage control Download PDFInfo
- Publication number
- CN104158199B CN104158199B CN201410382529.4A CN201410382529A CN104158199B CN 104158199 B CN104158199 B CN 104158199B CN 201410382529 A CN201410382529 A CN 201410382529A CN 104158199 B CN104158199 B CN 104158199B
- Authority
- CN
- China
- Prior art keywords
- data
- power
- bpa
- parameter
- optimization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000005457 optimization Methods 0.000 claims abstract description 108
- 238000004364 calculation method Methods 0.000 claims abstract description 60
- 230000000694 effects Effects 0.000 claims abstract description 11
- 239000003990 capacitor Substances 0.000 claims abstract description 10
- 238000012795 verification Methods 0.000 claims abstract description 6
- 230000000295 complement effect Effects 0.000 claims abstract description 5
- 238000012216 screening Methods 0.000 claims abstract description 5
- 238000011217 control strategy Methods 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 8
- 238000007726 management method Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 abstract description 13
- 238000007405 data analysis Methods 0.000 abstract description 5
- 238000013480 data collection Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明公开了一种对电力系统实时状态进行无功电压优化控制的系统和方法,利用数据采集和筛选模块、BPA数据解析模块、BPA数据潮流校验模块、BPA数据网络等值模块、CIM模型解析模块、参数设置模块、无功电压优化模块、结果展示输出模块以及数据库模块进行实时数据的采集、解析、无功电压优化计算和结果输出对比,通过分别导出实时的BPA数据与CIM模型数据,对两种类型的潮流数据进行解析,采用基于互补约束的内点法进行无功优化计算,求得电网变压器档位优化整定、电容电抗器组的优化投切策略,给出电网无功补偿的优化配置方,能够实现全网的无功功率的协调控制,改善全网电压质量,提高电压安全性和降低电网运行有功损耗的效果。
The invention discloses a system and method for optimally controlling reactive power and voltage in the real-time state of a power system, using a data acquisition and screening module, a BPA data analysis module, a BPA data flow verification module, a BPA data network equivalent module, and a CIM model The analysis module, parameter setting module, reactive voltage optimization module, result display output module and database module perform real-time data collection, analysis, reactive voltage optimization calculation and result output comparison, and export real-time BPA data and CIM model data respectively, The two types of power flow data are analyzed, and the reactive power optimization calculation based on the interior point method based on complementary constraints is used to obtain the optimal setting of the power grid transformer gear and the optimal switching strategy of the capacitor reactor group, and give the power grid reactive power compensation. Optimizing the configuration side can realize the coordinated control of the reactive power of the whole network, improve the voltage quality of the whole network, improve the voltage security and reduce the effect of active power loss in the operation of the power grid.
Description
技术领域technical field
本发明涉及电网无功分析及优化控制技术领域,具体是一种针对电力系统实时状态进行无功电压优化控制的系统和方法。The invention relates to the technical field of power grid reactive power analysis and optimal control, in particular to a system and method for reactive power voltage optimal control aiming at the real-time state of a power system.
背景技术Background technique
制定合理的电力系统无功运行方式是一项技术含量高,内容复杂,关系到电网能否安全、稳定运行的十分重要的工作,同时也是各级电网的日常工作。随着电力系统的日益扩大,新能源的接入,交直流系统的互联,水火电力调度的协调,制定电网的运行方式已经日益复杂,需要考虑的问题也越来越多。与此同时,由于负责制定电网无功运行方式的人员工作经验的不同,考虑问题方式各异,加之受到制定运行方式特有的完成时间的制约,使得不同的人员制定出的无功运行方式均有差异,有时甚至耗费大量的时间和精力都很难找到满意的结果。Formulating a reasonable power system reactive power operation mode is a very important task with high technical content and complex content, which is related to the safe and stable operation of the power grid, and it is also a daily work of power grids at all levels. With the increasing expansion of the power system, the access of new energy sources, the interconnection of AC and DC systems, the coordination of water, fire and power dispatching, the formulation of the operation mode of the power grid has become increasingly complex, and more and more issues need to be considered. At the same time, due to the different work experience and different ways of considering problems of the personnel responsible for formulating the reactive power operation mode of the power grid, and the constraints of the completion time of the specific operation mode, the reactive power operation modes formulated by different personnel have different differences, and sometimes it is difficult to find a satisfactory result after spending a lot of time and effort.
发明内容Contents of the invention
本发明的目的在于,提供一种基于电网实时数据的电力系统实时无功电压优化的控制系统和方法,为电力系统运行的实时电压控制提供调整策略。The purpose of the present invention is to provide a control system and method for power system real-time reactive voltage optimization based on real-time data of the power grid, and provide an adjustment strategy for real-time voltage control of power system operation.
为实现上述目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种对电力系统实时状态进行无功电压优化控制的系统,其特征在于,包括数据采集和筛选模块、BPA数据解析模块、BPA数据潮流校验模块、BPA数据网络等值模块、CIM模型解析模块、参数设置模块、无功电压优化模块、结果展示输出模块以及数据库模块;A system for reactive power and voltage optimal control of the real-time state of a power system, characterized in that it includes a data acquisition and screening module, a BPA data analysis module, a BPA data flow verification module, a BPA data network equivalent module, and a CIM model analysis module , parameter setting module, reactive power and voltage optimization module, result display output module and database module;
数据采集和筛选模块的作用是采用数据采集接口从电网OPEN3000系统以及SCADA系统上分别采集CIM模型数据和BPA数据获取当前系统运行的网架数据以及运行数据,并根据导出的数据类型选择进入与该数据类型对应的计算流程;The function of the data acquisition and screening module is to use the data acquisition interface to collect the CIM model data and BPA data from the power grid OPEN3000 system and the SCADA system respectively to obtain the network frame data and operation data of the current system operation, and select and enter the data according to the exported data type. The calculation process corresponding to the data type;
BPA数据潮流校验模块的作用是根据导出的BPA数据文件进行潮流计算,判断该数据文件描述的电力系统潮流的收敛性;The function of the BPA data power flow verification module is to calculate the power flow according to the exported BPA data file, and judge the convergence of the power system power flow described by the data file;
BPA数据解析模块的作用是根据BPA数据文件中的卡片类型以及数据结构,解析出电力系统各元件的基本参数以及对应的运行参数,将其转换为自定义的数据格式,包含系统总体参数、平衡节点参数、输电线路参数、接地支路参数、变压器信息、可调电容电抗参数、节点功率参数、有功出力参数、无功出力参数、电压参数、电流参数,对节点进行重新编号,并生成与BPA数据当中节点名相对应的节点编号对照表;The function of the BPA data analysis module is to analyze the basic parameters of each component of the power system and the corresponding operating parameters according to the card type and data structure in the BPA data file, and convert them into a custom data format, including the overall system parameters, balance Node parameters, transmission line parameters, grounding branch parameters, transformer information, adjustable capacitor reactance parameters, node power parameters, active output parameters, reactive output parameters, voltage parameters, current parameters, renumber nodes, and generate BPA The node number comparison table corresponding to the node name in the data;
BPA数据网络等值模块的作用是根据BPA数据的潮流计算结果,把全网数据采用等值发电机原理把需要进行无功电压控制区域以外的系统等值成为发电机,缩小所需计算的网络规模;The function of the BPA data network equivalent module is based on the power flow calculation results of BPA data, using the equivalent generator principle to convert the entire network data into equivalent generators for systems outside the area that needs to be controlled by reactive power and voltage, and reducing the network required for calculation scale;
CIM模型解析模块的作用是根据XML文件中CIM模型中以类为单位存储的电力系统设备,通过分析其拓扑关系,生成电力系统的网架数据;通过对应的设备名称,将DT文件当中的运行数据与生成的网架数据结合,从而得到自定义的数据格式,包含系统总体参数、平衡节点参数、输电线路参数、接地支路参数、变压器信息、可调电容电抗参数、节点功率参数、有功出力参数、无功出力参数、电压参数、电流参数;The role of the CIM model parsing module is to generate grid data of the power system by analyzing the topological relationship of the power system equipment stored in the CIM model in the XML file in units of classes; The data is combined with the generated grid data to obtain a custom data format, including overall system parameters, balanced node parameters, transmission line parameters, grounding branch parameters, transformer information, adjustable capacitive reactance parameters, node power parameters, and active output parameters, reactive output parameters, voltage parameters, current parameters;
参数设置模块的作用是在进行无功优化之前,形成优化参数的约束条件并确定参与优化的控制变量,包括设置系统的控制参数、约束参数以及系统的控制策略参数,把优化参数加入到自定义数据当中,形成最终用于无功优化计算的计算数据;The function of the parameter setting module is to form the constraint conditions of the optimization parameters and determine the control variables participating in the optimization before the reactive power optimization, including setting the control parameters of the system, the constraint parameters and the control strategy parameters of the system, and adding the optimization parameters to the customized Among the data, the calculation data finally used for reactive power optimization calculation is formed;
无功电压优化模块的作用是对电力系统的发电机出力、有载调压变压器分接头档位、电容电抗器组的投切进行调整,从而使得系统的各母线处的电压满足各个电压等级的安全约束要求,并且优化系统的网络损耗。The role of the reactive voltage optimization module is to adjust the generator output of the power system, the tap position of the on-load tap changer, and the switching of the capacitor reactor group, so that the voltage at each busbar of the system meets the requirements of each voltage level. Security constraints require and optimize the network loss of the system.
数据库模块的作用是管理计算所需的数据,以数据表的格式进行存储;采用的数据库为ACCESS数据库;The role of the database module is to manage the data required for calculation and store it in the form of a data table; the database used is the ACCESS database;
结果展示输出模块的作用是对无功优化计算后的控制变量以及状态变量进行展示以及比较,针对BPA数据格式的计算结果则需要将计算结果回写到BPA数据文件当中,输出最终的结果文件。The function of the result display output module is to display and compare the control variables and state variables after the reactive power optimization calculation. For the calculation results in the BPA data format, the calculation results need to be written back to the BPA data file, and the final result file is output.
一种与上述对电力系统实时状态进行无功电压优化控制的系统相适应的控制方法,针对OPEN3000导出的CIM模型数据文件以及SCADA系统导出的BPA格式数据文件所描述的电力系统进行无功优化计算;具体包括以下步骤:A control method adapted to the above-mentioned reactive power and voltage optimization control system for the real-time state of the power system, which performs reactive power optimization calculations for the power system described by the CIM model data file exported by OPEN3000 and the BPA format data file exported by the SCADA system ; Concretely include the following steps:
步骤一,获取数据文件:Step 1, get the data file:
通过数据接口从SCADA系统中获取电力系统运行的DAT格式实时BPA数据文件,从OPEN3000系统中获取CIM模型文件,包括CIM格式文件中的XML格式网架数据文件以及DT格式运行数据文件;Obtain the real-time BPA data file in DAT format of the power system operation from the SCADA system through the data interface, and obtain the CIM model file from the OPEN3000 system, including the XML format grid data file in the CIM format file and the DT format operation data file;
步骤二,根据数据文件的类型进行潮流计算或者数据解析:Step 2, perform power flow calculation or data analysis according to the type of data file:
对于BPA数据文件按照以下步骤进行潮流计算:For BPA data files, follow the steps below to perform power flow calculations:
(1)采用PSD-BPA电力系统分析软件对BPA数据文件执行潮流计算程序,校验运行方式是否合理;通过潮流计算PFO结果文件判断潮流计算收敛情况,如潮流计算收敛,则进行下一步骤的计算;如果潮流计算不收敛,则需要检查并修改BPA数据文件,完成后再次执行潮流计算,满足潮流计算收敛的条件才能进入无功优化计算;(1) Use the PSD-BPA power system analysis software to execute the power flow calculation program on the BPA data file, and check whether the operation mode is reasonable; judge the convergence of the power flow calculation through the PFO result file of the power flow calculation, and if the power flow calculation is convergent, proceed to the next step Calculation; if the power flow calculation does not converge, you need to check and modify the BPA data file, and execute the power flow calculation again after the completion, and only when the convergence condition of the power flow calculation is met can you enter the reactive power optimization calculation;
(2)根据BPA数据格式中各卡片所描述的电力系统网架以及运行数据信息,将BPA格式解析并转化为自定义的数据格式,包含电厂的有功与无功出力、负载的有功和无功出力、负载处母线电压、电容电抗器组的投切状况和有载调压变压器分接头的档位值,对节点进行重新编号,并生成与BPA数据当中节点名相对应的节点编号对照表;(2) According to the power system grid and operation data information described in each card in the BPA data format, analyze and convert the BPA format into a custom data format, including the active and reactive output of the power plant, and the active and reactive power of the load The output, the bus voltage at the load, the switching status of the capacitive reactor group and the gear position value of the tap of the on-load tap changer, renumber the nodes, and generate a node number comparison table corresponding to the node name in the BPA data;
(3)采用自定义等值方法,通过把所需等值区域外的系统等值成为恒定发电机出力,将BPA格式数据等值为需要进行实时无功电压优化控制地区的相关区域;对等值区域有针对性的进行无功优化,同时缩小系统的计算规模,加快计算速度,以满足实时控制优化的要求;(3) Using the self-defined equivalent method, by converting the system equivalent outside the required equivalent area into a constant generator output, the BPA format data is equivalent to the relevant area where real-time reactive voltage optimization control area is required; equivalent Targeted reactive power optimization in the value area, while reducing the calculation scale of the system and speeding up the calculation speed to meet the requirements of real-time control optimization;
对于CIM数据文件按照以下步骤进行数据解析:For CIM data files, follow the steps below for data analysis:
(1)根据XML文件中CIM模型中以类为单位存储的电力系统设备,分析其拓扑关系,生成电力系统的网架数据;通过对应设备名称,将DT文件当中的运行数据与生成的网架数据结合,从而得到自定义的数据格式,包含电厂的有功与无功出力、负载的有功和无功出力、负载处母线电压、电容电抗器组的投切状况和有载调压变压器分接头的档位值;(1) According to the power system equipment stored in the CIM model in the XML file as a unit, analyze its topological relationship, and generate the grid data of the power system; through the corresponding equipment name, combine the operating data in the DT file with the generated grid Data combination, so as to obtain a custom data format, including the active and reactive output of the power plant, the active and reactive output of the load, the bus voltage at the load, the switching status of the capacitor reactor group and the tap of the on-load tap changer gear value;
(2)选择系统中的一台发电机作为平衡机,在优化计算中作为系统的平衡节点;(2) Select a generator in the system as the balancing machine, and use it as the balancing node of the system in the optimization calculation;
步骤三,设置优化参数:Step 3, set optimization parameters:
设置系统的控制参数、系统约束参数、系统控制策略以及系统总体参数;控制参数包括参与无功优化的控制量,包括哪些变压器以及电容电抗器参与无功优化调整;系统约束参数包括系统状态变量上下限的限制值,包括电压上下限;系统控制策略为控制变量的基本参数,包括变压器以及电容电抗器的相关基本参数;系统总体参数包括目标函数的选择和迭代次数的设置;然后,将设置好的参数写入自定义数据当中,作为无功优化的计算数据;Set system control parameters, system constraint parameters, system control strategies and overall system parameters; control parameters include the control variables involved in reactive power optimization, including which transformers and capacitive reactors participate in reactive power optimization adjustment; system constraint parameters include system state variables on The limit value of the lower limit, including the upper and lower limits of the voltage; the system control strategy is the basic parameters of the control variables, including the relevant basic parameters of the transformer and the capacitor reactor; the overall system parameters include the selection of the objective function and the setting of the number of iterations; then, the set The parameters are written into the custom data as the calculation data for reactive power optimization;
步骤四,优化计算:Step 4, optimize the calculation:
电力系统无功优化是一个包含连续以及离散变量非线性混合整数规划问题,因此采用基于互补理论的现代内点理论进行无功优化计算;如果无功优化计算收敛,则输出计算结果;如果计算不收敛,则需要重新调整系统控制参数、约束参数以及控制策略后再次执行无功优化计算;最后得到满足电力系统安全稳定运行的无功电压优化控制策略;Power system reactive power optimization is a nonlinear mixed integer programming problem that includes continuous and discrete variables. Therefore, the reactive power optimization calculation is performed using the modern interior point theory based on complementary theory; if the reactive power optimization calculation converges, the calculation result is output; if the calculation does not Convergence, it is necessary to readjust the system control parameters, constraint parameters and control strategy and then perform reactive power optimization calculation again; finally obtain the reactive power and voltage optimization control strategy that meets the safe and stable operation of the power system;
步骤五,生成控制变量以及状态变量相关的结果表格,对优化前后的系统的母线电压、发电机出力、变压器分接头档位和补偿设备的投切情况进行对比分析;至此,CIM数据文件所描述的电力系统的无功优化计算结束;BPA数据文件所描述的电力系统的无功优化进入步骤六;Step 5, generate the result table related to the control variables and state variables, and compare and analyze the bus voltage, generator output, transformer tap position and compensation equipment switching status of the system before and after optimization; so far, the CIM data file described The reactive power optimization calculation of the power system is completed; the reactive power optimization of the power system described in the BPA data file enters step six;
步骤六,把优化计算后的结果回写到BPA数据文件当中,并采用PSD-BPA电力系统分析软件对其进行潮流验证;如潮流计算收敛,输出回写后的系统潮流结果;如不收敛则需要调整优化过程当中的约束设置以及控制变量设置,然后再次执行步骤四。Step 6: Write back the optimized calculation results to the BPA data file, and use the PSD-BPA power system analysis software to verify the power flow; if the power flow calculation converges, output the system power flow results after writing back; if not converge, then It is necessary to adjust the constraint settings and control variable settings in the optimization process, and then perform step 4 again.
本方法可以达到如下的效果:This method can achieve the following effects:
(1)通过数据接口可以对电力系统中OPEN3000以及SCADA系统实时获取电力系统的运行方式数据,并对获取的网架数据和运行数据进行解析。对所需求解的电力系统进行无功优化,快速得到满足电力系统安全稳定要求的变压器分接头、无功补偿装置投切、发电机有功无功出力等控制量的调整策略,为实时无功电压优化控制提供理论依据以及参考。(1) Through the data interface, OPEN3000 and SCADA system in the power system can obtain real-time operation mode data of the power system, and analyze the acquired grid data and operation data. Perform reactive power optimization on the power system to be solved, and quickly obtain adjustment strategies for transformer taps, switching of reactive power compensation devices, active and reactive power output of generators, and other control variables that meet the safety and stability requirements of the power system. Optimal control provides theoretical basis and reference.
(2)与传统的实时无功电压控制手段AVC相比,本方法采用现代内点算法进行全网优化,求得在该系统运行约束下得到的最优控制策略,可以整体提高电力系统的无功电压水平。(2) Compared with the traditional real-time reactive voltage control means AVC, this method adopts the modern interior point algorithm to optimize the whole network, and obtains the optimal control strategy under the operation constraints of the system, which can improve the reactive power of the power system as a whole. power voltage level.
(3)与传统的无功优化方法相比,该方法通过设计接口获取电力系统运行的实时数据,解析得到自定义的数据格式并进行优化计算,使得无功优化方法成功的运用到了电力系统的实时控制当中。(3) Compared with the traditional reactive power optimization method, this method obtains the real-time data of the power system operation through the design interface, analyzes the custom data format and performs optimization calculations, so that the reactive power optimization method is successfully applied to the power system. in real-time control.
(4)根据获取的数据,可以进行电力系统在线以及离线的计算。获取的数据为实时数据时,进行实时的优化计算即为在线计算。如导入的是规划设计以及制定的运行方式数据,则可以校验系统规划设计是否合理或者制定的运行方式是否满足系统运行的要求。(4) According to the obtained data, the online and offline calculation of the power system can be performed. When the acquired data is real-time data, real-time optimization calculation is online calculation. If the data of the planning and design and the formulated operation mode are imported, it can be verified whether the system planning and design is reasonable or whether the formulated operation mode meets the requirements of the system operation.
附图说明Description of drawings
图1是本发明所述的针对电力系统实时状态进行无功电压优化控制的方法流程图。Fig. 1 is a flow chart of the method for reactive voltage optimal control according to the real-time state of the power system according to the present invention.
具体实施方式detailed description
测试算例一:Test case one:
以某地区电网为例,对其2013年丰大方式下的BPA数据进行实时无功电压优化控制。Taking a regional power grid as an example, real-time reactive power and voltage optimization control is carried out on the BPA data under Fengda mode in 2013.
步骤一:通过数据接口获取2013年丰大方式下的BPA数据。Step 1: Obtain the BPA data under the Fengda method in 2013 through the data interface.
步骤二:潮流校验结果显示,该实时BPA数据潮流计算收敛。Step 2: The result of power flow verification shows that the real-time BPA data power flow calculation is convergent.
步骤三:从包含该地区电网的区域电网BPA数据当中,找出与该地区电网相关的系统信息,并将地区外的电力系统进行等值。等值前系统包含10567个节点,7680条输电线路。经过自定义等值,等值系统包含2175个节点,1683条输电线路。大幅缩小了所需优化的系统规模。Step 3: From the BPA data of the regional power grid including the regional power grid, find out the system information related to the regional power grid, and make an equivalent value of the power system outside the region. The pre-equivalent system contains 10567 nodes and 7680 transmission lines. After custom equivalence, the equivalence system contains 2175 nodes and 1683 transmission lines. The size of the system to be optimized is greatly reduced.
步骤四:设置系统优化参数。Step 4: Set system optimization parameters.
(1)控制变量参数设置(1) Control variable parameter setting
控制变量包括:有功出力、无功出力、变压器抽头、电容电抗器投切组数。其中:Control variables include: active power output, reactive power output, transformer taps, and the number of capacitive reactor switching groups. in:
无功出力:该电网的BQ节点等;Reactive power output: BQ nodes of the power grid, etc.;
变压器抽头:该电网各电压等级的可调变电站变压器抽头;Transformer taps: adjustable substation transformer taps for each voltage level of the power grid;
电容电抗器容量:该电网各变电站的电容器配置容量、电抗器配置容量。Capacitive reactor capacity: the capacitor configuration capacity and reactor configuration capacity of each substation in the power grid.
(2)约束条件参数设置(2) Constraint condition parameter setting
约束参数包括:联络线无功功率约束、节点电压;Constraint parameters include: tie line reactive power constraint, node voltage;
节点电压:电压限制包括该电网500kV、220kV、110kV、35kV及35kV以下的母线电压,发电机端电压;Node voltage: the voltage limit includes the bus voltage of the power grid 500kV, 220kV, 110kV, 35kV and below 35kV, and the terminal voltage of the generator;
限制范围如下表:The restricted range is as follows:
表1-1节点电压限制范围Table 1-1 Node voltage limit range
备注:Remark:
1、该电网220kV的变电站母线:1. The 220kV substation bus of the power grid:
久隆、燕岭、龙湾、港口、高沙、亚江、傍浦、榄坪。Jiulong, Yanling, Longwan, Ganggang, Gaosha, Yajiang, Bangpu, Lanping.
2、该电网110kV的变电站母线:2. The 110kV substation bus of the power grid:
龙湾、港口、高沙、亚江、傍浦、榄坪、牛头湾、刘屋、望贤、灵山、佛子坳、金良、广场、果子山、小董、陆屋、白石水、寨圩、那前、皇马、果子山、保税、大田、江东、石塘、沙坪、燕岭。Longwan, Harbor, Gaosha, Yajiang, Bangpu, Lamping, Niutouwan, Liuwu, Wangxian, Lingshan, Foziao, Jinliang, Square, Guozishan, Xiaodong, Luwu, Baishishui, Zhaixu, Naqian, Real Madrid, Guozishan, Bonded, Datian, Jiangdong, Shitang, Shaping, Yanling.
3、该电网35kV的变电站母线:3. The 35kV substation busbar of the power grid:
牛头湾、刘屋、那前、白石水、灵山、寨圩、金良、大田、皇马、石塘、沙坪、望贤、小董、陆屋。Niutouwan, Liuwu, Naqian, Baishishui, Lingshan, Zhaixu, Jinliang, Datian, Real Madrid, Shitang, Shaping, Wangxian, Xiaodong, Luwu.
4、该电网10kV的变电站母线:4. The 10kV substation busbar of the power grid:
龙湾10KVⅡ段、港口、高沙、亚江、牛头湾、刘屋、望贤、灵山、佛子坳、金良、广场、果子山、保税区、皇马、大田、江东、傍浦、榄坪、龙湾10KVⅠ段、小董、陆屋、白石水、寨圩、那前、石塘、沙坪。Longwan 10KV Ⅱ section, port, Gaosha, Yajiang, Niutouwan, Liuwu, Wangxian, Lingshan, Foziao, Jinliang, Plaza, Guozishan, Free Trade Zone, Real Madrid, Datian, Jiangdong, Bangpu, Lanping, Longwan 10KVI Duan, Xiaodong, Luwu, Baishishui, Zhaiwei, Naqian, Shitang, Shaping.
步骤五:采用基于互补理论的现代内点法进行优化计算。Step five: use the modern interior point method based on complementary theory for optimization calculation.
步骤六:优化前后电压越限情况以及控制量如表1-2、表1-3、表1-4、表1-5所示。控制量变化表如表1-6、表1-7所示。Step 6: The voltage over-limit situation and control amount before and after optimization are shown in Table 1-2, Table 1-3, Table 1-4, and Table 1-5. Table 1-6 and Table 1-7 show the control quantity change table.
步骤七:按照BPA数据的书写规则将,各调整后的控制量会写到BPA数据文件当中,并执行潮流计算。回写前后电压比较如表1-2、表1-3、表1-4、表1-5所示。Step 7: According to the BPA data writing rules, each adjusted control quantity will be written into the BPA data file, and the power flow calculation will be performed. Table 1-2, Table 1-3, Table 1-4, and Table 1-5 show the voltage comparison before and after writing back.
电压质量分析:Voltage Quality Analysis:
220kV的母线中,电压都合格,优化前后都没有越限情况。In the 220kV busbar, the voltage is all qualified, and there is no limit violation before and after optimization.
110kV的母线中,优化前有7个节点越限,越限比例达到21.21%,优化后没有节点越限,但是由于回写存在误差,回写后有1个节点越限越限数值很小。In the 110kV busbar, before optimization, 7 nodes exceeded the limit, and the proportion of the limit exceeded 21.21%. After optimization, no node exceeded the limit, but due to errors in the write-back, 1 node exceeded the limit and the value was very small after the write-back.
35kV的母线中,优化前有12个节点越限,越限比例达到63.16%,优化后没有节点越限,但是由于回写存在误差,回写后有2个节点越限,越限数值很小。In the 35kV bus, 12 nodes exceeded the limit before optimization, and the proportion of the limit exceeded 63.16%. After optimization, no node exceeded the limit, but due to errors in the write-back, 2 nodes exceeded the limit after the write-back, and the value of the limit was very small .
10kV的母线中,优化前有22个节点越限,越限比例达到53.66%,优化后没有节点越限,但是由于回写存在误差,回写后有3个节点越限,越限数值很小。In the 10kV bus, 22 nodes exceeded the limit before optimization, and the proportion of the limit exceeded 53.66%. After optimization, no node exceeded the limit, but due to errors in the write-back, 3 nodes exceeded the limit after the write-back, and the value of the limit was very small .
表1-2优化前后电网220kV电压等级母线电压越限情况分析Table 1-2 Analysis of 220kV voltage class bus voltage over-limit situation of power grid before and after optimization
表1-3优化前后电网110kV电压等级母线电压越限情况分析Table 1-3 Analysis of 110kV voltage level bus voltage over-limit situation of power grid before and after optimization
表1-4优化前后电网35kV电压等级母线电压越限情况分析Table 1-4 Analysis of 35kV voltage level bus voltage over-limit situation of power grid before and after optimization
表1-5优化前后电网10kV电压等级母线电压越限情况分析Table 1-5 Analysis of 10kV voltage class bus voltage over-limit situation before and after optimization
表1-6优化前后电网各主变分接头位置Table 1-6 Locations of main transformer taps before and after optimization
表1-7优化前后电网各变电站无功补偿容量汇总表单位:MvarTable 1-7 Summary table of reactive power compensation capacity of each substation in the power grid before and after optimization Unit: Mvar
结果分析:Result analysis:
采用本方法优化后,该电网的电压质量得到明显的提高;110kV的母线中,优化前的越限比例达到21.21%,优化后没有节点越限。35kV的母线中,优化前的越限比例达到63.16%,优化后没有节点越限。10kV的母线中,优化前的越限比例达到53.66%,优化后没有节点越限。After optimization using this method, the voltage quality of the power grid has been significantly improved; in the 110kV bus, the proportion of out-of-limit before optimization reached 21.21%, and no node out-of-limit after optimization. In the 35kV bus, the proportion of out-of-limit before optimization reached 63.16%, and no node out-of-limit after optimization. In the 10kV bus, the proportion of out-of-limit before optimization reached 53.66%, and no node out-of-limit after optimization.
由于合理投切电容器、电抗器和调整变压器抽头,该电网的各厂站母线电压的控制满足系统电压运行要求。全网线路上的无功流也明显减少,线路上没有大容量的无功功率传输,从而该电网的网损得到了有效的控制,优化前该电网的有功网损为20.322MW,优化后的有功网损为19.471MW,优化后有功网损比优化前减少0.851MW。Due to the reasonable switching of capacitors and reactors and the adjustment of transformer taps, the control of the busbar voltage of each station in the power grid meets the system voltage operation requirements. The reactive power flow on the lines of the entire network is also significantly reduced, and there is no large-capacity reactive power transmission on the lines, so that the network loss of the power grid has been effectively controlled. Before optimization, the active network loss of the power grid was 20.322MW, and after optimization The active network loss is 19.471MW, and the active network loss after optimization is 0.851MW lower than before optimization.
测试算例二:Test case two:
采用与测试算例一同样的电力系统,获取其2013年3月29日12:03时的CIM数据文件,并进行无功电压控制优化。其系统基本数据以及电压限制要求与测试一致,在此省略。Using the same power system as the test example 1, obtain its CIM data file at 12:03 on March 29, 2013, and optimize the reactive power and voltage control. The basic system data and voltage limit requirements are consistent with the test and are omitted here.
步骤一:获取CIM数据文件,包括DAT格式的网架数据和E格式的运行数据。Step 1: Obtain the CIM data file, including grid data in DAT format and operation data in E format.
步骤二:结合网架数据以及运行数据,解析生成优化计算所需的自定义格式数据。Step 2: Combining grid data and operating data, analyze and generate custom format data required for optimal calculation.
步骤三:选择久隆变500kV母线作为系统平衡节点。Step 3: Select the 500kV busbar of Jiulong Substation as the system balance node.
步骤四:选择系统可调控制变量(发电机无功出力、有载调压变压器分接头、电容电抗器)以及电压限制的上下限等。Step 4: Select the adjustable control variables of the system (generator reactive output, on-load tap changer tap, capacitive reactor) and the upper and lower limits of the voltage limit, etc.
步骤五:采用基于互补理论的现代内点法进行优化计算。Step five: use the modern interior point method based on complementary theory for optimization calculation.
步骤六:优化前后电压越限情况以及控制量如表2-1所示。控制量变化表如表2-2、表2-3所示。Step 6: The voltage over-limit before and after optimization and the control amount are shown in Table 2-1. Table 2-2 and Table 2-3 show the control quantity change table.
(1)电压质量分析:(1) Voltage quality analysis:
优化前、优化后电网母线电压越限情况如表2-1所示;优化前电网有6个节点越限,通过无功优化模块的计算,优化后没有节点越限,具体结果分析如下:Table 2-1 shows the situation of grid bus voltage out of limit before and after optimization. Before optimization, there were 6 nodes in power grid out of limit. Through the calculation of reactive power optimization module, no node out of limit after optimization. The specific results are analyzed as follows:
220kV的母线中,电压都合格,优化前后都没有越限情况。In the 220kV busbar, the voltage is all qualified, and there is no limit violation before and after optimization.
110kV的母线中,优化前有1个节点越限,优化后没有节点越限。In the 110kV busbar, one node was out of limit before optimization, but no node was out of limit after optimization.
35kV的母线中,优化前有5个节点越限,优化后没有节点越限。In the 35kV busbar, there were 5 nodes out of limit before optimization, and no node out of limit after optimization.
10kV的母线中,电压都合格,优化前后都没有越限情况。In the 10kV busbar, the voltage is all qualified, and there is no limit violation before and after optimization.
表2-1优化前后电网母线电压越限情况分析Table 2-1 Analysis of grid bus voltage over limit before and after optimization
表2-2优化前后电网各主变分接头位置Table 2-2 Locations of main transformer taps before and after optimization
表2-3优化前后电网各变电站无功补偿投切汇总表单位:MvarTable 2-3 Summary table of reactive power compensation switching of each substation in the power grid before and after optimization Unit: Mvar
结果分析Result analysis
采用软件优化后,该电网在2013年3月29日12:03时的断面运行方式下的电压质量得到明显的提高;优化前电网有6个节点越限,通过无功优化模块的计算,优化后没有节点越限,具体结果如下:110kV的母线中,优化前有1个节点越限,优化后没有节点越限。35kV的母线中,优化前有5个节点越限,优化后没有节点越限。After adopting software optimization, the voltage quality of the power grid under the cross-section operation mode at 12:03 on March 29, 2013 has been significantly improved; before optimization, 6 nodes of the power grid exceeded the limit. Through the calculation of the reactive power optimization module, the optimized After that, no node exceeded the limit, and the specific results are as follows: In the 110kV bus, there was one node that exceeded the limit before optimization, but no node exceeded the limit after optimization. In the 35kV busbar, there were 5 nodes out of limit before optimization, and no node out of limit after optimization.
由于合理投切电容器、电抗器和调整变压器抽头,电网的各厂站母线电压的控制满足《电力系统电压质量和无功电力管理规定》和《中国南方电网电力系统质量和无功电力管理标准》。全网线路上的无功流也明显减少,线路上没有大容量的无功功率传输,从而电网的网损得到了有效的控制,优化前电网的总网损为13.44MW,优化后的总网损为10.74MW,优化后总网损比优化前减少2.7MW。Due to the reasonable switching of capacitors and reactors and the adjustment of transformer taps, the control of the bus voltage of each plant and station of the power grid meets the "Power System Voltage Quality and Reactive Power Management Regulations" and "China Southern Power Grid Power System Quality and Reactive Power Management Standards" . The reactive power flow on the lines of the whole network is also significantly reduced. There is no large-capacity reactive power transmission on the lines, so that the network loss of the power grid has been effectively controlled. The total network loss of the power grid before optimization is 13.44MW. The loss is 10.74MW, and the total network loss after optimization is 2.7MW less than that before optimization.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410382529.4A CN104158199B (en) | 2014-08-05 | 2014-08-05 | Power system real-time status is carried out the system and method for reactive power and voltage control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410382529.4A CN104158199B (en) | 2014-08-05 | 2014-08-05 | Power system real-time status is carried out the system and method for reactive power and voltage control |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104158199A CN104158199A (en) | 2014-11-19 |
CN104158199B true CN104158199B (en) | 2016-08-24 |
Family
ID=51883642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410382529.4A Active CN104158199B (en) | 2014-08-05 | 2014-08-05 | Power system real-time status is carried out the system and method for reactive power and voltage control |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104158199B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104466979B (en) * | 2014-12-03 | 2017-01-25 | 上海电机学院 | Transmission grid reactive power optimization regulation and control system and method |
CN106230000A (en) * | 2016-08-30 | 2016-12-14 | 合肥智博电气有限公司 | Electromagnetism voltage-stabilizing energy-saving device reactive power compensator |
CN106786624B (en) * | 2016-12-12 | 2019-04-30 | 国网福建晋江市供电有限公司 | A method and system for optimal hierarchical control of reactive power and voltage in the whole network |
CN109599873B (en) * | 2018-11-21 | 2022-04-12 | 国网江西省电力有限公司电力科学研究院 | A gear optimization method for single line and single low voltage station area |
CN109472006B (en) * | 2018-11-30 | 2023-07-25 | 广西电网有限责任公司电力科学研究院 | Calculation result screening method based on PSD-BPA |
CN114050580A (en) * | 2021-11-10 | 2022-02-15 | 许继集团有限公司 | Voltage regulation method and device for regional-level hundred-percent new energy power system |
CN117220356B (en) * | 2023-11-09 | 2024-01-16 | 国网四川省电力公司电力科学研究院 | Multi-time-scale-based annual loss reduction operation optimization method and system for power transmission network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101236575A (en) * | 2008-01-30 | 2008-08-06 | 山东大学 | Black start auxiliary decision support/training system and method thereof |
CN101692575A (en) * | 2009-10-12 | 2010-04-07 | 中国电力科学研究院 | Method for processing data for real-time load flow calculation in large electric systems |
CN102684188A (en) * | 2012-05-09 | 2012-09-19 | 广西大学 | Large and small running mode reactive power optimizing and joint adjusting method of electric system |
CN103177341A (en) * | 2013-03-29 | 2013-06-26 | 山东电力集团公司 | Line loss lean comprehensive management system and method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2646423A1 (en) * | 2006-03-10 | 2007-09-20 | Edsa Micro Corporation | Systems and methods for real- time protective device evaluation in an electrical power distribution system |
-
2014
- 2014-08-05 CN CN201410382529.4A patent/CN104158199B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101236575A (en) * | 2008-01-30 | 2008-08-06 | 山东大学 | Black start auxiliary decision support/training system and method thereof |
CN101692575A (en) * | 2009-10-12 | 2010-04-07 | 中国电力科学研究院 | Method for processing data for real-time load flow calculation in large electric systems |
CN102684188A (en) * | 2012-05-09 | 2012-09-19 | 广西大学 | Large and small running mode reactive power optimizing and joint adjusting method of electric system |
CN103177341A (en) * | 2013-03-29 | 2013-06-26 | 山东电力集团公司 | Line loss lean comprehensive management system and method |
Also Published As
Publication number | Publication date |
---|---|
CN104158199A (en) | 2014-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104158199B (en) | Power system real-time status is carried out the system and method for reactive power and voltage control | |
CN109361242B (en) | An automatic voltage control method for photovoltaic power generation | |
CN102195294B (en) | Wind farm reactive comprehensive optimization control method | |
CN100570984C (en) | Substation Voltage Control Method Realizing Comprehensive Coordination of Continuous Equipment and Discrete Equipment | |
CN110690732A (en) | Photovoltaic reactive power partition pricing power distribution network reactive power optimization method | |
CN108695857B (en) | Automatic voltage control method, device and system for wind power plant | |
CN102157936A (en) | Coordination control method | |
CN103151795B (en) | Scattered-type wind power plant reactive power optimization control method capable of reducing fan losses and system | |
CN111459048A (en) | A simulation platform and simulation method for SVG control hardware-in-the-loop | |
CN101976847A (en) | SVC (Static Var Compensator) and AVC (Automatic Voltage Control) joint debugging control system | |
CN103730900B (en) | Province's ground county's integration idle work optimization method of power system Multiple Time Scales | |
CN115622053B (en) | Automatic load modeling method and device for considering distributed power supply | |
CN105958530A (en) | Microgrid system with reactive power automatic compensation function | |
CN104319783A (en) | System and method for two-level distribution network coordination control based on load forecasting | |
CN106406272A (en) | Method of testing performance of controller of static var generator in wind power plant | |
CN103116088A (en) | Large-scale transformer three-phase parameter inconsistent operation analysis method | |
CN114676569B (en) | Power grid simulation analysis example, and generation method, generation system, equipment and medium thereof | |
CN102904265B (en) | Transformer station voltage reactive control method and system based on region tidal current | |
CN115733133A (en) | Load model simulation method and system based on distributed electrochemical energy storage | |
CN105071397B (en) | The coordination reactive voltage control method for the polymorphic type reactive-load compensation equipment that wind-powered electricity generation is sent outside | |
CN104242354B (en) | Meter and the new energy of honourable output correlation, which are concentrated, sends operation characteristic appraisal procedure outside | |
CN109659934A (en) | New-energy grid-connected based on short circuit current nargin plans preferred method | |
CN103178551B (en) | Offshore oilfield group power grid power optimization control method | |
Yang et al. | Large-scale preventive security constrained optimal power flow based on compensation method | |
CN102646983B (en) | Long-term reactive voltage analyzing and optimizing method in power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |