CN104155984B - 飞行器姿态通道内的控制器及其设计方法 - Google Patents

飞行器姿态通道内的控制器及其设计方法 Download PDF

Info

Publication number
CN104155984B
CN104155984B CN201410389938.7A CN201410389938A CN104155984B CN 104155984 B CN104155984 B CN 104155984B CN 201410389938 A CN201410389938 A CN 201410389938A CN 104155984 B CN104155984 B CN 104155984B
Authority
CN
China
Prior art keywords
frequency response
response function
airvane
controller
servo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410389938.7A
Other languages
English (en)
Other versions
CN104155984A (zh
Inventor
柳嘉润
黄万伟
包为民
马卫华
祁振强
唐海红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Aerospace Automatic Control Research Institute
Original Assignee
Beijing Aerospace Automatic Control Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Aerospace Automatic Control Research Institute filed Critical Beijing Aerospace Automatic Control Research Institute
Priority to CN201410389938.7A priority Critical patent/CN104155984B/zh
Publication of CN104155984A publication Critical patent/CN104155984A/zh
Application granted granted Critical
Publication of CN104155984B publication Critical patent/CN104155984B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种飞行器姿态通道内的控制器及其设计方法,所述控制器包括:频率响应函数为WG(s)的第一频率响应单元,其输入端为控制器的输入端;低通滤波单元,其输入端与第一频率响应单元的输出端相连;减法器,其正向输入端与第一频率响应单元的输出端相连,负向输入端与低通滤波单元的输出端相连,其输出端输出的信号用于控制第一空气舵;频率响应函数为的第二频率响应单元,其输入端与低通滤波单元的输出端相连;乘法器,其输入端与第二频率响应单元的输出端相连,用于将第二频率响应单元输出的信号乘以系数后从其输出端输出,输出的信号用于控制第二空气舵。本发明的控制器在实现姿态通道内的两个空气舵的控制时,设计工作量小。

Description

飞行器姿态通道内的控制器及其设计方法
技术领域
本发明涉及航空航天领域,尤其涉及一种飞行器姿态通道内的控制器及其设计方法。
背景技术
飞行器(flight vehicle)是一种由人类制造并由人来控制的器械飞行物,它能飞离地面,并可在大气层内或大气层外空间(太空)飞行。飞行器分为5类,包括:滑翔机、飞艇、飞机、直升机等航空器,人造地球卫星、载人飞船、空间探测器、航天飞机等航天器,火箭,导弹和制导武器。
飞行器能在空中按预定的轨迹运动总离不开它的姿态控制系统。由于角运动使飞行器的姿态发生变化,因此对飞行器在空间的角运动(可分解为俯仰、偏航和滚动三个角运动)的控制就是对飞行器姿态的控制。其中,控制使飞行器三个姿态角发生变化的力矩由飞行器上的执行机构产生,常见的执行机构有空气舵、推力矢量发动机、反作用飞轮、喷气执行机构或由其它环境力执行机构。
其中,带有伺服系统的空气舵在航空航天领域有着广泛的应用。为保证诸如高速滑翔飞行器类的飞行器的稳定飞行,飞行器的单个姿态通道内可配置两个独立的空气舵以及相应的伺服系统(记为SF1和SF2);其中,两个空气舵的频率响应函数分别为Wδ1(s)、Wδ2(s);两个空气舵的伺服系统的频率响应函数分别为WSF1(s)和WSF2(s)。通常,可认为WSF1(s)的动态特性较快,WSF2(s)的动态特性较慢。
W SF 1 ( s ) = 1 ( ω 1 , ξ 1 )
W SF 2 ( s ) = 1 ( ω 2 , ξ 2 )
其中,ω11分别表示伺服系统SF1的自然频率和阻尼比,ω22分别表示伺服系统SF2的自然频率和阻尼比。
而且,技术人员需要分别设计两个控制器来控制两个独立的空气舵,设计的两个控制器的频率响应函数分别为WG1(s)、WG2(s);然而,这种分别设计两个控制器的方式的设计工作量大,而且容易使得两个控制支路之间产生不协调,往往需要耗费大量精力进行参数调试。
综上,现有技术中在单个姿态通道内存在两个空气舵时,设计用于控制两个空气舵的控制器的设计工作量较大。
发明内容
针对上述现有技术存在的缺陷,本发明实施例提供了一种飞行器姿态通道内的控制器及其设计方法,用以降低控制器的设计工作量。
本发明实施例提供了一种飞行器姿态通道内的控制器,包括:
第一频率响应单元,其频率响应函数为WG(s),其输入端为所述控制器的输入端;
低通滤波单元,其输入端与第一频率响应单元的输出端相连;
减法器,其正向输入端与第一频率响应单元的输出端相连,其负向输入端与所述低通滤波单元的输出端相连,其输出端输出的信号用于控制所述姿态通道内的第一空气舵;
第二频率响应单元,其频率响应函数为其输入端与所述低通滤波单元的输出端相连;
乘法器,其输入端与第二频率响应单元的输出端相连,用于将第二频率响应单元输出的信号乘以系数后从其输出端输出,输出的信号用于控制所述姿态通道内的第二空气舵;
其中,WG(s)是根据所述姿态通道内的第一空气舵的频率响应函数、第一空气舵的伺服系统的频率响应函数设计的;
WSF1(s)是第一空气舵的伺服系统的频率响应函数;
WSF2(s)是第二空气舵的伺服系统的频率响应函数;
k是第二空气舵的频率响应函数与第一空气舵的频率响应函数的比例。
其中,所述WG(s)具体根据如下方法计算得到的:
将所述姿态通道内的第一空气舵的频率响应函数、第一空气舵的伺服系统的频率响应函数,分别作为虚拟的被控对象的频率响应函数Wδ(s)、虚拟的被控对象的伺服系统的频率响应函数WSF(s);
根据Wδ(s)、WSF(s)设计出虚拟控制器的频率响应函数WG(s)。
所述WLP(s)具体为:
W LP ( s ) = m s + m
其中,m为设定的数值,s为频率。
本发明实施例还提供了一种飞行器姿态通道内的控制器设计方法,包括:
将所述姿态通道内的第一空气舵的频率响应函数、第一空气舵的伺服系统的频率响应函数,分别作为虚拟的被控对象的频率响应函数Wδ(s)、虚拟的被控对象的伺服系统的频率响应函数WSF(s);
根据Wδ(s)、WSF(s)设计出虚拟控制器的频率响应函数WG(s);
根据WG(s)计算出用于控制第一空气舵的第一控制器的频率响应函数WG1(s),以及用于控制所述姿态通道内的第二空气舵的第二控制器的频率响应函数WG2(s):
WG1(s)=[1-WLP(s)]·WG(s)
W G 2 ( s ) = 1 k · W SF 1 ( s ) W SF 2 ( s ) · W LP ( s ) · W G ( s )
其中,WSF1(s)为第一空气舵的伺服系统的频率响应函数;WSF2(s)为第二空气舵的伺服系统的频率响应函数;k为第二空气舵的频率响应函数与第一空气舵的频率响应函数的比例;WLP(s)为设定的低通滤波器的频率响应函数;
根据WG1(s)、WG2(s)分别设计出第一控制器和第二控制器。
较佳地,所述根据WG(s)计算出用于控制第一空气舵的第一控制器的频率响应函数WG1(s),以及所述姿态通道内的第二空气舵的控制器的频率响应函数WG2(s),具体包括:
计算出所述虚拟控制器的开环传递特性
使得第一空气舵的控制器与第二空气舵的控制器的控制回路的开环传递特性WOpen(s)与一致后,通过设定的低通滤波器的频率响应函数WLP(s),得到WG(s)的高频部分WG1(s)和低频部分W′G2(s),进而根据W′G2(s)得到WG2(s)。
其中,所述WLP(s)具体为:
W LP ( s ) = m s + m
其中,m为设定的数值,s为频率。
本发明实施例还提供了一种飞行器姿态通道内的控制器,包括:
第一控制器,用于控制所述姿态通道内的第一空气舵,其频率响应函数为WG1(s);
第二控制器,用于控制所述姿态通道内的第二空气舵,其频率响应函数为WG2(s);其中,
WG1(s)=[1-WLP(s)]·WG(s)
W G 2 ( s ) = 1 k · W SF 1 ( s ) W SF 2 ( s ) · W LP ( s ) · W G ( s )
其中,WSF1(s)为第一空气舵的伺服系统的频率响应函数;WSF2(s)为第二空气舵的伺服系统的频率响应函数;k为第二空气舵的频率响应函数与第一空气舵的频率响应函数的比例;WLP(s)为设定的低通滤波器的频率响应函数。
其中,所述WG1(s)、WG2(s)是根据如下方法设计出的:
将所述姿态通道内的第一空气舵的频率响应函数、第一空气舵的伺服系统的频率响应函数,分别作为虚拟的被控对象的频率响应函数Wδ(s)、虚拟的被控对象的伺服系统的频率响应函数WSF(s);
根据Wδ(s)、WSF(s)设计出虚拟控制器的频率响应函数WG(s);
根据WG(s)计算出WG1(s)、WG2(s)。
所述WLP(s)具体为:
W LP ( s ) = m s + m
其中,m为设定的数值,s为频率。
本发明的技术方案中,基于一个空气舵及其伺服系统的频率响应函数设计出虚拟控制器的频率响应函数;之后,再根据两个空气舵的频率响应函数之间的关联关系,通过一个低通滤波器得到虚拟控制器的频率响应函数的高频部分和低频部分,进而根据得到的高频部分和低频部分得出两个控制器的频率响应函数,从而实现两个空气舵的控制器的设计。本发明设计两个控制器的设计工作量几乎仅相当于现有技术中设计一个控制器的设计工作量,因此大大减少了对于单姿态通道内存在两个空气舵时设计相应控制器的工作量。而且,两个控制器之间关联,可以协调工作,减少了进行参数调试的大量工作量。
附图说明
图1为飞行器在典型飞行状态下两个空气舵的频率响应函数的波特图;
图2为本发明实施例的飞行器姿态通道内的控制器的结构框图;
图3为本发明实施例的飞行器姿态通道内的控制器的设计方法示意图;
图4为本发明实施例的额定状态下虚拟控制器的频率响应函数的波特图;
图5为本发明实施例的额定状态下虚拟控制器的开环传递特性的波特图;
图6为多种偏差状态下虚拟控制器的开环传递特性的波特图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举出优选实施例,对本发明进一步详细说明。然而,需要说明的是,说明书中列出的许多细节仅仅是为了使读者对本发明的一个或多个方面有一个透彻的理解,即便没有这些特定的细节也可以实现本发明的这些方面。
本发明的发明人对多种类似外形的高超声速飞行器进行分析研究发现,对于单个姿态通道(如俯仰通道),配置两个独立的空气舵作为控制舵面时,两个空气舵的频率响应函数满足或近似满足比例关系:Wδ2(s)=k·Wδ1(s)。例如,图1示出了某飞行器在典型飞行状态(高度、马赫数、攻角)条件下,两个空气舵的频率响应函数的波特图;在主要频段上,二者仅相差一个常值增益。
因此,本发明的发明人考虑到,可以基于一个空气舵及其伺服系统的频率响应函数设计出一个虚拟控制器的频率响应函数;之后,再根据两个空气舵的频率响应函数之间的关联关系,通过一个低通滤波器得到虚拟控制器的频率响应函数的高频部分和低频部分,进而根据得到的高频部分和低频部分得出两个控制器的频率响应函数,从而实现控制两个空气舵的两个控制器的设计。这样设计两个控制器的设计工作量,几乎仅相当于现有技术中设计一个控制器的设计工作量,因此大大减少了对于单姿态通道内存在两个空气舵时设计相应控制器的工作量。
下面结合附图详细说明本发明的技术方案。
本发明实施例的飞行器姿态通道内的控制器的结构框图,如图2所示,包括:第一频率响应单元201、低通滤波单元202、减法器203、第二频率响应单元204、乘法器205。
其中,第一频率响应单元201的频率响应函数为WG(s),第一频率响应单元201的输入端为飞行器姿态通道内的控制器的输入端。其中,WG(s)是根据姿态通道内的第一空气舵的频率响应函数、第一空气舵的伺服系统的频率响应函数设计的,具体设计方法在下述进行详细介绍。
低通滤波单元202的输入端与第一频率响应单元201的输出端相连。
减法器203的正向输入端与第一频率响应单元201的输出端相连,减法器203的负向输入端与低通滤波单元202的输出端相连,减法器203的输出端输出的信号用于控制姿态通道内的第一空气舵。
第二频率响应单元204的频率响应函数为其输入端与低通滤波单元202的输出端相连。其中,WSF1(s)是第一空气舵的伺服系统的频率响应函数;WSF2(s)是第二空气舵的伺服系统的频率响应函数。
乘法器205的输入端与第二频率响应单元204的输出端相连,用于将第二频率响应单元204输出的信号乘以系数后从乘法器205的输出端输出,乘法器205输出的信号用于控制姿态通道内的第二空气舵。k是第二空气舵的频率响应函数与第一空气舵的频率响应函数的比例。
具体地,上述的飞行器姿态通道内的控制器的设计方法如图3所示,包括如下步骤:
S301:将姿态通道内的第一空气舵的频率响应函数Wδ1(s)、第一空气舵的伺服系统的频率响应函数WSF1(s),分别作为虚拟的被控对象的频率响应函数Wδ(s)、虚拟的被控对象的伺服系统的频率响应函数WSF(s)。
也就是,构造虚拟回路,令虚拟的被控对象的频率响应函数Wδ(s)和虚拟的被控对象的伺服系统的频率响应函数WSF(s)分别为:
Wδ(s)=Wδ1(s)。
WSF(s)=WSF1(s)
S302:根据Wδ(s)、WSF(s)设计出虚拟控制器的频率响应函数WG(s)。
具体地,对于虚拟的被控对象及其伺服系统,可采用传统的SISO(singleinput single output,单输入单输出系统)设计方法、设计工具、评价准则等手段,根据虚拟的被控对象的频率响应函数Wδ(s)、虚拟的被控对象的伺服系统的频率响应函数WSF(s),设计出虚拟控制器的频率响应函数WG(s)。
S303:根据WG(s)计算出用于控制第一空气舵的第一控制器的频率响应函数WG1(s)、以及用于控制第二空气舵的第二控制器的频率响应函数WG2(s)。
具体地,根据公式1计算出虚拟控制器的开环传递特性
W Open virtual ( s ) = W G ( s ) · W SF ( s ) · W δ ( s ) · W PT ( s )   (公式1)
其中,WPT(s)为姿态通道内的惯性平台的频率响应函数。
如公式2,第一空气舵的控制器与第二空气舵的控制器的控制回路的开环传递特性为:
WOpen(s)=[WG1(s)·WSF1(s)·Wδ1(s)+WG2(s)·WSF2(s)·Wδ2(s)]·WPT(s)  (公式2)
使得第一空气舵的控制器与第二空气舵的控制器的控制回路的开环传递特性WOpen(s)与一致,即使得也就是使得公式3成立:
WG1(s)·WSF1(s)·Wδ1(s)+WG2(s)·WSF2(s)·Wδ2(s)=WG(s)·WSF(s)·Wδ(s)  (公式3)
将Wδ(s)=Wδ1(s)、WSF(s)=WSF1(s)、Wδ2(s)=k·Wδ1(s)代入公式3中,可以得到如下公式4:
WG1(s)·WSF1(s)+k·WG2(s)·WSF2(s)=WG(s)·WSF1(s)  (公式4)
再令上述公式4可进一步简写为如下公式5:
WG1(s)+W′G2(s)=WG(s)  (公式5)
考虑到WSF1(s)的动态特性较快,WSF2(s)的动态特性较慢,可将WG1(s)设计为WG(s)的高频部分,将W′G2(s)设计为WG(s)的低频部分。
因此,本发明通过设计一个简单的低通滤波器来实现,也就是通过设定的低通滤波器的频率响应函数WLP(s),得到WG(s)的高频部分WG1(s)、低频部分W′G2(s):
WG1(s)=[1-WLP(s)]·WG(s)
W′G2(s)=WLP(s)·WG(s)。
因此,可得到第一控制器和第二控制器的频率响应函数分别为:
WG1(s)=[1-WLP(s)]·WG(s)
W G 2 ( s ) = 1 k · W SF 1 ( s ) W SF 2 ( s ) · W LP ( s ) · W G ( s ) .
从而,得到第一控制器和第二控制器的设计结果。
其中,WLP(s)具体可以为:
W LP ( s ) = m s + m
其中,m为设定的数值,s为频率。
例如,当k取额定状态下的数值时,第一空气舵和第二空气舵的频率响应函数的波特图如图1所示。采用传统方法,设计虚拟控制器的频率响应函数WG(s)为:
W G ( s ) = 3.90711477 · 1 s · 400 s + 400 · 400 s + 400 · 30 s + 30 · s 2 + 2.38148 s + 1.19107 1.19107 · s + 199.45148 199.45148 .
虚拟控制器的频率响应函数WG(s)的波特图如图4所示。
当低通滤波器的频率响应函数WLP(s)取为:时,虚拟控制器的开环传递特性的波特图如图5所示。由图5可以看出,额定状态下系统幅值裕度为18dB,相位裕度为51.4度,截频为6.32rad/s。
考虑到被控对象的各种参数慑动,对多种偏差状态进行了频率分析,波特图如图6所示,系统均具有足够的稳定裕度。由图6可以看出,幅值裕度>14.1dB,相位裕度>14.9度,截频为2.45~9.36rad/s。
S304:根据WG1(s)、WG2(s)分别设计出第一控制器和第二控制器。
具体地,得到第一控制器和第二控制器的频率响应函数后,可设计出实际的控制回路。
基于上述的飞行器姿态通道内的控制器的设计方法,本发明实施例提供的一种飞行器姿态通道内的控制器包括:第一控制器和第二控制器。
其中,第一控制器用于控制飞行器姿态通道内的第一空气舵,其频率响应函数为WG1(s);其中,WG1(s)=[1-WLP(s)]·WG(s)。
第二控制器用于控制飞行器姿态通道内的第二空气舵,其频率响应函数为WG2(s);其中, W G 2 ( s ) = 1 k · W SF 1 ( s ) W SF 2 ( s ) · W LP ( s ) · W G ( s ) .
其中,WSF1(s)为第一空气舵的伺服系统的频率响应函数;WSF2(s)为第二空气舵的伺服系统的频率响应函数;k为第二空气舵的频率响应函数与第一空气舵的频率响应函数的比例;WLP(s)为设定的低通滤波器的频率响应函数。
本发明的技术方案中,基于一个空气舵及其伺服系统的频率响应函数设计出虚拟控制器的频率响应函数;之后,再根据两个空气舵的频率响应函数之间的关联关系,通过一个低通滤波器得到虚拟控制器的频率响应函数的高频部分和低频部分,进而根据得到的高频部分和低频部分得出两个控制器的频率响应函数,从而实现两个空气舵的控制器的设计。本发明设计两个控制器的设计工作量几乎仅相当于现有技术中设计一个控制器的设计工作量,因此大大减少了对于单姿态通道内存在两个空气舵时设计相应控制器的工作量。而且,两个控制器之间关联,可以协调工作,减少了进行参数调试的大量工作量。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于计算机可读取存储介质中,如:ROM/RAM、磁碟、光盘等。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种飞行器姿态通道内的控制器,其特征在于,包括:
第一频率响应单元,其频率响应函数为WG(s),其输入端为所述控制器的输入端;
低通滤波单元,其输入端与第一频率响应单元的输出端相连;
减法器,其正向输入端与第一频率响应单元的输出端相连,其负向输入端与所述低通滤波单元的输出端相连,其输出端输出的信号用于控制所述姿态通道内的第一空气舵;
第二频率响应单元,其频率响应函数为其输入端与所述低通滤波单元的输出端相连;
乘法器,其输入端与第二频率响应单元的输出端相连,用于将第二频率响应单元输出的信号乘以系数后从其输出端输出,输出的信号用于控制所述姿态通道内的第二空气舵;
其中,WG(s)是根据所述姿态通道内的第一空气舵的频率响应函数、第一空气舵的伺服系统的频率响应函数设计的;
WSF1(s)是第一空气舵的伺服系统的频率响应函数;
WSF2(s)是第二空气舵的伺服系统的频率响应函数;
k是第二空气舵的频率响应函数与第一空气舵的频率响应函数的比例。
2.如权利要求1所述的控制器,其特征在于,所述WG(s)具体根据如下方法计算得到的:
将所述姿态通道内的第一空气舵的频率响应函数、第一空气舵的伺服系统的频率响应函数,分别作为虚拟的被控对象的频率响应函数Wδ(s)、虚拟的被控对象的伺服系统的频率响应函数WSF(s);
根据Wδ(s)、WSF(s)设计出虚拟控制器的频率响应函数WG(s)。
3.一种飞行器姿态通道内的控制器设计方法,包括:
将所述姿态通道内的第一空气舵的频率响应函数、第一空气舵的伺服系统的频率响应函数,分别作为虚拟的被控对象的频率响应函数Wδ(s)、虚拟的被控对象的伺服系统的频率响应函数WSF(s);
根据Wδ(s)、WSF(s)设计出虚拟控制器的频率响应函数WG(s);
根据WG(s)计算出用于控制第一空气舵的第一控制器的频率响应函数WG1(s),以及用于控制所述姿态通道内的第二空气舵的第二控制器的频率响应函数WG2(s):
WG1(s)=[1-WLP(s)]×WG(s)
W G 2 ( s ) = 1 k · W SF 1 ( s ) W SF 2 ( s ) · W LP ( s ) · W G ( s )
其中,WSF1(s)为第一空气舵的伺服系统的频率响应函数;WSF2(s)为第二空气舵的伺服系统的频率响应函数;k为第二空气舵的频率响应函数与第一空气舵的频率响应函数的比例;WLP(s)为设定的低通滤波器的频率响应函数;
根据WG1(s)、WG2(s)分别设计出第一控制器和第二控制器。
4.如权利要求3所述的方法,其特征在于,所述根据WG(s)计算出用于控制第一空气舵的第一控制器的频率响应函数WG1(s),以及所述姿态通道内的第二空气舵的控制器的频率响应函数WG2(s),具体包括:
计算出所述虚拟控制器的开环传递特性
使得第一空气舵的控制器与第二空气舵的控制器的控制回路的开环传递特性WOpen(s)与一致后,通过设定的低通滤波器的频率响应函数WLP(s),得到WG(s)的高频部分WG1(s)和低频部分W′G2(s),进而根据W′G2(s)得到WG2(s)。
5.如权利要求3或4所述的方法,其特征在于,所述WLP(s)具体为:
W LP ( s ) = m s + m
其中,m为设定的数值,s为频率。
6.一种飞行器姿态通道内的控制器,其特征在于,包括:
第一控制器,用于控制所述姿态通道内的第一空气舵,其频率响应函数为WG1(s);
第二控制器,用于控制所述姿态通道内的第二空气舵,其频率响应函数为WG2(s);其中,
WG1(s)=[1-WLP(s)]×WG(s)
W G 2 = ( s ) = 1 k · W SF 1 ( s ) W SF 2 ( s ) · W LP ( s ) · W G ( s )
其中,WSF1(s)为第一空气舵的伺服系统的频率响应函数;WSF2(s)为第二空气舵的伺服系统的频率响应函数;k为第二空气舵的频率响应函数与第一空气舵的频率响应函数的比例;WLP(s)为设定的低通滤波器的频率响应函数。
7.如权利要求6所述的控制器,其特征在于,所述WG1(s)、WG2(s)是根据如下方法设计出的:
将所述姿态通道内的第一空气舵的频率响应函数、第一空气舵的伺服系统的频率响应函数,分别作为虚拟的被控对象的频率响应函数Wδ(s)、虚拟的被控对象的伺服系统的频率响应函数WSF(s);
根据Wδ(s)、WSF(s)设计出虚拟控制器的频率响应函数WG(s);
根据WG(s)计算出WG1(s)、WG2(s)。
8.如权利要求6或7所述的控制器,其特征在于,所述WLP(s)具体为:
W LP ( s ) = m s + m
其中,m为设定的数值,s为频率。
CN201410389938.7A 2014-08-08 2014-08-08 飞行器姿态通道内的控制器及其设计方法 Expired - Fee Related CN104155984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410389938.7A CN104155984B (zh) 2014-08-08 2014-08-08 飞行器姿态通道内的控制器及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410389938.7A CN104155984B (zh) 2014-08-08 2014-08-08 飞行器姿态通道内的控制器及其设计方法

Publications (2)

Publication Number Publication Date
CN104155984A CN104155984A (zh) 2014-11-19
CN104155984B true CN104155984B (zh) 2015-05-20

Family

ID=51881508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410389938.7A Expired - Fee Related CN104155984B (zh) 2014-08-08 2014-08-08 飞行器姿态通道内的控制器及其设计方法

Country Status (1)

Country Link
CN (1) CN104155984B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339404A (zh) * 2008-08-07 2009-01-07 北京航空航天大学 飞行器姿态动力学简化模型增益切换比例-微分控制的设计方法
CN103197670A (zh) * 2013-02-25 2013-07-10 西北工业大学 飞行器气动强耦合解耦方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE04786134T1 (de) * 2004-07-29 2007-10-18 Bell Helicopter Textron, Inc., Fort Worth Verfahren und vorrichtung zur flugsteuerung von kipprotorflugzeugen
JP4240112B2 (ja) * 2006-11-13 2009-03-18 トヨタ自動車株式会社 垂直離着陸機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339404A (zh) * 2008-08-07 2009-01-07 北京航空航天大学 飞行器姿态动力学简化模型增益切换比例-微分控制的设计方法
CN103197670A (zh) * 2013-02-25 2013-07-10 西北工业大学 飞行器气动强耦合解耦方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鹿存侃,马骏,闫杰.基于QFT的高超声速飞行器鲁棒控制器设计.《系统仿真学报》.2010,第22卷(第3期),第695-698、703页. *

Also Published As

Publication number Publication date
CN104155984A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
CN106997208B (zh) 一种面向不确定条件下的高超声速飞行器的控制方法
CN104252133A (zh) 一种无人机纵向控制律平滑切换方法
Xin et al. Missile longitudinal autopilot design using a new suboptimal nonlinear control method
Griffin et al. Aero-Spaceplane mission performance estimations incorporating atmospheric control limits
Cordeiro et al. Robustness of incremental backstepping flight controllers: The boeing 747 case study
CN103809446B (zh) 飞行器多回路模型簇颤振抑制复合频率鲁棒控制器设计方法
CN104155984B (zh) 飞行器姿态通道内的控制器及其设计方法
CN116679727A (zh) 折叠翼式跨介质航行器的出水控制方法
Lawrence et al. The development of a large civil tiltrotor simulation for hover and low-speed handling qualities investigations
Brown et al. Optimal sizing and configurations of the control surfaces for active aeroelastic control
CN103777523B (zh) 飞行器多回路模型簇复合pid鲁棒控制器设计方法
CN114200829A (zh) 一种超音速大机动靶标基于伪闭环的高精度速度控制方法
CN103809442B (zh) 飞行器多回路模型簇复合频率鲁棒控制器设计方法
Nieto-Wire et al. Flight control design for a tailless aircraft using eigenstructure assignment
CN103809433B (zh) 飞行器多回路模型簇复合根轨迹多级pid鲁棒控制器设计方法
Sobron Design and Testing of a Flight Control System for Unstable Subscale Aircraft
Nieto-Wire et al. Eigenstructure assignment for a tailless aircraft
Fan et al. Generalized control coupling effect of spinning guided projectiles
CN103809449B (zh) 飞行器多回路模型簇颤振抑制复合pid鲁棒控制器设计方法
Atesoglu et al. High-alpha flight maneuverability enhancement of a fighter aircraft using thrust-vectoring control
Oda et al. Robust CLOS Guidance and Control: Part-2: Scalar H∞ Autopilot Synthesis
CN103823367B (zh) 纵向飞行模型簇颤振抑制复合频率鲁棒控制器设计方法
CN103823376B (zh) 纵向飞行模型簇复合pid控制器设计方法
Moorhouse et al. The control system design methodology of the STOL and Manoeuvre Technology Demonstrator
Moreno et al. Model reduction of flexible aircraft for flutter suppression using smart sensors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150520

Termination date: 20200808

CF01 Termination of patent right due to non-payment of annual fee