CN104155693A - Angle gather seismic response numerical computation method of reservoir fluid fluidity - Google Patents
Angle gather seismic response numerical computation method of reservoir fluid fluidity Download PDFInfo
- Publication number
- CN104155693A CN104155693A CN201410432577.XA CN201410432577A CN104155693A CN 104155693 A CN104155693 A CN 104155693A CN 201410432577 A CN201410432577 A CN 201410432577A CN 104155693 A CN104155693 A CN 104155693A
- Authority
- CN
- China
- Prior art keywords
- angle
- seismic
- reservoir
- fluid mobility
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 123
- 230000004044 response Effects 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title description 12
- 238000004364 calculation method Methods 0.000 claims abstract description 33
- 230000001419 dependent effect Effects 0.000 claims abstract description 29
- 239000006185 dispersion Substances 0.000 claims abstract description 12
- 239000011435 rock Substances 0.000 claims abstract description 10
- 239000011148 porous material Substances 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 9
- 230000035699 permeability Effects 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000005755 formation reaction Methods 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000003208 petroleum Substances 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 29
- 239000007789 gas Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- LOYTUFQOTJYLPX-UHFFFAOYSA-N C1=CC=[Si]C=C1 Chemical compound C1=CC=[Si]C=C1 LOYTUFQOTJYLPX-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
储层流体流度的角道集地震响应数值计算方法是一种石油地震勘探数据处理与解释技术,它实现了储层流体流度的叠前角道集地震正演。首先利用岩石物理学、含流体介质的孔弹性理论,对测井数据或合成地质模型,计算各层段的频率相关性纵横波速度参数,获得包含不同流体流度的储层物理参数地质模型,再利用二维角度-频率域AVO地震反射系数分布公式,获得随入射角度和频率同时变化的入射角度-频率域AVO反射系数分布模型,然后,利用标量弥散粘滞方程进行地震波场的正演计算,获得叠前角道集数据,可用于刻画储层流体流度对叠前角道集中地震响应的影响及其对应关系,为油气地震勘探中储层的油气识别提供更加可靠的指导。
The angle gather seismic response numerical calculation method of reservoir fluid mobility is a petroleum seismic exploration data processing and interpretation technology, which realizes the prestack angle gather seismic forward modeling of reservoir fluid mobility. Firstly, using rock physics and poroelasticity theory of fluid-containing media, the log data or synthetic geological model is used to calculate the frequency-dependent P- and S-wave velocity parameters of each interval to obtain a geological model of reservoir physical parameters including different fluid mobility. Then use the two-dimensional angle-frequency domain AVO seismic reflection coefficient distribution formula to obtain the incident angle-frequency domain AVO reflection coefficient distribution model that changes with the incident angle and frequency simultaneously, and then use the scalar dispersion viscosity equation to carry out the forward modeling calculation of the seismic wave field , to obtain pre-stack angle gather data, which can be used to describe the influence of reservoir fluid mobility on the seismic response of pre-stack angle gather and its corresponding relationship, and provide more reliable guidance for oil and gas identification of reservoirs in oil and gas seismic exploration.
Description
技术领域technical field
本发明涉及石油地震勘探数据处理与解释领域,是一种利用岩石物理学、含流体介质的孔弹性理论与波动方程方法,实现储层流体流度的叠前角道集地震正演,用于描述含流体储层流度在叠前角道集上的地震响应特征和规律,为油气地震勘探中储层流体识别提供指导的技术。The invention relates to the field of petroleum seismic exploration data processing and interpretation. It is a method of using rock physics, poroelasticity theory of fluid-containing medium and wave equation method to realize pre-stack angle gather seismic forward modeling of reservoir fluid fluidity, which is used to describe The seismic response characteristics and laws of fluid-bearing reservoir mobility on pre-stack angle gathers provide guidance for reservoir fluid identification in oil and gas seismic exploration.
背景技术Background technique
储层流体流度是反映孔隙介质中流体流动性的物理参数,定义为储层渗透率与孔隙流体粘度的比值,它反映了储层岩石骨架中孔隙结构的渗透性(或连通性)和孔隙流体的类型、粘度、饱和度的共同作用,因此,储层流体流度对于确定储层岩石的弹性参数、内部结构和含流体性质等具有重要意义,利用数值计算方法分析储层流体流度在叠前角道集上的地震响应特征,可以指导实际勘探中储层流体流度参数的反演,为油气地震勘探提供更加可靠的技术支持。Reservoir fluid mobility is a physical parameter reflecting fluid mobility in porous media, defined as the ratio of reservoir permeability to pore fluid viscosity, which reflects the permeability (or connectivity) and pore structure of the pore structure in the rock skeleton of the reservoir. Fluid type, viscosity, and saturation. Therefore, reservoir fluid mobility is of great significance for determining the elastic parameters, internal structure and fluid-containing properties of reservoir rocks. Numerical calculation methods are used to analyze reservoir fluid mobility in The seismic response characteristics on prestack angle gathers can guide the inversion of reservoir fluid mobility parameters in actual exploration, and provide more reliable technical support for oil and gas seismic exploration.
孔隙介质中的流体可引起显著的地震衰减与频散异常,而地震波所激发的孔隙流体流动(wave-induced fluid flow——WIFF)是引起地震衰减与频散的重要原因(Chapman,2003;Maultzsch et al.,2003;Chapman&Odebeatu,2005;2006;Müller,2010),目前,进行含流体孔隙介质弹性参数与地震记录的数值模拟的主要工作如下:利用基于Biot孔弹性理论的数值方法对部分饱和薄层模型的速度频散和衰减进行数值分析(Carione&Picotti,2006),或利用类似方法在孔弹性互层模型上进行数值分析,并通过有限元法获得其地震响应(Quintal et al,2012);以滤波理论为基础推导的渗透地层依赖频率的低频地震反射系数,可反映储层流体流度的作用(Silin&Goloshubin,2010);利用局部喷射流理论计算单层模型依赖频率的反射系数,同时考虑了含流体储层的地震谱响应和AVO特征(Chapman和Odebeatu等,2006)。Fluid in porous media can cause significant seismic attenuation and dispersion anomalies, and the pore fluid flow (wave-induced fluid flow—WIFF) excited by seismic waves is an important cause of seismic attenuation and dispersion (Chapman, 2003; Maultzsch et al., 2003; Chapman&Odebeatu, 2005; 2006; Müller, 2010), at present, the main work on the numerical simulation of the elastic parameters of fluid-containing porous media and seismic records is as follows: using the numerical method based on Biot’s poroelasticity theory to simulate the partially saturated thin Numerical analysis of the velocity dispersion and attenuation of the layer model (Carione & Picotti, 2006), or use similar methods to perform numerical analysis on the poroelastic interlayer model, and obtain its seismic response through the finite element method (Quintal et al, 2012); The frequency-dependent low-frequency seismic reflection coefficient of permeable formations derived based on filtering theory can reflect the effect of reservoir fluid mobility (Silin & Goloshubin, 2010); the frequency-dependent reflection coefficient of a single-layer model is calculated using the local jet flow theory, and the Seismic Spectral Response and AVO Characterization of Fluid Reservoirs (Chapman and Odebeatu et al., 2006).
由于储层流体流度与地震振幅随炮检距的变化(即Amplitude Versus Offset——AVO)两者存在相互关联和复杂的共同作用,从而在油气储层的叠前角道集上表现出独特的地震响应特征和规律,然而,如何模拟和刻画储层流体流度在叠前角道集上的地震响应,目前尚缺乏系统的数值计算方法,而这是研究储层流体流度在叠前角道集上的频散和衰减等地震异常特征、指导实际地震叠前角道集上储层流体流度参数反演,实现储层描述和流体检测的重要基础工作。Due to the interrelated and complicated interaction between the reservoir fluid mobility and the variation of seismic amplitude with offset (namely, Amplitude Versus Offset—AVO), it shows a unique feature in the pre-stack angle gather of oil and gas reservoirs. Seismic response characteristics and laws, however, how to simulate and characterize the seismic response of reservoir fluid mobility on the pre-stack angle gathers, there is still a lack of systematic numerical calculation methods, and this is the study of reservoir fluid mobility in the pre-stack angle gathers The seismic anomaly characteristics such as dispersion and attenuation on the seismic prestack angle gather guide the inversion of reservoir fluid mobility parameters on the actual seismic prestack angle gather, and realize the important basic work of reservoir description and fluid detection.
发明内容Contents of the invention
本发明是要提供一种综合利用岩石物理、含流体介质的孔弹性理论和波动方程方法,实现储层流体流度叠前角道集地震正演数值计算的技术,它能用于研究储层流体流度在叠前角道集上的频散和衰减等地震异常特征和规律,指导实际地震叠角道集上储层流体流度参数反演,为油气地震勘探中储层流体识别提供支持。The present invention is to provide a comprehensive utilization of rock physics, poroelasticity theory of fluid-containing medium and wave equation method to realize reservoir fluid fluid pre-stack angle gather seismic forward numerical calculation technology, which can be used to study reservoir fluid The characteristics and laws of seismic anomalies such as dispersion and attenuation of mobility on prestack angle gathers guide the inversion of reservoir fluid mobility parameters on actual seismic stack angle gathers and provide support for reservoir fluid identification in oil and gas seismic exploration.
本发明的储层流体流度的角道集地震响应数值计算方法,首先综合利用岩石物理数据、测井曲线、测井解释数据、地质、地震和开发数据等,建立包含不同流体流度的储层物理参数地质模型,使地质模型更接近真实储层的地质与地球物理特征。The angle gather seismic response numerical calculation method of the reservoir fluid mobility of the present invention first comprehensively utilizes petrophysical data, logging curves, logging interpretation data, geology, seismic and development data, etc., to establish reservoirs containing different fluid mobility The physical parameter geological model makes the geological model closer to the geological and geophysical characteristics of real reservoirs.
本发明的储层流体流度的角道集地震响应数值计算方法,采用动态等效介质理论,计算包含不同流体流度的储层物理参数地质模型的频率相关弹性张量矩阵,进而获得各地层的频率相关纵横速度参数,有效刻画油气储层的纵横波速度等参数随流体流度和频率共同变化的物理规律,使储层流体流度与依赖频率的地震频散和衰减特征建立了直接的对应关系。The angle gather seismic response numerical calculation method of the reservoir fluid mobility of the present invention adopts the dynamic equivalent medium theory to calculate the frequency-dependent elastic tensor matrix of the reservoir physical parameter geological model including different fluid mobility, and then obtains the The frequency-dependent vertical and horizontal velocity parameters effectively describe the physical law that the parameters such as the compressional and shear wave velocity of oil and gas reservoirs change with the fluid mobility and frequency, and establish a direct correspondence between the reservoir fluid mobility and the frequency-dependent seismic dispersion and attenuation characteristics relation.
本发明的储层流体流度的角道集地震响应数值计算方法,将常规的AVO反射系数公式拓展至入射角度-频率域,建立频率相关AVO反射系数分布公式,通过该公式,可以利用频率相关纵横速度参数计算各层反射界面的频率相关AVO反射系数分布,从而能反映二维角度-频率平面中,地震反射系数随不同入射角度和频率的共同变化。The angle gather seismic response numerical calculation method of the reservoir fluid fluidity of the present invention extends the conventional AVO reflection coefficient formula to the incident angle-frequency domain, and establishes a frequency-dependent AVO reflection coefficient distribution formula. Through this formula, the frequency-dependent vertical and horizontal The velocity parameter calculates the frequency-dependent AVO reflection coefficient distribution of the reflection interface of each layer, so as to reflect the joint change of the seismic reflection coefficient with different incident angles and frequencies in the two-dimensional angle-frequency plane.
本发明的储层流体流度的角道集地震响应数值计算方法,采用考虑了储层流体弥散性、流体粘度的波动方程实现,生成包含频率相关特性的地震叠前角道集,使地震叠前角道集中的地震波场充分反映了流体流度的作用和贡献,可以刻画油气储层依赖频率的频散和衰减等特征。The angle gather seismic response numerical calculation method of reservoir fluid fluidity of the present invention adopts the wave equation that considers reservoir fluid dispersion and fluid viscosity to realize, and generates seismic prestack angle gathers including frequency-dependent characteristics, so that seismic prestack angle gathers The concentrated seismic wave field fully reflects the role and contribution of fluid mobility, and can describe the characteristics of frequency-dependent dispersion and attenuation of oil and gas reservoirs.
本发明的储层流体流度的角道集地震响应数值计算方法,具有如下优越性:The angle gather seismic response numerical calculation method of reservoir fluid fluidity of the present invention has the following advantages:
⑴建立了二维角度-频率域频率相关性AVO反射系数分布公式,利用动态等效介质理论和频率相关性AVO反射系数分布的计算方法,获得储层物理参数地质模型,使它能体现频率相关性和入射角度的共同作用与贡献,更加符合油气储层的地球物理客观规律;(1) Established a two-dimensional angle-frequency domain frequency-dependent AVO reflection coefficient distribution formula, and used the dynamic equivalent medium theory and the calculation method of frequency-dependent AVO reflection coefficient distribution to obtain a geological model of reservoir physical parameters so that it can reflect frequency correlation The combined effect and contribution of the natural gas and incident angle are more in line with the objective laws of geophysics of oil and gas reservoirs;
⑵利用标量弥散粘滞方程的波场延拓进行地震正演的数值计算,使生成的叠前角道集能包含与储层孔隙流体流度特征有关的地震波场信息,有利于分析流体流度对地震响应的影响及其作用机理;(2) Using the wave field continuation of the scalar dispersion-viscosity equation to carry out the numerical calculation of seismic forward modeling, the generated pre-stack angle gather can contain the seismic wave field information related to the mobility characteristics of reservoir pore fluids, which is beneficial to the analysis of the impact of fluid mobility on The impact of earthquake response and its mechanism of action;
⑶生成的频率相关性叠前角道集主要反映地震纵波信息,无转换波和层间多次波的干扰和影响,同时不存在因动校拉抻在叠前角道集上造成的低频效应的干扰,有利于准确确定油气储层流体流度对叠前角道集中地震响应的作用及对应关系。(3) The generated frequency-dependent pre-stack angle gathers mainly reflect the seismic longitudinal wave information, without the interference and influence of converted waves and interlayer multiple waves, and there is no interference of low-frequency effects caused by dynamic correction and stretching on the pre-stack angle gathers , which is helpful to accurately determine the effect and corresponding relationship of fluid mobility in oil and gas reservoirs on the seismic response in prestack angle gathers.
本发明的具体实现原理如下:Concrete realization principle of the present invention is as follows:
首先导入包含纵横波速度、密度、孔隙度等参数的测井曲线,测井解释的各层段流体类型及饱和度参数,计算储层孔隙流体的粘度,结合岩芯和岩石物理信息,如渗透率、岩石颗粒尺寸、孔隙扁率、裂缝密度和长度等数据,计算储层流体流度(用渗透率除以孔隙流体的粘度,单位为m4/(N·s),其中m为米,N为牛顿,s为秒)。利用动态等效介质理论(Chapman等,2003),计算各层段的频率相关性弹性张量矩阵,进而获得各层段的频率相关性纵横波速度,从而使各地层的弹性参数体现了流体流度的作用和贡献。First, import the logging curves including parameters such as compressional and shear wave velocity, density, porosity, etc., the fluid type and saturation parameters of each interval interpreted by the logging, calculate the viscosity of the reservoir pore fluid, and combine the core and petrophysical information, such as permeability Permeability, rock particle size, pore flatness, fracture density and length, etc., to calculate the reservoir fluid mobility (dividing the permeability by the viscosity of the pore fluid, the unit is m 4 /(N·s), where m is meter, N is Newton, s is second). Using the dynamic equivalent medium theory (Chapman et al., 2003), calculate the frequency-dependent elastic tensor matrix of each layer, and then obtain the frequency-dependent P-wave velocity of each layer, so that the elastic parameters of each layer reflect the fluid flow role and contribution.
基于Chapman动态等效介质理论(Chapman等,2003),首先构建频率相关性弹性张量矩阵C(f),该矩阵的元素Cijkl按如下计算:Based on Chapman's dynamic equivalent medium theory (Chapman et al., 2003), the frequency-dependent elastic tensor matrix C(f) is constructed first, and the elements C ijkl of the matrix are calculated as follows:
其中,C0是弹性张量矩阵的各向同性背景弹性张量,C1、C2和C3分别为与岩石孔隙度φp、裂隙密度εc和裂缝密度εf对应的弹性张量校正量。where C 0 is the isotropic background elastic tensor of the elastic tensor matrix, C 1 , C 2 and C 3 are the elastic tensor corrections corresponding to rock porosity φ p , fracture density ε c and fracture density ε f quantity.
利用上述测井曲线中的已有参数,如纵波横波速度(已知测量的频率f0)和密度ρ、岩石孔隙度φp和裂隙密度εc、流体流度参数计算已知频率的初始背景弹性张量C0(Λ,Μ),其中弹性常数Λ和Μ如下计算Utilize the existing parameters in the above logging curves, such as P-wave and S-wave velocity (the measured frequency f 0 is known) and density ρ, rock porosity φ p and fracture density ε c , fluid mobility parameters to calculate the initial background elastic tensor C 0 (Λ,Μ) of known frequency, where the elastic constants Λ and M are calculated as follows
Λ=λ0+φp(λ0,μ0,f0)+εc(λ0,μ0,f0),Λ=λ 0 +φ p (λ 0 ,μ 0 ,f 0 )+ε c (λ 0 ,μ 0 ,f 0 ),
Μ=μ0+φp(λ0,μ0,f0)+εc(λ0,μ0,f0)Μ=μ 0 +φ p (λ 0 ,μ 0 ,f 0 )+ε c (λ 0 ,μ 0 ,f 0 )
其中
其中,f为频率。Among them, f is the frequency.
得到考虑了储层流体流度特征的频率相关性弹性张量矩阵C(f),继而可以据此计算频率相关性纵横波速度vp(f)和vs(f)。The frequency-dependent elastic tensor matrix C(f) considering the reservoir fluid mobility characteristics is obtained, and then the frequency-dependent P-s wave velocities v p (f) and v s (f) can be calculated accordingly.
计算二维入射角度-频率域的AVO反射系数分布,是在Wiggins等人(1983)的纵波AVO反射系数近似公式的基础上,将其拓展至角度-频率域,建立角度-频率域AVO反射系数分布计算公式如下:The calculation of the distribution of the AVO reflection coefficient in the two-dimensional incident angle-frequency domain is based on the approximate formula of the longitudinal wave AVO reflection coefficient of Wiggins et al. The distribution calculation formula is as follows:
R(f,θ)=A(f)+B(f)sin2θ+C(f)tan2θsin2θR(f,θ)=A(f)+B(f)sin 2 θ+C(f)tan 2 θsin 2 θ
其中:in:
其中R(f,θ)为二维角度-频率域AVO反射系数分布,θ和f分别为入射角度和频率,Vp(f)、VS(f)和ρ分别为反射界面上下层的频率相关性纵横波速度和密度的平均值,而ΔVP(f)、ΔVS(f)和Δρ则分别为反射界面上下层的频率相关性纵横波速度和密度的差值。where R(f,θ) is the two-dimensional angle-frequency domain AVO reflection coefficient distribution, θ and f are the incident angle and frequency, respectively, V p (f), V S (f) and ρ are the frequencies of the upper and lower layers of the reflection interface ΔV P (f), ΔV S (f) and Δρ are the difference values of the frequency-dependent P- and S-wave velocities and densities of the upper and lower layers of the reflecting interface, respectively.
叠前角道集的地震正演数值计算,是通过波动方程延拓计算,采用如下标量弥散粘滞方程实现:The numerical calculation of seismic forward modeling of prestack angle gathers is carried out through the continuation calculation of the wave equation, and the following scalar dispersion-viscosity equation is used to realize:
其中,u为位移,ζ是弥散衰减参数,η是流体粘度,v为波的传播速度。该方程的计算采用频率-波数域波场的相移延拓实现:Among them, u is the displacement, ζ is the dispersion attenuation parameter, η is the fluid viscosity, and v is the wave propagation velocity. The calculation of this equation is realized by the phase-shift continuation of the wave field in the frequency-wavenumber domain:
其中,角频率ω=2πf,z为深度,Δz为深度延拓的步长,垂直波数kz的按如下公式计算:Among them, the angular frequency ω=2πf, z is the depth, Δz is the step size of depth extension, and the vertical wave number k z is calculated according to the following formula:
将包含不同流体流度的储层物理参数地质模型的AVO反射系数分布与各层频率相关性纵波速度作为上述标量弥散粘滞方程的输入,通过波场延拓的数值计算,即可获得储层流体流度的角道集,用于流体流度的叠前地震响应特征分析。The AVO reflection coefficient distribution of the reservoir physical parameter geological model containing different fluid mobility and the frequency-dependent P-wave velocity of each layer are used as the input of the above scalar dispersion-viscosity equation, and the reservoir can be obtained by numerical calculation of wave field continuation The angle gather of fluid mobility is used for the analysis of prestack seismic response characteristics of fluid mobility.
附图说明Description of drawings
图1是设计的储层流体流度地质模型,其中第一、三层为不含流体的泥岩,第二层为含流体孔隙砂岩层。第一层的厚度为248米、纵波速度2755米/秒、横波速度1402米/秒、密度2.07克/立方厘米;第二层的厚度为90米、纵波速度2830米/秒、横波速度1470米/秒、密度2.09克/立方厘米、孔隙度25%;第三层的厚度为172米、纵波速度2975米/秒、横波速度1595米/秒、密度2.2克/立方厘米。Fig. 1 is the designed geological model of reservoir fluid mobility, in which the first and third layers are mudstone without fluid, and the second layer is sandstone layer with fluid pores. The thickness of the first layer is 248 meters, the longitudinal wave speed is 2755 m/s, the shear wave speed is 1402 m/s, and the density is 2.07 g/cubic centimeter; the thickness of the second layer is 90 meters, the longitudinal wave speed is 2830 m/s, and the shear wave speed is 1470 meters /s, density 2.09 g/cubic centimeter, porosity 25%; the thickness of the third layer is 172 meters, longitudinal wave velocity 2975 m/s, shear wave velocity 1595 m/s, density 2.2 g/cubic centimeter.
图2是与图1地质模型对应的,当第二层含流体孔隙砂岩层的流体流度相对较低时,此时流体流度为7.8×10-11m4/(N·s),本发明的地震正演数值计算得到的叠前角道集剖面及其全角度叠加剖面。其中:(a)为叠前角道集剖面,(b)为全角度叠加地震道。Fig. 2 is corresponding to the geological model in Fig. 1. When the fluid mobility of the second fluid-bearing porous sandstone layer is relatively low, the fluid mobility is 7.8×10 -11 m 4 /(N·s). The pre-stack angle gather section and its full-angle stack section obtained by the invented seismic forward modeling numerical calculation. Among them: (a) is the pre-stack angle gather section, (b) is the full-angle stacked seismic trace.
图3是与图1地质模型对应的,当第二层含流体孔隙砂岩层的流体流度相对较高,此时流体流度为1.95×10-9m4/(N·s),本发明的地震正演数值计算得到的叠前角道集剖面及其全角度叠加剖面。其中:(a)为叠前角道集剖面,(b)为全角度叠加地震道。Fig. 3 is corresponding to the geological model in Fig. 1, when the fluid mobility of the second fluid-containing porous sandstone layer is relatively high, the fluid mobility is 1.95×10 -9 m 4 /(N·s) at this time, the present invention The pre-stack angle gather profile and its full-angle stack profile obtained by seismic forward modeling numerical calculation. Among them: (a) is the pre-stack angle gather section, (b) is the full-angle stacked seismic trace.
图4是与图2对应的,利用一种基于地震资料的储层流体流度反演方法(陈学华等,2012)对图2中的剖面计算得到的储层流体流度属性;利用同样方法计算。Fig. 4 is corresponding to Fig. 2, using a reservoir fluid mobility inversion method based on seismic data (Chen Xuehua et al., 2012) to calculate the reservoir fluid mobility attributes for the section in Fig. 2; using the same method to calculate .
图5是与图3对应的储层流体流度属性。FIG. 5 is the reservoir fluid mobility properties corresponding to FIG. 3 .
具体实施方式Detailed ways
本发明的具体实施方式如下:⑴输入包含纵横波速度、密度、孔隙度等参数的测井数据,以及测井解释的各层段流体类型及饱和度参数,计算储层孔隙流体的粘度,结合岩芯和岩石物理信息,如渗透率、岩石颗粒尺寸、孔隙扁率、裂缝密度和长度等数据,计算储层流体流度;⑵利用动态等效介质理论,计算各层段频率相关性弹性张量矩阵的各个元素,然后以此计算各层段的频率相关性纵横波速度参数,在设定的深度范围内,沿测井深度方向逐点计算直至指定层段的所有采样点计算完毕,获得包含不同流体流度的储层物理参数地质模型;⑶利用二维角度-频率域AVO反射系数分布公式,对各层段的频率相关性纵横波速度和密度,沿储层物理参数地质模型的深度方向逐点计算入射角度-频率域AVO反射系数分布,获得各层段的随频率和入射角度同时变化的角度-频率域AVO反射系数分布模型;⑷利用标量弥散粘滞方程,对包含不同流体流度的储层物理参数地质模型和角度-频率域AVO反射系数分布模型进行叠前地震波场的正演计算,获得叠前角道集数据。⑸利用地震数据成图软件,将生成的叠前道集数据转化成剖面图像或进行可视化显示,或利用叠前角道集数据分析指定层段的储层流体流度对叠前角道集中地震响应的影响及其对应关系。The specific embodiment of the present invention is as follows: (1) input the well logging data that comprises parameters such as compressional and shear wave velocity, density, porosity, and the fluid type and the saturation parameter of each section section that well logging interprets, calculate the viscosity of reservoir pore fluid, combine Core and petrophysical information, such as permeability, rock particle size, pore flatness, fracture density and length, etc., to calculate reservoir fluid mobility; (2) Using dynamic equivalent medium theory, to calculate frequency-dependent elastic tension of each interval Each element of the measurement matrix is used to calculate the frequency-dependent P-s wave velocity parameters of each interval. Within the set depth range, the calculation is performed point by point along the logging depth direction until all the sampling points of the specified interval are calculated, and the obtained Reservoir physical parameter geological model including different fluid mobility; (3) Using the two-dimensional angle-frequency domain AVO reflection coefficient distribution formula, the frequency-dependent P-s wave velocity and density of each layer, along the depth of the reservoir physical parameter geological model Calculate the incident angle-frequency domain AVO reflection coefficient distribution point by point in the direction, and obtain the angle-frequency domain AVO reflection coefficient distribution model of each layer that changes with frequency and incident angle at the same time; Forward modeling calculation of pre-stack seismic wave field is carried out using the geologic model of reservoir physical parameters and angle-frequency domain AVO reflection coefficient distribution model to obtain pre-stack angle gather data. (5) Use seismic data mapping software to convert the generated pre-stack gather data into section images or visualize them, or use pre-stack angle gather data to analyze the relationship between reservoir fluid mobility in specified intervals and the seismic response in pre-stack angle gathers effects and their relationships.
本发明的实施实例说明:Implementation examples of the present invention illustrate:
图1是设计的储层流体流度地质模型(具体物理参数见上述附图说明),图2是当给定该模型第二层的含流体孔隙砂岩的流体流度相对较低时,利用本发明的储层流体流度的角道集地震响应数值计算方法获得的叠前角道集(图2a)及其全角度叠加地震道(图2b)。从图2a中可见,含流体孔隙砂岩的顶、底均为正的反射同相轴,且振幅随入射角度增加而减小,而底部反射同相轴的频率比顶部的低,说明地震波出现了衰减。图3是与图1对应的,当给定图1模型第二层的含流体孔隙砂岩的流体流度相对较高时,利用本发明的储层流体流度的角道集地震响应数值计算方法获得的叠前角道集(图3a)及其全角度叠加地震道(图3b),从图3a中可见,含流体砂岩层顶部为正的反射同相,其振幅随入射角度增加而略有降低,但其底部反射同相轴均出现了明显的相位畸变,说明出现了明显的地震频散,尤其在入射角大于25度的地震道中更为显著,且底部反射同相轴的频率明显低于顶部的反射同相轴,说明地震波出现了衰减,在图3b中也可观察到含流体孔隙砂岩层底部明显的相位畸变特征。另外,对比图2和图3可见,在两者的流体流度不同的情况下,含流体孔隙砂岩层顶、底反射同相轴均显示了不同的特征,图2的含流体孔隙砂岩层底部反射比图3的明显下移,而图3的相位畸变更明显、频率也更低。因此,图2和图3说明本发明的储层流体流度的角道集地震响应数值计算方法,能模拟和反映不同储层流体流度情况下,叠前角道集中地震响应的不同特征和规律,有效刻画储层流体流度变化时,随入射角变化的地震响应的异常特征。Fig. 1 is the designed geological model of reservoir fluid mobility (see the above description for the specific physical parameters), and Fig. 2 is when the fluid mobility of the fluid-containing porous sandstone in the second layer of the model is relatively low, using this The pre-stack angle gather (Fig. 2a) and its full-angle stacked seismic trace (Fig. 2b) obtained by the invented numerical calculation method of angular gather seismic response of reservoir fluid mobility. It can be seen from Fig. 2a that both the top and bottom of the fluid-bearing porous sandstone have positive reflection events, and the amplitude decreases with the increase of the incident angle, while the frequency of the reflection event at the bottom is lower than that at the top, indicating that seismic waves have attenuated. Fig. 3 corresponds to Fig. 1. When the fluid mobility of the fluid-containing porous sandstone in the second layer of the model shown in Fig. 1 is relatively high, it is obtained by using the method for numerical calculation of angular gather seismic response of reservoir fluid mobility according to the present invention The pre-stack angle gather (Fig. 3a) and its full-angle stacked seismic trace (Fig. 3b). It can be seen from Fig. 3a that the top of the fluid-bearing sandstone layer is in phase with positive reflection, and its amplitude decreases slightly with the increase of incident angle, but The reflection events at the bottom have obvious phase distortion, which indicates that there is obvious seismic dispersion, especially in the seismic traces with an incident angle greater than 25 degrees, and the frequency of the reflection events at the bottom is obviously lower than that at the top. axis, indicating that the seismic wave has attenuated, and the obvious phase distortion feature at the bottom of the fluid-containing porous sandstone layer can also be observed in Fig. 3b. In addition, comparing Figures 2 and 3, it can be seen that when the fluid mobility of the two is different, the top and bottom reflection events of the fluid-containing porous sandstone layer show different features, and the bottom reflection of the fluid-containing porous sandstone layer in Figure 2 Compared with Figure 3, the phase distortion is more obvious and the frequency is lower. Therefore, Fig. 2 and Fig. 3 illustrate the angle gather seismic response numerical calculation method of the reservoir fluid fluidity of the present invention, can simulate and reflect the different characteristics and rules of the seismic response in the pre-stack angle gather under the situation of different reservoir fluid mobility, It can effectively describe the abnormal characteristics of the seismic response that changes with the incident angle when the fluid mobility of the reservoir changes.
图4、图5是分别利用图2和图3中的角道集数据计算的流体流度属性,该属性是利用一种基于地震资料的储层流体流度反演方法(陈学华等,2013)实现的,能提取与流体流度有关的储层参数,从图4和图5可见,第二层的含流体孔隙砂岩的流体流度属性均显示为相对的异常大值,而其上覆和下部的泥岩层的流体流度属性为零,这与初始储层参数地质模型相符;另外,对比图4和图5可见,图4中第二层含流体孔隙砂岩的流体流度属性明显低于图5,这与图2和图3在数值计算时的储层参数地质模型相符:即图2中第二层含流体孔隙砂岩的流体流度相对低、图3第二层含流体孔隙砂岩流体流度相对高。因此,图4和图5中的流体流度属性说明,本发明的储层流体流度的角道集地震响应数值计算方法能够准确可靠地模拟储层流体流度在叠前角道集中的地震响应及其异常特征。Fig. 4 and Fig. 5 are the fluid mobility attributes calculated by using the angle gather data in Fig. 2 and Fig. 3 respectively. This attribute is realized by using a reservoir fluid mobility inversion method based on seismic data (Chen Xuehua et al., 2013) It can extract the reservoir parameters related to fluid mobility. It can be seen from Fig. 4 and Fig. 5 that the fluid mobility properties of the fluid-bearing porous sandstone in the second layer all show relatively abnormally large values, while the overlying and lower The fluid mobility property of the mudstone layer is zero, which is consistent with the initial reservoir parameter geological model; in addition, comparing Fig. 4 and Fig. 5, it can be seen that the fluid mobility property of the second layer of fluid-bearing porous sandstone in Fig. 4 is obviously lower than that in Fig. 5, which is consistent with the geological model of the reservoir parameters in Figure 2 and Figure 3 in the numerical calculation: that is, the fluid mobility of the second layer of fluid-bearing pore sandstone in Figure 2 is relatively low, and the fluid flow of the second layer of fluid-bearing pore sandstone in Figure 3 Relatively high. Therefore, the fluid mobility attributes in Fig. 4 and Fig. 5 show that the numerical calculation method of the angular gather seismic response of reservoir fluid mobility in the present invention can accurately and reliably simulate the seismic response and its unusual features.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410432577.XA CN104155693A (en) | 2014-08-29 | 2014-08-29 | Angle gather seismic response numerical computation method of reservoir fluid fluidity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410432577.XA CN104155693A (en) | 2014-08-29 | 2014-08-29 | Angle gather seismic response numerical computation method of reservoir fluid fluidity |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104155693A true CN104155693A (en) | 2014-11-19 |
Family
ID=51881243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410432577.XA Pending CN104155693A (en) | 2014-08-29 | 2014-08-29 | Angle gather seismic response numerical computation method of reservoir fluid fluidity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104155693A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104597490A (en) * | 2015-01-28 | 2015-05-06 | 中国石油大学(北京) | Multi-wave AVO reservoir elastic parameter inversion method based on precise Zoeppritz equation |
CN104614763A (en) * | 2015-01-19 | 2015-05-13 | 中国石油大学(北京) | Method and system for inverting elastic parameters of multi-wave AVO reservoir based on reflectivity method |
CN104656136A (en) * | 2015-01-28 | 2015-05-27 | 成都理工大学 | Oil and gas reservoir low-frequency shadow recognition technology based on actual model seismic simulation guidance |
CN104714253A (en) * | 2015-03-30 | 2015-06-17 | 西安交通大学 | AVO/AVA analysis method based on dispersion viscosity wave equation |
CN105759310A (en) * | 2014-12-16 | 2016-07-13 | 中国石油化工股份有限公司 | Seismic wave attenuation and speed dispersion prediction method in complex heterogeneous reservoir medium |
CN105938203A (en) * | 2016-06-24 | 2016-09-14 | 中国石油天然气股份有限公司 | Reservoir characteristic detection method and device |
CN109343115A (en) * | 2018-11-21 | 2019-02-15 | 成都理工大学 | A gas-bearing reservoir characterization method based on logging constraints |
CN111562613A (en) * | 2020-04-15 | 2020-08-21 | 东华理工大学 | Analysis method of seismic wave frequency-dependent reflection coefficient of thin reservoir or inter-reservoir model |
CN112131714A (en) * | 2020-08-28 | 2020-12-25 | 中国石油天然气集团有限公司 | Shale matrix modulus calculation method and system |
CN112147675A (en) * | 2019-06-28 | 2020-12-29 | 中国石油天然气股份有限公司 | Reservoir fluid detection method and device |
CN113219536A (en) * | 2021-06-25 | 2021-08-06 | 成都理工大学 | Pre-stack seismic inversion method of longitudinal and transverse wave attenuation parameters depending on frequency |
CN115480312A (en) * | 2021-05-31 | 2022-12-16 | 中国石油化工股份有限公司 | Oil-gas-containing method for judging and identifying river facies complex superposed lithologic trap by applying multi-interface AVO (amplitude versus offset) characteristics |
CN116931080A (en) * | 2022-04-12 | 2023-10-24 | 中国石油化工股份有限公司 | Fluid property detection method based on prestack frequency variation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6269311B1 (en) * | 1999-10-13 | 2001-07-31 | The Regents Of The University Of California | Discrimination of porosity and fluid saturation using seismic velocity analysis |
US20040001388A1 (en) * | 2001-12-13 | 2004-01-01 | Baker Hughes Incorporated | Method of using electrical and acoustic anisotropy measurements for fracture identification |
CN101634716A (en) * | 2009-08-26 | 2010-01-27 | 中国石油大学(华东) | Fluid Elastic Impedance Inversion Technology |
CN102004263A (en) * | 2010-09-17 | 2011-04-06 | 中国石油大学(华东) | Angular part superposition seismic data-based fluid identification method |
CN103487831A (en) * | 2013-09-29 | 2014-01-01 | 中国石油集团川庆钻探工程有限公司地球物理勘探公司 | AVO earthquake forward modeling computing method |
-
2014
- 2014-08-29 CN CN201410432577.XA patent/CN104155693A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6269311B1 (en) * | 1999-10-13 | 2001-07-31 | The Regents Of The University Of California | Discrimination of porosity and fluid saturation using seismic velocity analysis |
US20040001388A1 (en) * | 2001-12-13 | 2004-01-01 | Baker Hughes Incorporated | Method of using electrical and acoustic anisotropy measurements for fracture identification |
CN101634716A (en) * | 2009-08-26 | 2010-01-27 | 中国石油大学(华东) | Fluid Elastic Impedance Inversion Technology |
CN102004263A (en) * | 2010-09-17 | 2011-04-06 | 中国石油大学(华东) | Angular part superposition seismic data-based fluid identification method |
CN103487831A (en) * | 2013-09-29 | 2014-01-01 | 中国石油集团川庆钻探工程有限公司地球物理勘探公司 | AVO earthquake forward modeling computing method |
Non-Patent Citations (1)
Title |
---|
CHEN XUE-HUA ECT.: "Seismic low-frequency-based calculation of reservoir fluid mobility and its applications", 《APPLIED GEOPHYSICS》 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105759310A (en) * | 2014-12-16 | 2016-07-13 | 中国石油化工股份有限公司 | Seismic wave attenuation and speed dispersion prediction method in complex heterogeneous reservoir medium |
CN105759310B (en) * | 2014-12-16 | 2018-05-08 | 中国石油化工股份有限公司 | The attenuation of seismic wave and velocity dispersion Forecasting Methodology in complicated heterogeneous reservoir medium |
CN104614763A (en) * | 2015-01-19 | 2015-05-13 | 中国石油大学(北京) | Method and system for inverting elastic parameters of multi-wave AVO reservoir based on reflectivity method |
CN104597490A (en) * | 2015-01-28 | 2015-05-06 | 中国石油大学(北京) | Multi-wave AVO reservoir elastic parameter inversion method based on precise Zoeppritz equation |
CN104656136A (en) * | 2015-01-28 | 2015-05-27 | 成都理工大学 | Oil and gas reservoir low-frequency shadow recognition technology based on actual model seismic simulation guidance |
CN104597490B (en) * | 2015-01-28 | 2018-07-06 | 中国石油大学(北京) | Multi-wave AVO reservoir elastic parameter inversion method based on accurate Zoeppritz equations |
CN104714253A (en) * | 2015-03-30 | 2015-06-17 | 西安交通大学 | AVO/AVA analysis method based on dispersion viscosity wave equation |
CN104714253B (en) * | 2015-03-30 | 2017-08-15 | 西安交通大学 | A kind of AVO/AVA analysis methods based on disperse viscosity wave equation |
CN105938203A (en) * | 2016-06-24 | 2016-09-14 | 中国石油天然气股份有限公司 | Reservoir characteristic detection method and device |
CN105938203B (en) * | 2016-06-24 | 2018-07-10 | 中国石油天然气股份有限公司 | Reservoir characteristic detection method and device |
CN109343115A (en) * | 2018-11-21 | 2019-02-15 | 成都理工大学 | A gas-bearing reservoir characterization method based on logging constraints |
US10802170B2 (en) | 2018-11-21 | 2020-10-13 | Chengdu University Of Technology | Method for characterizing gas-bearing reservoir based on logging constraint |
CN112147675A (en) * | 2019-06-28 | 2020-12-29 | 中国石油天然气股份有限公司 | Reservoir fluid detection method and device |
CN112147675B (en) * | 2019-06-28 | 2022-07-05 | 中国石油天然气股份有限公司 | Reservoir fluid detection method and device |
CN111562613A (en) * | 2020-04-15 | 2020-08-21 | 东华理工大学 | Analysis method of seismic wave frequency-dependent reflection coefficient of thin reservoir or inter-reservoir model |
CN111562613B (en) * | 2020-04-15 | 2023-03-31 | 东华理工大学 | Method for analyzing seismic wave frequency-dependent reflection coefficient of thin reservoir or mutual reservoir model |
CN112131714A (en) * | 2020-08-28 | 2020-12-25 | 中国石油天然气集团有限公司 | Shale matrix modulus calculation method and system |
CN115480312A (en) * | 2021-05-31 | 2022-12-16 | 中国石油化工股份有限公司 | Oil-gas-containing method for judging and identifying river facies complex superposed lithologic trap by applying multi-interface AVO (amplitude versus offset) characteristics |
CN115480312B (en) * | 2021-05-31 | 2024-09-06 | 中国石油化工股份有限公司 | Method for judging oil-gas-containing property of complex overlapped lithologic trap of river by using multi-interface AVO (automatic video object) characteristics |
CN113219536A (en) * | 2021-06-25 | 2021-08-06 | 成都理工大学 | Pre-stack seismic inversion method of longitudinal and transverse wave attenuation parameters depending on frequency |
CN113219536B (en) * | 2021-06-25 | 2022-03-01 | 成都理工大学 | Pre-stack seismic inversion method of longitudinal and transverse wave attenuation parameters depending on frequency |
CN116931080A (en) * | 2022-04-12 | 2023-10-24 | 中国石油化工股份有限公司 | Fluid property detection method based on prestack frequency variation |
CN116931080B (en) * | 2022-04-12 | 2024-06-11 | 中国石油化工股份有限公司 | Fluid property detection method based on prestack frequency variation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104155693A (en) | Angle gather seismic response numerical computation method of reservoir fluid fluidity | |
AU2014273165B2 (en) | High resolution estimation of attenuation from vertical seismic profiles | |
CN108363100B (en) | Seismic geological identification method for coalbed methane dessert area based on sequestration unit and rough set | |
Rubino et al. | Numerical analysis of wave‐induced fluid flow effects on seismic data: Application to monitoring of CO2 storage at the Sleipner field | |
CN104570072B (en) | A kind of sphere PP wave reflection coefficient modeling methods in viscoelastic medium | |
CN109425896A (en) | Dolomite oil and gas reservoir distribution prediction method and device | |
CA2844508C (en) | System and method for subsurface characterization including uncertainty estimation | |
CN103643949B (en) | A kind of reservoir contains quantitative forecast method and the device of oil gas | |
CN103487831B (en) | AVO Seismic forward computing method | |
CN104656136A (en) | Oil and gas reservoir low-frequency shadow recognition technology based on actual model seismic simulation guidance | |
Baird et al. | Frequency-dependent seismic anisotropy due to fractures: Fluid flow versus scattering | |
Germán Rubino et al. | Seismic characterization of thin beds containing patchy carbon dioxide-brine distributions: A study based on numerical simulations | |
CN105938203A (en) | Reservoir characteristic detection method and device | |
Ostadhassan et al. | Anisotropy analysis in shale using advanced sonic data-Bakken Case Study | |
Zhou et al. | Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration | |
Götz et al. | Zero‐offset VSP monitoring of CO2 storage: impedance inversion and wedge modelling at the Ketzin pilot site | |
Lynn et al. | Azimuthal PP prestack amplitudes in the presence of oil-filled aligned porosity (fracture porosity) | |
Xu et al. | A case study of azimuthal AVO analysis with anisotropic spreading correction | |
CN103257362B (en) | Carbonatite efficient well forecasting method based on pressure noise density difference inversion | |
Chen et al. | A fast combined method for fluid flow related frequency-dependent AVO modeling | |
Landrø et al. | Pressure depletion measured by time-lapse VSP | |
Naseer et al. | Delineation of stratigraphic traps within the basin floor fans of Miocene sedimentary sequences, offshore Indus, Pakistan using inverted acoustic impedance simulations | |
Røste | Monitoring overburden and reservoir changes from prestack time-lapse seismic data: applications to chalk fields | |
Liu et al. | Two‐dimensional SH‐wave and acoustic P‐wave full waveform inversion: A Midland Basin case study | |
Liu et al. | Applications of seismic techniques to gas hydrates prediction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20141119 |