CN104148013A - Preparation method for flue gas mercury-removing active carbon - Google Patents

Preparation method for flue gas mercury-removing active carbon Download PDF

Info

Publication number
CN104148013A
CN104148013A CN201410346222.9A CN201410346222A CN104148013A CN 104148013 A CN104148013 A CN 104148013A CN 201410346222 A CN201410346222 A CN 201410346222A CN 104148013 A CN104148013 A CN 104148013A
Authority
CN
China
Prior art keywords
active carbon
mercury
halogen
halide salt
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410346222.9A
Other languages
Chinese (zh)
Other versions
CN104148013B (en
Inventor
孙康
蒋剑春
卢辛成
邓先伦
陈超
贾羽洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemical Industry of Forest Products of CAF
Original Assignee
Institute of Chemical Industry of Forest Products of CAF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemical Industry of Forest Products of CAF filed Critical Institute of Chemical Industry of Forest Products of CAF
Priority to CN201410346222.9A priority Critical patent/CN104148013B/en
Publication of CN104148013A publication Critical patent/CN104148013A/en
Application granted granted Critical
Publication of CN104148013B publication Critical patent/CN104148013B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention provides a preparation method for flue gas mercury-removing active carbon. The preparation method comprises the following steps: step 1, removing a surface chemical group of a raw material: washing the particle active raw material with 10.wt%-30.wt% NaOH solution and drying the raw materials at 100-120 DEG C; step 2, immersing halide salt: mixing, immersing and agitating the raw material active carbon with an oxygen-containing group on the surface and a halide salt solution according to the mass ratio ranging from 1:1 to 1:5 for 4-12 hours; filtering and drying to obtain active carbon carrying the halide salt, wherein the concentration of the halide salt solution is 10wt.%-50wt.%; step 3, loading halogen: putting the active carbon carrying the halide salt into a U-shaped pipe to form a filling layer; inputting air with the halogen from the top of the filling layer at the speed of 100-500mL/min and keeping the heat for 1-10 hours at room temperature to obtain saturated halogen-loaded active carbon; and step 4, heating the saturated halogen-loaded active carbon at the temperature in a range of 80-120 DEG C to remove the volatile halogen to prepare the flue gas mercury-removing active carbon.

Description

The preparation method of fume mercury-removing active carbon
?
Technical field
The invention belongs to fume mercury-removing activated carbon technology field, relate in particular to the preparation method of high effective flue gas removal of mercury active carbon.
 
Background technology
Coal will remain the main energy sources of electric power in future, the coal-fired flue-gas mercury pollution causing thus has become another the global Significant Problems of Eco-environment after climate change.In coal fire discharged thing, mercury compound, sulfur dioxide dust are also the main causes that PM2.5 forms, and are the roots that causes haze weather.At present, coal in China consumption ranks first in the world, and still accounts for 72% to the year two thousand twenty CHINESE COAL electricity, needs coal-fired approximately 2,700,000,000 tons, estimates 2035, and the supply of electric power in the whole world 43% is still from coal.In coal-fired process, mercury evaporation also enters atmosphere with flue gas, and enter ecological recycle system by precipitation.Although the not high (n × l0 of the mercury content in coal -7the order of magnitude), but the consumption figure of whole world coal is very huge, causes thus mercury emission very large.Jiang Jingkun [Jiang Jingkun, Hao Jiming, Wu Ye, Deng. the preliminary foundation [J] of Coal Combustion in China mercury emissions inventory. environmental science, 2005,26 (2): 35-39.] etc. estimation China's coal-fired flue-gas mercury emission in 2000 is 219.5 tons, and wherein electric power discharge capacity accounts for 35%, Mercury Emissions from Coal-Fired Boilers amount has exceeded the U.S., and atmosphere and soil environment have been caused to severe contamination.Therefore, the whole world increases severely year by year to the demand of fume mercury-removing active carbon.
Mercury in coal-fired flue-gas is mainly with simple substance state mercury (Hg 0), particle mercury (Hg p) and oxidation state mercury (Hg 2+) 3 kinds of forms exist, and under certain condition, in flue gas, the mercury of three kinds of forms can transform mutually.In coal, most mercury is discharged into atmosphere in combustion process, remains in very few (being less than 2%) of mercury in bottom ash.Particle mercury can utilize cleaner to collect and remove, and oxidation state mercury can be removed with wet desulphurization equipment.But Elemental Mercury fusing point low (38.9 DEG C), vapour pressure high (25 DEG C time 0.25Pa), poorly water-soluble (25 DEG C time 600 μ g/L), be difficult to utilize existing pollutant control appliance effectively to remove, harm is large, becomes in mercury pollution control tool challenge and be also the technology that solves be badly in need of.
Research shows, active carbon produces effect at the oxidation state mercury removing in flue gas at present, but is not very desirable for Elemental Mercury removal efficiency.USDOE estimates, is 90 % if reach demercuration rate, and the cost that removes 0.45 kg mercury is (2.5-7.0) × 10 4dollar, so expensive cost, coal-burning power plant is difficult to bear, and active carbon is promoted very difficult in commercial applications, and by add additive in active carbon, this modified activated carbon significantly strengthens the absorption property of mercury, can significantly reduce active carbon demercuration cost.
[Dong Yong, explains quickly Dong Yong etc., and Wang Peng, etc. CaCl 2add the experimental study [J] on mercury Precipitation Behavior impact in pyrolyzing coal. chemistry of fuel journal, 2014,42 (01): 31-36] study the CaCl that adds different chlorinities (mass fraction 0.1%, 0.3%, 0.5%) in low chlorine coal 2on the impact of mercury Precipitation Behavior in pyrolysis of coal process.Experimental result shows, temperature is to affect the key factor that mercury is separated out; Along with the increase of chlorine addition, Hg 2+separate out ratio in rising trend; [the Li X such as Li, Liu Z, Kim J, et al. Heterogeneous catalytic reaction of elemental mercury vapor over cupric chloride for mercury emissions control[J]. Applied catalysis B:environmental, 2013,132:401-407.] use 1 % and 5 % zinc chloride to process active carbon, the active carbon mercury adsorption capacity after modification is respectively 5.5 times and 9 times of original activity charcoal; Deng Xianlun etc. [Deng Xianlun, Jiang Jianchun. Development of S-loaded Activated Carbon Applied To Remove Mercury [J]. forest chemical engineering communication, 2004,38 (3): 13-16.] active carbon is mixed to sulphur modification after its demercuration rate reach 99 %; [Tian L H, Li C T, Li Q, the et a1. Removal of elemental mercury by activated carbon impregnated with CeO such as Tian 2[J]. Fuel, 2009,88 (9): 1687-1691.] prepare load C eO 2active carbon, when load capacity is brought up to 80 % to mercury clearance from 30 % in 120 min during at 1 %-3 %.U.S. PSCo/ADA[Vidic, R D, Chang M T, Thurnau R C, Kinetics of vapor-phase mercury uptake by virgin and sulfur impregnated activated carbons[J]. J. air and waste, 2005,48:247-255.] carry out field trial in power station with industrial activited carbon, result shows: carbon mercury (C/Hg) than when the 5000:1 in ESP(electrostatic precipitator) outlet sprays into active carbon, its removal of mercury efficiency is 45%.Wang Li has just waited [adsorpting characteristic of flying dust carbon residue to nonvalent mercury steam] to study flying dust and do not fire the characterization of adsorption of carbon residue to nonvalent mercury steam. at low mercury equilibrium concentration (<250ug/m 3) under condition, carbon residue mercury adsorption capacity and business active carbon gap are not remarkable, business active carbon obviously raises in the mercury adsorbance of high mercury concentration end, and carbon residue mercury characterization of adsorption and its source correlation are stronger.
In sum, the existing research of fume mercury-removing active carbon, but exist removal of mercury rate not high, mercury capacity is only 1 ‰~10% left and right, especially little to the adsorption capacity of Elemental Mercury, causes application cost high, the problems such as commercial applications difficulty.It is raw material that the present invention selects the commercial active carbon that microporosity is high, first load halogenated alkali metal salt, then use vapor phase method load halogen, and form stable complex salt, finally at high temperature remove volatilizable halogen, make high effective flue gas removal of mercury active carbon.The method is easy to operate, and the active carbon mercury capacity of preparing, up to 150%, has significantly reduced use cost, is easy to commercialization and promotes
Summary of the invention
the technical problem solving:low in order to solve existing fume mercury-removing adsorbent mercury saturated adsorption capacity, the shortcomings such as the easy secondary of mercury comes off, make full use of the chemisorbed that gaseous elementary mercury forms physical absorption and forms with bromine in micropore, the invention provides a kind of preparation method of fume mercury-removing active carbon, preparation technology is convenient, product mercury removal performance is good, does not produce secondary pollution, is easy to the features such as commercialization.
technical scheme:the preparation method of fume mercury-removing active carbon, comprises the steps: the first step, and raw material is removed surface chemistry group: by 100-200 DEG C of oven dry after the NaOH solution washing of 10 wt. %~30 wt.% for seed activity carbon feedstock; Second step, dipping halide salt: raw material active carbon and the halide salt solution of removing surperficial oxy radical are carried out to hybrid infusion stirring 4 ~ 12 hours according to the mass ratio of 1:1~1:5, filtration drying, obtains being loaded with the active carbon of halide salt, and the concentration of described halide salt solution is 10 wt.%~50 wt. %; The 3rd step, load halogen: the active carbon that is loaded with halide salt, as in U-shaped pipe, is formed to packed layer, inputted by packed layer top with 100-500mL/min band halogen air, maintain 1~10h under room temperature, obtain the active carbon of saturated load halogen; The 4th step adds the active carbon of saturated load halogen the volatilizable halogen of heat abstraction at 80~120 DEG C, prepares fume mercury-removing active carbon.
Solution described in the first step is NaOH solution, and concentration is 30 wt.%.
In second step, halide salt is the one in potassium chloride, KBr, KI, and halide salt solution concentration is 15wt.%.
In the 3rd step, halogen is the one in chlorine, bromine, iodine, air mass flow 300 mL/min.
In the 4th step, adding the volatilizable halogen temperature of heat abstraction is 110 DEG C, processing time 1h.
Active carbon prepared by the preparation method of described fume mercury-removing active carbon, halogen load capacity mass percent is 50%~100%, the clearance 80%~100% of mercury, the saturated extent of adsorption mass percent 80%~150% of mercury.
beneficial effect:1. the preparation method of high effective flue gas removal of mercury active carbon, halogen load capacity is large, gas mercury saturated extent of adsorption high (mass ratio exceedes 100%), removal of mercury efficiency is high, and does not produce secondary pollution.2. give full play to Elemental Mercury and oxidation state mercury in the micropore enrichment of active carbon and the chemisorption combined removal flue gas of halogen.3. the NaOH solution of suitable concentration can effectively be removed surperficial oxy radical, and suitable surface pH value is conducive to the dipping of halide salt; 4. adopt suitable heat treatment temperature, can effectively remove unstable halogen, prevent the decomposition of halide salt simultaneously.
In concrete steps, adopt suitable NaOH solution can effectively remove Surface Chemistry of Activated Carbon group, cleaning inner surface, improves effective ratio area, gives full play to Accumulation with Activated Carbon effect; Meanwhile, suitable NaOH concentration both can reach the effect of removing oxy radical, can make again activated carbon surface be alkalescent, was conducive to the load of halide salt.Too high alkali concn can produce too much waste water simultaneously, is unfavorable for environmental protection.
Halogen is that 100% analysis is pure, and the concentration difference that different air capacities are carried must allow active carbon saturated adsorption halogen, could adsorb to greatest extent like this gas mercury.U-shaped pipe is in order to form certain malleation, increases load capacity.
Employing uniform temperature heating, can remove unstable halogen, can obtain the stable product of the removal of mercury, makes the abundant combination of halogen and halide salt, removes unconjugated halogen, makes product in the time of fume mercury-removing, can desorption, do not produce secondary pollution.
?
Brief description of the drawings
Fig. 1 micropore active carbon pore structure distribution map; The mesoporous scope of the active carbon pore distribution concentration 0-5nm selecting, after this pore diameter range load halogen, is very suitable for the absorption of gas mercury.
Fig. 2 active carbon pore structure surface topography mirror image figure; The coconut husk matrix activated carbon pore structure of selecting is very flourishing, is suitable for doing carrier active carbon.
The affect figure of Fig. 3 active carbon loadings on fume mercury-removing efficiency; The loadings of load halogen active carbon is larger to fume mercury-removing effectiveness affects, and along with the increase of loadings, removal of mercury efficiency increases.
The former active carbon of Fig. 4 and modified activated carbon demercuration efficiency chart; The removal efficiency of the active carbon of the different halogens of load to gas mercury, the active carbon that wherein carries bromine reaches as high as 95% to the removal efficiency of mercury, adsorbs the removal of mercury efficiency that still can preserve value high in 6 hours.
The former active carbon of Fig. 5 and the adsorption capacity figure of modified activated carbon to mercury.The activated carbon supported halogen modified adsorption capacity to gas mercury significantly improves, and carries bromine modified activated carbon the highest to the absorption affinity of gas mercury, secondly for carrying iodine modified activated carbon.
 
Detailed description of the invention
The active carbon raw material adopting in method of the present invention can comprise the samples such as cocoanut active charcoal, ature of coal column charcoal, steam method wood activated charcoal.The halogen load factor of removal of mercury active carbon of the present invention, mercury saturated adsorption performance, removal of mercury efficiency can be controlled by heat treatment temperature and the time of volatilizable halogen on the load capacity of the removal solution concentration of raw material microporosity, surface functional group, halide salt, air velocity, halogen load time, active carbon.By selecting the high business active carbon of micropore, first it is carried out to alkali liquid washing place to go surface group, with finite concentration halide salt Immesion active carbon oven dry, be filled in U-shaped pipe, then active carbon carried out to gas phase load, coutroi velocity and load time with air load halogen, adsorb saturated after, load type active carbon is heat-treated at a certain temperature, remove volatilizable bromine, prepare high effective flue gas removal of mercury active carbon.Result of the test is as shown in Fig. 4-5.
The method of testing of the absorption property of the present invention to prepared active carbon and specific area is as follows:
(1) MQ201 coal-fired flue-gas mercury vapourmeter for the mercury removal efficiency of active carbon.
(2) mercury of active carbon inductive coupling plasma emission spectrograph (PE company of the U.S. for saturated extent of adsorption, model optima 7000) measure, Adsorption of Mercury is reached to saturated activity charcoal strong acid dissolution, measure the content of mercury in solution, calculate the saturated extent of adsorption of active carbon to mercury.
NaOH solution concentration 10 wt.%~30 wt.%, dipping halide salt solution concentration 10 wt.%~50 wt.%, air velocity 100-500mL/min, load time 1~5h, making active carbon halogen load capacity mass percent is 50 wt.%~90 wt.%, clearance 80 %~100 % of mercury, mercury capacity mass percent 80 wt.%~150 wt.%.
?
embodiment 1
(1) raw material is removed surface chemistry group: the NaOH solution washing by coconut husk base seed activity carbon feedstock with 10 wt.%, 150 DEG C of oven dry.
(2) dipping halide salt: 30 g active carbon raw materials be impregnated in the Klorvess Liquid of mass concentration 15 wt.%, stir filtration drying 4 hours.
(3) load halogen: by the active carbon that is loaded with potassium chloride as in U-shaped pipe, form packed layer, inputted by packed layer top with 300mL/min air band chlorine, chlorine gas concentration is 0.13mg/L, under room temperature, maintain 10h, chlorine molecule is evenly written in activated carbon capillary, and chlorine is combined with potassium chloride and is formed thermally-stabilised good terchoride KCl 3.
(4) active carbon of load chlorine is heated at 110 DEG C to 1h and remove volatilizable halogen, prepare the good fume mercury-removing active carbon of thermally-stabilised good property.Carry chlorine dose 50 wt.%, mercury saturated extent of adsorption 80 wt.%, removal of mercury efficiency 86%(air-flow 4L/min in 72h, mercury concentration 10 mg/m 3).
?
embodiment 2
(1) raw material is removed surface chemistry group: the NaOH solution washing by coconut husk base seed activity carbon feedstock with 30 wt.%, 150 DEG C of oven dry.
(2) dipping halide salt: 30 g active carbon raw materials be impregnated in the potassium bromide solution of mass concentration 20 wt.%, stir filtration drying 12 hours.
(3) load halogen: by the active carbon that is loaded with KBr as in U-shaped pipe, form packed layer, inputted by packed layer top with 300mL/min air band bromine, bromine concentration is 0.21mg/L, under room temperature, maintain 10h, bromine molecule is evenly written in activated carbon capillary, and bromine is combined with KBr and is formed thermally-stabilised good tribromide KBr 3.
(4) active carbon of load bromine is heated at 110 DEG C to 2h and remove volatilizable bromine, prepare the good fume mercury-removing active carbon of thermally-stabilised good property.Carry bromine amount 80 wt.%, mercury saturated extent of adsorption 150 wt.%, removal of mercury efficiency 100%(air-flow 4L/min in 72h, mercury concentration 10 mg/m 3).
?
embodiment 3
(1) raw material is removed surface chemistry group: the NaOH solution washing by coconut husk base seed activity carbon feedstock with 30 wt.%, 150 DEG C of oven dry.
(2) dipping halide salt: 50 g active carbon raw materials be impregnated in the liquor kalii iodide of mass concentration 50 wt.%, stir filtration drying 12 hours.
(3) load halogen: by the active carbon that is loaded with KI as in U-shaped pipe, form packed layer, inputted by packed layer top with 300mL/min air band iodine, iodine concentration is 0.23mg/L, under room temperature, maintain 10h, bromine molecule is evenly written in activated carbon capillary, and bromine is combined with KBr and is formed thermally-stabilised good teriodide KI 3.
(4) active carbon of load iodine is heated at 100 DEG C to 1h and remove volatilizable iodine, prepare the fume mercury-removing active carbon of thermally-stabilised good property.Carry iodine amount 60 wt.%, mercury saturated extent of adsorption 120 wt.%, in 42h removal of mercury efficiency after 100%, 72 hour removal of mercury rate be down to 78%(air-flow 4L/min, mercury concentration 10 mg/m 3).
?
embodiment 4
(1) raw material is removed surface chemistry group: the NaOH solution washing by coconut husk base seed activity carbon feedstock with 10 wt.%, 150 DEG C of oven dry.
(2) dipping halide salt: do not flood halide salt.
(3) load halogen: active carbon, as in U-shaped pipe, is formed to packed layer, inputted by packed layer top with 300mL/min air band chlorine, chlorine gas concentration is 0.13mg/L, maintains 10h under room temperature, and chlorine molecule is evenly written in activated carbon capillary.
(4) active carbon of load chlorine is heated at 110 DEG C to 1h and remove volatilizable halogen.Carry chlorine dose 5 wt.%, mercury saturated extent of adsorption 1 wt.%, the removal of mercury is most effective 46%, and 3h reaches absorption saturated (air-flow 4L/min, mercury concentration 10 mg/m 3).
?
embodiment 5
Klorvess Liquid concentration in embodiment 1 is changed to 50 wt.%, and all the other obtain carried by active carbon chlorine dose 43 wt.% with embodiment 1, mercury saturated extent of adsorption 70 wt.%, removal of mercury efficiency 90%(air-flow 4L/min in 72h, mercury concentration 10 mg/m 3).
?
embodiment 6
Change the bromine time of carrying in embodiment 2 into 5h, all the other obtain carried by active carbon bromine amount 67 wt.% with embodiment 2, mercury saturated extent of adsorption 110 wt.%, removal of mercury efficiency 84%(air-flow 4L/min in 72h, mercury concentration 10 mg/m 3).
?
embodiment 7
Liquor kalii iodide concentration in embodiment 3 is changed to 30 wt.%, and all the other obtain carried by active carbon iodine amount 53 wt.% with embodiment 3, mercury saturated extent of adsorption 107 wt.%, removal of mercury efficiency 62%(air-flow 4L/min after 72h, mercury concentration 10 mg/m 3).

Claims (6)

1. the preparation method of fume mercury-removing active carbon, is characterized in that, comprises the steps:
The first step, raw material is removed surface chemistry group: by 100-200 DEG C of oven dry after the NaOH solution washing of 10 wt. %~30 wt.% for seed activity carbon feedstock;
Second step, dipping halide salt: raw material active carbon and the halide salt solution of removing surperficial oxy radical are carried out to hybrid infusion stirring 4 ~ 12 hours according to the mass ratio of 1:1~1:5, filtration drying, obtains being loaded with the active carbon of halide salt, and the concentration of described halide salt solution is 10 wt.%~50 wt. %;
The 3rd step, load halogen: the active carbon that is loaded with halide salt, as in U-shaped pipe, is formed to packed layer, inputted by packed layer top with 100-500mL/min band halogen air, maintain 1~10h under room temperature, obtain the active carbon of saturated load halogen;
The 4th step adds the active carbon of saturated load halogen the volatilizable halogen of heat abstraction at 80~120 DEG C, prepares fume mercury-removing active carbon.
2. the preparation method of fume mercury-removing active carbon as claimed in claim 1, is characterized in that, the solution described in the first step is NaOH solution, and concentration is 30 wt.%.
3. the preparation method of fume mercury-removing active carbon as claimed in claim 1, is characterized in that, in second step, halide salt is the one in potassium chloride, KBr, KI, and halide salt solution concentration is 15wt.%.
4. the preparation method of fume mercury-removing active carbon as claimed in claim 1, is characterized in that, in the 3rd step, halogen is the one in chlorine, bromine, iodine, air mass flow 300 mL/min.
5. the preparation method of fume mercury-removing active carbon as claimed in claim 1, is characterized in that, in the 4th step, adding the volatilizable halogen temperature of heat abstraction is 110 DEG C, processing time 1h.
6. the active carbon that prepared by the preparation method of the arbitrary described fume mercury-removing active carbon of claim 1~5, is characterized in that, halogen load capacity mass percent is 50%~100%, the clearance 80%~100% of mercury, the saturated extent of adsorption mass percent 80%~150% of mercury.
CN201410346222.9A 2014-07-18 2014-07-18 The preparation method of fume mercury-removing active carbon Active CN104148013B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410346222.9A CN104148013B (en) 2014-07-18 2014-07-18 The preparation method of fume mercury-removing active carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410346222.9A CN104148013B (en) 2014-07-18 2014-07-18 The preparation method of fume mercury-removing active carbon

Publications (2)

Publication Number Publication Date
CN104148013A true CN104148013A (en) 2014-11-19
CN104148013B CN104148013B (en) 2016-05-11

Family

ID=51873753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410346222.9A Active CN104148013B (en) 2014-07-18 2014-07-18 The preparation method of fume mercury-removing active carbon

Country Status (1)

Country Link
CN (1) CN104148013B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105363067A (en) * 2015-12-24 2016-03-02 上海复榆医药科技有限公司 Styptic and bactericidal wound treating agent and preparation method thereof
CN105561924A (en) * 2016-01-29 2016-05-11 北京市劳动保护科学研究所 Preparation method and application of modified activated carbon adsorbing agent for mercury in flue gas and collection tube of modified activated carbon adsorbing agent
CN108554382A (en) * 2018-03-14 2018-09-21 河南正清环境科技有限公司 A kind of halogenation modification absorbent charcoal material and preparation method thereof
CN110404505A (en) * 2018-04-27 2019-11-05 中国矿业大学(北京) For measuring the preparation method and active carbon of the active carbon of gaseous mercury
CN110997132A (en) * 2017-07-11 2020-04-10 利物浦大学 Sulfur-doped carbonaceous porous materials
CN115739018A (en) * 2022-11-15 2023-03-07 中盐金坛盐化有限责任公司 Preparation method and application of molten salt method sulfur modified porous material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060204418A1 (en) * 2005-03-14 2006-09-14 Chien-Chung Chao Catalytic adsorbents for mercury removal from flue gas and methods of manufacture therefor
CN101048218A (en) * 2004-08-30 2007-10-03 能源与环境研究中心财团 Sorbents for the oxidation and removal of mercury
CN103223330A (en) * 2013-05-13 2013-07-31 中国林业科学研究院林产化学工业研究所 Preparation method of special modified active carbon for removing mercury

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101048218A (en) * 2004-08-30 2007-10-03 能源与环境研究中心财团 Sorbents for the oxidation and removal of mercury
US20060204418A1 (en) * 2005-03-14 2006-09-14 Chien-Chung Chao Catalytic adsorbents for mercury removal from flue gas and methods of manufacture therefor
CN101175692A (en) * 2005-03-14 2008-05-07 普莱克斯技术有限公司 Catalytic adsorbents for mercury removal from flue gas and methods of manufacture therefor
CN103223330A (en) * 2013-05-13 2013-07-31 中国林业科学研究院林产化学工业研究所 Preparation method of special modified active carbon for removing mercury

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105363067A (en) * 2015-12-24 2016-03-02 上海复榆医药科技有限公司 Styptic and bactericidal wound treating agent and preparation method thereof
CN105363067B (en) * 2015-12-24 2018-08-10 上海复榆医药科技有限公司 A kind of hemostasis sterilization wound treatment agent and preparation method thereof
CN105561924A (en) * 2016-01-29 2016-05-11 北京市劳动保护科学研究所 Preparation method and application of modified activated carbon adsorbing agent for mercury in flue gas and collection tube of modified activated carbon adsorbing agent
CN110997132A (en) * 2017-07-11 2020-04-10 利物浦大学 Sulfur-doped carbonaceous porous materials
US11612875B2 (en) 2017-07-11 2023-03-28 The University Of Liverpool Sulfur-doped carbonaceous porous materials
CN108554382A (en) * 2018-03-14 2018-09-21 河南正清环境科技有限公司 A kind of halogenation modification absorbent charcoal material and preparation method thereof
CN108554382B (en) * 2018-03-14 2020-09-25 河南正清环境科技有限公司 Halogenated modified activated carbon material and preparation method thereof
CN110404505A (en) * 2018-04-27 2019-11-05 中国矿业大学(北京) For measuring the preparation method and active carbon of the active carbon of gaseous mercury
CN115739018A (en) * 2022-11-15 2023-03-07 中盐金坛盐化有限责任公司 Preparation method and application of molten salt method sulfur modified porous material

Also Published As

Publication number Publication date
CN104148013B (en) 2016-05-11

Similar Documents

Publication Publication Date Title
CN104148013B (en) The preparation method of fume mercury-removing active carbon
Liu et al. Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine
Duan et al. Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation
CN103331142B (en) Magnetic adsorbent, preparation method and application of magnetic adsorbent in desulfurization of fuel oil
Cai et al. Removal of elemental mercury by clays impregnated with KI and KBr
CA2718703C (en) Carbon-based catalyst for flue gas desulfurization and method of producing the same and use thereof for removing mercury in flue gas
CN105854801A (en) Nitrogen-doped porous carbon material and preparation method and application thereof
CN102631903B (en) In-situ preparation method of activated carbon loaded with ionic liquid
Ning et al. Removal of phosphorus and sulfur from yellow phosphorus off-gas by metal-modified activated carbon
Shi et al. Enhanced elemental mercury removal via chlorine-based hierarchically porous biochar with CaCO3 as template
CN105771902A (en) Preparation method and application of sulfhydryl activated carbon mercury removal agent
CN101654232B (en) Method for adsorbing and purifying PH3 under reducing condition
CN103252212A (en) Biomass carbon-based flue gas demercuration adsorbent and preparation method thereof
CN102580679A (en) Method for preparing modified microwave activated carbon sorbent
Yang et al. Experimental and kinetic study on Hg0 removal by microwave/hydrogen peroxide modified seaweed-based porous biochars
CN105214601A (en) Elemental Mercury mineral adsorbent and preparation method thereof
CN103480336B (en) A kind of modified biomass activates burnt demercuration adsorbent and preparation method thereof
Huong et al. Novel lanthanum-modified activated carbon derived from pine cone biomass as ecofriendly bio-sorbent for removal of phosphate and nitrate in wastewater
CN101301603A (en) Agent for absorbing fire coal flue gas mercury pollutant and preparation and use thereof
CN104014304A (en) Nitric acid modified activated carbon adsorbent for demercuration of flue gas, and preparation method and application thereof
CN106268241B (en) Copper making ring collection fume desulphurization method and device
CN110559813A (en) Method for preparing mercury removal on line by using plasma to induce nano sulfur particles
CN103752137A (en) Method for capturing acid gases by adopting ether-base pyridine ionic liquid
CN106064053A (en) A kind of flue gas demercuration adsorbent and preparation method thereof
Li et al. A novel approach to prepare efficient CO2 sorbents derived from alumina-extracted residue of coal ash

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant