CN104132756B - 一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法 - Google Patents

一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法 Download PDF

Info

Publication number
CN104132756B
CN104132756B CN201410400463.7A CN201410400463A CN104132756B CN 104132756 B CN104132756 B CN 104132756B CN 201410400463 A CN201410400463 A CN 201410400463A CN 104132756 B CN104132756 B CN 104132756B
Authority
CN
China
Prior art keywords
fiber grating
photonic crystal
crystal fiber
formula
lambda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410400463.7A
Other languages
English (en)
Other versions
CN104132756A (zh
Inventor
励强华
高社成
孙江亭
付淑芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Normal University
Original Assignee
Harbin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Normal University filed Critical Harbin Normal University
Priority to CN201410400463.7A priority Critical patent/CN104132756B/zh
Publication of CN104132756A publication Critical patent/CN104132756A/zh
Application granted granted Critical
Publication of CN104132756B publication Critical patent/CN104132756B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Transform (AREA)

Abstract

一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法,属于光子晶体光纤光栅传感领域。解决现有光纤光栅传感无法实现测量横向应力的问题。光源射出的光经耦合器耦合后入射至已施加垂直于光子晶体光纤光栅的外力F的光子晶体光纤光栅,光子晶体光纤光栅产生反射光,光子晶体光纤光栅为偏振相关的光栅,反射光在正交偏振方向上出现光谱差异,即出现反射谱双峰曲线,光子晶体光纤光栅受横向压力时,包层材料内应力使得材料在受力方向和垂直受力方向出现偏振特性差异,光反射谱双峰发生移动,同时双峰间距变化,反射光经过光电转换器转变为电信号;检测分析仪根据传感信号换算出横向压力传感量值。主要应用在压力传感领域。

Description

一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法
技术领域
本发明属于光子晶体光纤光栅传感领域。
背景技术
光子晶体光纤光栅传感技术是目前较为先进的传感技术,光子晶体光纤光栅是在原来光纤光栅传感原理的基础上,利用反射谱双峰移动和间隔变化的特性实现压力传感的。利用这一特性可研制出多种性能优越的光纤传感器件,相比普通光纤光栅传感原理,光子晶体光栅光栅更具有反射带宽范围大、附加损耗小、体积小、易于区分温度变化和压力变化,可与其它光器件兼容成一体,不受环境尘埃影响等一系列优异性能。
当光子晶体光纤光栅所处环境的温度、应力、应变或其它物理量发生变化时,光栅的周期或纤芯折射率将发生变化,从而使反射光的峰值波长发生变化,但是,不同物理量的变化引起光子晶体光纤光栅反射谱变化是不同的,温度是空间均匀变化,由温度变化而导致光子晶体光纤光栅反射谱的变化也是均匀的,因此,获得的表象是反射功率谱的双峰均匀移动,双峰间隔不变。但是侧向压力作用于光子晶体光纤光栅时,材料的应变是非均匀的,这将产生材料的应力双折射,导致入射光正交偏振模的时延差,从功率谱上看,反射双峰移动的同时双峰间隔发生变化,通过测量物理量变化前后反射谱双峰间隔的变化,就可以获得待测应力的变化情况。此外,通过对反射谱双峰移动和间隔的变化,可实现对应力和温度的分别测量和同时测量。
发明内容
本发明是为了解决现有光纤光栅传感无法实现测量横向应力的问题,本发明提供了一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法。
一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法,该方法的具体过程为:
光源射出的光经耦合器耦合后入射至已施加垂直于光子晶体光纤光栅的外力F的光子晶体光纤光栅,光子晶体光纤光栅产生反射光,该反射光经耦合器耦合后发送至光电转换器,经光电转换器输出的电信号发送至检测分析仪器;
检测分析仪器获取外力F的值的具体过程如下:
施加垂直于光子晶体光纤光栅的外力F时,反射谱双峰间距变化量△λ为,
Δλ = ( d λ b λ b ) x - ( d λ b λ b ) y = [ K x ( ϵ ) - K y ( ϵ ) ] ϵ (公式一),
应力ε与外力F存在如下关系,
F=σε(公式二),
公式一和公式二联立获得外力F的值,
F = Δλ [ K x ( ϵ ) - K y ( ϵ ) ] · σ (公式三),
其中,外力F的方向定义为x方向,与外力F相垂直的方向定义为y方向,σ为关联系数,表示x方向振动的偏振模的反射峰移动量,表示y方向振动的偏振模的反射峰移动量,Kx(ε)表示x方向光子晶体光纤光栅3的灵敏度系数变化量,Ky(ε)表示y方向光子晶体光纤光栅3的灵敏度系数变化量。
所述的Kx(ε)和Ky(ε)的求取过程为,
光子晶体光纤光栅受外力F情况下,反射光波长变化量如下,
d λ b λ b = dn co n co - n cl - dn cl n co - n cl + dΛ Λ (公式四),
光纤在单轴弹性形变下,且基模有效折射率变化量和包层模的折射率变化量分别如下述公式五和六:
dn co n co = - n co 2 2 [ p 12 - ν ( p 11 + p 12 ) ] ϵ (公式五),
dn cl n cl = - n cl 2 2 [ p 12 - ν ( p 11 + p 12 ) ] ϵ (公式六),
公式四、五和六联立获得公式七,公式七如下:
d λ b λ b = ϵ ( 1 - n co 2 2 n co n co - n cl [ p 12 - ν ( p 11 + p 12 ) ] - n cl 2 2 n cl n co - n cl [ p 12 - ν ( p 11 + p 12 ) ] ) = K s ϵ , 即:
K s = 1 - n co 2 2 n co n co - n cl [ p 12 - ν ( p 11 + p 12 ) ] - n cl 2 2 n cl n co - n cl [ p 12 - ν ( p 11 + p 12 ) ] (公式八),
由公式八获得,x方向光子晶体光纤光栅的灵敏度系数变化量Kx(ε)和y方向光子晶体光纤光栅的灵敏度系数变化量Ky(ε),
其中,
K x ( ϵ ) = ( 1 - n co , x 2 2 n co , x n co , x - n cl , x [ p 12 - ν ( p 11 + p 12 ) ] - n cl , x 2 2 n cl , x n co , x - n cl , x [ p 12 - ν ( p 11 + p 12 ) ] ) (公式九)
K y ( ϵ ) = ( 1 - n co , y 2 2 n co , y n co , y - n cl , y [ p 12 - ν ( p 11 + p 12 ) ] - n cl , y 2 2 n cl , y n co , y - n cl , y [ p 12 - ν ( p 11 + p 12 ) ] ) (公式十)
Ks为光子晶体光纤光栅与基模耦合时反射谱的谐振波长变化与应力ε的关系系数,p12和p11为弹光系数,ν为泊松比,nco为基模有效折射率,ncl为包层模的折射率,nco,x为x方向基模有效折射率,ncl,x为x方向包层模的折射率,nco,y为y方向上基模有效折射率,ncl,y为y方向上包层模的折射率,λb表示光子晶体光纤光栅反射峰中心波长,Λ表示光纤光栅常数。
所述的光源射出的光为宽谱自然光。
根据背景技术说明,我们设计利用光子晶体光纤光栅正交偏振模时延差特性导致的双峰反射谱变化用于传感的一种方法,本发明方法在于利用光子晶体光纤光栅增强光纤光栅的敏感特性,用于光纤光栅的传感技术的一种方法,本方法通过以下方式实现,入射光为覆盖光子晶体光纤光栅反射谱移动最大范围的宽谱自然光,入射到光子晶体光纤光栅后反射,光子晶体光纤光栅为偏振相关的光栅,反射光在正交偏振方向上出现光谱差异,即出现反射谱双峰曲线。光子晶体光纤光栅受横向压力时,包层材料内应力使得材料在受力方向和垂直受力方向出现偏振特性差异,光反射谱双峰发生移动,同时双峰间距变化。反射光经过光电转换器转变为电信号。检测分析仪根据传感信号换算出横向压力传感量值。光子晶体光纤光栅反射谱双峰随温度变化曲线,具体参见图3;光子晶体光纤光栅反射谱双峰随横向压力变化曲线,具体参见图4;光子晶体光纤光栅反射谱双峰随温度变化的峰值移动示意图,具体参见图5;光子晶体光纤光栅反射谱双峰随横向压力变化的曲线,具体参见图6。
本发明的新颖之处是以光子晶体光纤光栅作为传感元件测横向应力。这在以往是没有的。现有的光纤光栅传感测量的轴向应力或测量温度,这两个量无法分开来,在测量轴向应力时要做温度量的修正。本文提出的专利受应力和温度影响时表象不同,可以较为容易的区分出应力和温度的不同影响。同时,横向应力作用于光子晶体光纤光栅时,偏振特性的改变很容易测量出横向应力的大小,测量应力时不受温度干扰。
附图说明
图1为具体实施方式一所述的一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法的原理示意图;
图2为本发明所述的光子晶体光纤光栅受外力F时的原理示意图;
图3为光子晶体光纤光栅反射谱双峰随温度变化曲线;
图4为光子晶体光纤光栅反射谱双峰随横向压力变化曲线;
图5为光子晶体光纤光栅反射谱双峰随温度变化的峰值移动示意图;
图6为光子晶体光纤光栅反射谱双峰随横向压力变化的曲线。
具体实施方式
具体实施方式一:参见图1和2说明本实施方式,本实施方式所述的一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法,该方法的具体过程为:
光源1射出的光经耦合器2耦合后入射至已施加垂直于光子晶体光纤光栅3的外力F的光子晶体光纤光栅3,光子晶体光纤光栅3产生反射光,该反射光经耦合器2耦合后发送至光电转换器4,经光电转换器4输出的电信号发送至检测分析仪器5;
检测分析仪器5获取外力F的值的具体过程如下:
施加垂直于光子晶体光纤光栅3的外力F时,反射谱双峰间距变化量△λ为,
Δλ = ( d λ b λ b ) x - ( d λ b λ b ) y = [ K x ( ϵ ) - K y ( ϵ ) ] ϵ (公式一),
应力ε与外力F存在如下关系,
F=σε(公式二),
公式一和公式二联立获得外力F的值,
F = Δλ [ K x ( ϵ ) - K y ( ϵ ) ] · σ (公式三),
其中,外力F的方向定义为x方向,与外力F相垂直的方向定义为y方向,σ为关联系数,表示x方向振动的偏振模的反射峰移动量,表示y方向振动的偏振模的反射峰移动量,Kx(ε)表示x方向光子晶体光纤光栅3的灵敏度系数变化量,Ky(ε)表示y方向光子晶体光纤光栅3的灵敏度系数变化量。
本实施方式中,入射光通过耦合器入射到光纤光栅后反射,光子晶体光纤光栅为偏振相关的光栅,由于材料在正交方向上折射率的差异,导致正交偏振模的差异,反射光为双峰谱线。反射光在选定长轴和短轴方向上出现偏振时延导致反射光谱双峰,该反射光通过耦合器传导致光电转换器,得到光子晶体光纤光栅偏振相关测量量,光子晶体光纤光栅受外界压力作用,反射峰移动,同时双峰间距变化,测量双峰值移动的相对位置,换算出外界环境改变的标准值,得到传感横向压力量值。
具体实施方式二:本实施方式与具体实施方式一所述的一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法的区别在于,所述的Kx(ε)和Ky(ε)的求取过程为,
光子晶体光纤光栅3受外力F情况下,反射光波长变化量如下,
d λ b λ b = dn co n co - n cl - dn cl n co - n cl + dΛ Λ (公式四),
光纤在单轴弹性形变下,且基模有效折射率变化量和包层模的折射率变化量分别如下述公式五和六:
dn co n co = - n co 2 2 [ p 12 - ν ( p 11 + p 12 ) ] ϵ (公式五),
dn cl n cl = - n cl 2 2 [ p 12 - ν ( p 11 + p 12 ) ] ϵ (公式六),
公式四、五和六联立获得公式七,公式七如下:
d λ b λ b = ϵ ( 1 - n co 2 2 n co n co - n cl [ p 12 - ν ( p 11 + p 12 ) ] - n cl 2 2 n cl n co - n cl [ p 12 - ν ( p 11 + p 12 ) ] ) = K s ϵ , 即:
K s = 1 - n co 2 2 n co n co - n cl [ p 12 - ν ( p 11 + p 12 ) ] - n cl 2 2 n cl n co - n cl [ p 12 - ν ( p 11 + p 12 ) ] (公式八),
由公式八获得,x方向光子晶体光纤光栅3的灵敏度系数变化量Kx(ε)和y方向光子晶体光纤光栅3的灵敏度系数变化量Ky(ε),
其中,
K x ( ϵ ) = ( 1 - n co , x 2 2 n co , x n co , x - n cl , x [ p 12 - ν ( p 11 + p 12 ) ] - n cl , x 2 2 n cl , x n co , x - n cl , x [ p 12 - ν ( p 11 + p 12 ) ] ) (公式九)
K y ( ϵ ) = ( 1 - n co , y 2 2 n co , y n co , y - n cl , y [ p 12 - ν ( p 11 + p 12 ) ] - n cl , y 2 2 n cl , y n co , y - n cl , y [ p 12 - ν ( p 11 + p 12 ) ] ) (公式十)
Ks为光子晶体光纤光栅与基模耦合时反射谱的谐振波长变化与应力ε的关系系数,p12和p11为弹光系数,ν为泊松比,nco为基模有效折射率,ncl为包层模的折射率,nco,x为x方向基模有效折射率,ncl,x为x方向包层模的折射率,nco,y为y方向上基模有效折射率,ncl,y为y方向上包层模的折射率,λb表示光子晶体光纤光栅反射峰中心波长,Λ表示光纤光栅常数。
具体实施方式三:本实施方式与具体实施方式一所述的一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法的区别在于,所述的光源1射出的光为宽谱自然光。

Claims (2)

1.一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法,该方法的具体过程为:
光源(1)射出的光经耦合器(2)耦合后入射至已施加垂直于光子晶体光纤光栅(3)的外力F的光子晶体光纤光栅(3),光子晶体光纤光栅(3)产生反射光,该反射光经耦合器(2)耦合后发送至光电转换器(4),经光电转换器(4)输出的电信号发送至检测分析仪器(5);
检测分析仪器(5)获取外力F的值的具体过程如下:
施加垂直于光子晶体光纤光栅(3)的外力F时,反射谱双峰间距变化量△λ为,
Δ λ = ( dλ b λ b ) x - ( dλ b λ b ) y = [ K x ( ϵ ) - K y ( ϵ ) ] ϵ (公式一),
应力ε与外力F存在如下关系,
F=σε(公式二),
公式一和公式二联立获得外力F的值,
F = Δ λ [ K x ( ϵ ) - K y ( ϵ ) ] · σ (公式三),
其中,外力F的方向定义为x方向,与外力F相垂直的方向定义为y方向,σ为关联系数,表示x方向振动的偏振模的反射峰移动量,表示y方向振动的偏振模的反射峰移动量,Kx(ε)表示x方向光子晶体光纤光栅(3)的灵敏度系数变化量,Ky(ε)表示y方向光子晶体光纤光栅(3)的灵敏度系数变化量;
其特征在于,所述的Kx(ε)和Ky(ε)的求取过程为,
光子晶体光纤光栅(3)受外力F情况下,反射光波长变化量如下,
dλ b λ b = dn c o n c o - n c l - dn c l n c o - n c l + d Λ Λ (公式四),
光纤在单轴弹性形变下,且基模有效折射率变化量和包层模的折射率变化量分别如下述公式五和六:
dn c o n c o = - n c o 2 2 [ p 12 - ν ( p 11 + p 12 ) ] ϵ (公式五),
dn c l n c l = - n c l 2 2 [ p 12 - ν ( p 11 + p 12 ) ] ϵ (公式六),
公式四、五和六联立获得公式七,公式七如下:
dλ b λ b = ϵ ( 1 - n c o 2 2 n c o n c o - n c l [ p 12 - ν ( p 11 + p 12 ) ] - n c l 2 2 n c l n c o - n c l [ p 12 - ν ( p 11 + p 12 ) ] ) = K s ϵ ,
即:
K s = 1 - n c o 2 2 n c o n c o - n c l [ p 12 - ν ( p 11 + p 12 ) ] - n c l 2 2 n c l n c o - n c l [ p 12 - ν ( p 11 + p 12 ) ] (公式八),
由公式八获得,x方向光子晶体光纤光栅(3)的灵敏度系数变化量Kx(ε)和y方向光子晶体光纤光栅(3)的灵敏度系数变化量Ky(ε),
其中,
K x ( ϵ ) = ( 1 - n c o , x 2 2 n c o , x n c o , x - n c l , x [ p 12 - ν ( p 11 + p 12 ) ] - n c l , x 2 2 n c l , x n c o , x - n c l , x [ p 12 - ν ( p 11 + p 12 ) ] ) (公式九)
K y ( ϵ ) = ( 1 - n c o , y 2 2 n c o , y n c o , y - n c l , y [ p 12 - ν ( p 11 + p 12 ) ] - n c l , y 2 2 n c l , y n c o , y - n c l , y [ p 12 - ν ( p 11 + p 12 ) ] ) (公式十)
Ks为光子晶体光纤光栅与基模耦合时反射谱的谐振波长变化与应力ε的关系系数,p12和p11为弹光系数,ν为泊松比,nco为基模有效折射率,ncl为包层模的折射率,nco,x为x方向基模有效折射率,ncl,x为x方向包层模的折射率,nco,y为y方向上基模有效折射率,ncl,y为y方向上包层模的折射率,λb表示光子晶体光纤光栅反射峰中心波长,Λ表示光纤光栅常数。
2.根据权利要求1所述的一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法,其特征在于,所述的光源(1)射出的光为宽谱自然光。
CN201410400463.7A 2014-08-14 2014-08-14 一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法 Expired - Fee Related CN104132756B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410400463.7A CN104132756B (zh) 2014-08-14 2014-08-14 一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410400463.7A CN104132756B (zh) 2014-08-14 2014-08-14 一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法

Publications (2)

Publication Number Publication Date
CN104132756A CN104132756A (zh) 2014-11-05
CN104132756B true CN104132756B (zh) 2016-04-27

Family

ID=51805525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410400463.7A Expired - Fee Related CN104132756B (zh) 2014-08-14 2014-08-14 一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法

Country Status (1)

Country Link
CN (1) CN104132756B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568252B (zh) * 2015-01-07 2017-02-01 天津大学 基于偏振外差光纤激光传感器的压力方向性检测方法
CN106153225B (zh) * 2016-06-28 2018-11-16 南京师范大学 一种光纤布拉格光栅横向压力传感器系统及测量方法
CN106767475B (zh) * 2016-11-18 2019-10-18 北京航空航天大学 一种基于横向布贴光纤光栅光谱图像分析的孔边裂纹诊断方法
CN106840869B (zh) * 2016-12-15 2019-08-23 北京航空航天大学 一种基于两种布贴方式下光纤光栅光谱图像分析的孔边裂纹诊断方法
CN107894527B (zh) * 2017-12-20 2020-07-31 天津理工大学 基于电光效应的随机波导光栅电压传感器及其电压检测方法
CN108562386B (zh) * 2018-04-20 2020-09-11 中国矿业大学 一种温度补偿的光子晶体光纤横向应力传感器
CN112378752A (zh) * 2020-10-27 2021-02-19 衡阳市智谷科技发展有限公司 一种基于全偏振测量系统的偏振敏感材料的受力分析方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206975A (ja) * 2001-01-09 2002-07-26 Oki Electric Ind Co Ltd 光ファイバ圧力センサ
CN1412530A (zh) * 2002-12-18 2003-04-23 南开大学 应变和温变同时测量的单光纤光栅封装方法及其传感器
CN100468008C (zh) * 2006-05-26 2009-03-11 北京交通大学 写有光栅的光子晶体光纤的横向应力传感系统及实现方法
CN101038205A (zh) * 2007-04-27 2007-09-19 武汉理工大学 啁啾光纤光栅称重传感器及其强度解调系统

Also Published As

Publication number Publication date
CN104132756A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
CN104132756B (zh) 一种利用正交偏振模双峰反射谱的光子晶体光纤光栅的压力传感方法
Iadicicco et al. Thinned fiber Bragg gratings as high sensitivity refractive index sensor
CN102944253B (zh) 基于偏振测量的光纤光栅横向压力和温度同时测量系统
CN102162753B (zh) 同时测量长周期光纤光栅温度与应变的传感器结构
CN102261965B (zh) 基于双芯光纤的温度传感方法及装置
CN101900611B (zh) 使用分布式光纤传感器同时测量温度和应力的装置及方法
CN203287311U (zh) 一种基于双锥型细芯单模光纤的透射式光纤湿度传感器
CN105716755B (zh) 一种基于Loyt-Sagnac干涉仪的灵敏度增强型传感器
CN105043264B (zh) 基于宏弯损耗效应的光纤位移传感器
CN207501987U (zh) 基于光纤光栅的磁场与温度双参量传感器
CN108801156A (zh) 一种塑料光纤位移传感器及其制备方法
CN104316106A (zh) 一种基于马赫增德尔干涉和光纤布拉格光栅的光纤传感器
CN201740734U (zh) 一种基于光纤布拉格光栅的折射率传感器
CN103528609A (zh) 复合干涉型的多参量光纤传感器
CN102269573A (zh) 一种准分布式复合材料结构应变和温度检测系统
CN204556023U (zh) 基于保偏光纤的双参量光纤传感器
CN103453940A (zh) 基于多模结构的光纤传感器
CN203224440U (zh) 一种基于多模干涉msm结构的湿度传感器
CN102261978B (zh) 基于双芯双孔光纤实现液压传感的方法及装置
CN203658394U (zh) 一种采用光纤光栅的加速度传感器
CN201945404U (zh) 一种基于3°角倾斜mfbg的温度与折射率同时测量传感器
CN110031139B (zh) 一种接触型线性应力传感器及其应力检测方法
CN110017925B (zh) 一种基于m-z结构的波导压力传感器及检测方法
CN202305405U (zh) 一种基于高双折射d型光纤环镜的折射率计
CN102393272B (zh) 基于锥形光纤的光纤布拉格光栅液压传感方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160427

Termination date: 20170814