CN104125050B - 超高频rfid读卡器协议一致性测试方法 - Google Patents

超高频rfid读卡器协议一致性测试方法 Download PDF

Info

Publication number
CN104125050B
CN104125050B CN201410380849.6A CN201410380849A CN104125050B CN 104125050 B CN104125050 B CN 104125050B CN 201410380849 A CN201410380849 A CN 201410380849A CN 104125050 B CN104125050 B CN 104125050B
Authority
CN
China
Prior art keywords
card reader
signal
parameter
eigentransformation
rfid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410380849.6A
Other languages
English (en)
Other versions
CN104125050A (zh
Inventor
王卫东
郭兴祖
陈岚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Cas Internet Of Things Technology Venture Capital Co ltd
Original Assignee
Jiangsu IoT Research and Development Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu IoT Research and Development Center filed Critical Jiangsu IoT Research and Development Center
Priority to CN201410380849.6A priority Critical patent/CN104125050B/zh
Publication of CN104125050A publication Critical patent/CN104125050A/zh
Application granted granted Critical
Publication of CN104125050B publication Critical patent/CN104125050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本发明涉及一种超高频RFID读卡器协议一致性测试方法,其包括如下步骤:a、上位机与频谱分析仪连接,并通过所述频谱分析仪捕获RFID读卡器的发射信号,以获取能反映RFID读卡器全部特征的读卡器特征信号;b、利用小波变换方法对读卡器特征信号进行处理,以得到读卡器特征变换信号;对所述读卡器特征变换信号进行检测,以提取得到所需的读卡器协议参数;c、将上述提取得到的读卡器协议参数与协议规定的标准参数值进行比较,得到并输出比较结果。本发明能实现对超高频RFID读卡器协议的一致性进行准确测试,易于实现测试的自动化,适应范围广,安全可靠。

Description

超高频RFID读卡器协议一致性测试方法
技术领域
本发明涉及一种测试方法,尤其是一种超高频RFID读卡器协议一致性测试方法,属于超高频RFID读卡器协议一致性测试的技术领域。
背景技术
RFID已成为IT领域的热点技术,很多国家都在不遗余力地推广射频识别技术。RFID标准在国际上还没有达成完全的一致,多个组织制定了不同频段的不同标准,各标准之间存在着一定程度的不兼容性。RFID超高频国际标准有:ISO/IEC 18000-6,EPC globalClass 1Gen和UbiquitousID。不同的行业制定了相应的标准,例如,应用于动物识别的标准:ISO TC 23/SC 19/WG3,应用于运输和控制系统的标准:ISO TC 204,应用于单品管理的标准:ISO/IEC 18000。
目前的RFID测试主要是借助于功能强大的测试仪器设备和采用手工测试的方法。主要的测试设备有泰克公司、安捷伦公司与罗德斯瓦茨公司生产的(实时)频谱分析仪和矢量信号发生器。测试的内容包括性能测试与系统测试,具体的分为标签与读卡器性能测试,RFID空中接口协议一致性测试,RFID射频测试,RFID环境影响测试。
近几年RFID读卡器协议一致性测试技术不断的在进步与完善。一些公司开发了基于软件无线电与LabView的测试系统,科研单位也提出了构建基于模块化的自动测试系统。上述测试系统在一定程度上解决了读卡器协议一致性测试中遇到的问题,但是上述方法也存在着局限性。大多数测试方案的实施过程依赖于功能强大的测试设备,同时要求测试人员进行手动操作,不但影响测试效率,也影响测试结果的准确性。所以研究RFID读卡器协议一致性测试方法对RFID技术的进一步推广有重要意义。
发明内容
本发明的目的是克服现有技术中存在的不足,提供一种超高频RFID读卡器协议一致性测试方法,其能实现对超高频RFID读卡器协议的一致性进行准确测试,易于实现测试的自动化,适应范围广,安全可靠。
按照本发明提供的技术方案,一种超高频RFID读卡器协议一致性测试方法,所述读卡器协议一致性测试方法包括如下步骤:
a、上位机与频谱分析仪连接,并通过所述频谱分析仪捕获RFID读卡器的发射信号,以获取能反映RFID读卡器全部特征的读卡器特征信号;
b、利用小波变换方法对读卡器特征信号进行处理,以得到读卡器特征变换信号;对所述读卡器特征变换信号进行检测,以提取得到所需的读卡器协议参数;
c、将上述提取得到的读卡器协议参数与协议规定的标准参数值进行比较,得到并输出比较结果。
所述步骤a中,能反映RFID读卡器全部特征的读卡器特征信号包括读卡器数据编码、射频包络参数、读卡器上电包络参数、读卡器断电包络参数、前同步码以及帧同步码。
所述步骤b中,包括如下步骤:
b1、利用小波变换的多孔算法对读卡器特征信号进行处理,以得到读卡器特征变换信号;
b2、设定动态阈值,并利用所述动态阈值以及斜率对读卡器特征变换信号进行处理,以得到所述模极大值序列Maxs以及用于记录所述模极大值序列Maxs内每一个值对应在读卡器特征变换信号中对应序号的序号序列Loc;
b3、利用上述模极大值序列Maxs以及序号序列Loc,提取得到读卡器协议参数,所述读卡器协议参数包括读卡器数据编码、射频包络参数、读卡器上电包络参数、读卡器断电包络参数、前同步码以及帧同步码。
所述步骤b1中,在利用小波变换的多孔算法对读卡器特征信号进行处理时,所述多孔算法中的分解级数为3,4或5。
与现有的一些方案相比,本发明的有益效果是:本发明上位机对读卡器特征信号sig0进行上述自动处理,实现了RFID读卡器协议一致性测试的自动化,且采用动态阈值与小波变换理论来分析信号,能够准确地提取信号的特征参数,由于在上位机上处理RFID信号而不是借助智能仪器本身对信号进行处理与分析,所以采用本方法搭建超高频RFID读卡器协议一致性自动测试系统不必使用功能强大的智能信号分析设备,从而减少自动测试成本的投入。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
为了能实现对超高频RFID读卡器协议的一致性进行准确测试,实现测试的自动化,本发明读卡器协议一致性测试方法包括如下步骤:
a、上位机与频谱分析仪连接,并通过所述频谱分析仪捕获RFID读卡器的发射信号,以获取能反映RFID读卡器全部特征的读卡器特征信号;
本发明实施例中,上位机可以采用计算机,上位机与频谱分析仪连接,频谱分析仪能获取RFID读卡器的发射信号,并将捕获的RFID读卡器的发射信号传输至上位机内。上位机对获取的RFID读卡器的发射信号进行滤波处理,并判断滤波处理的信号能否反映RFID读卡器的全部特征,具有RFID读卡器全部特征的读卡器特征信号能够反映协议中所规定的关于读卡器一致性的全部特征,能反映RFID读卡器全部特征的读卡器特征信号包括读卡器数据编码、射频包络参数、读卡器上电包络参数、读卡器断电包络参数、前同步码以及帧同步码。本发明实施例中,反映读卡器一致性的全部特征的协议为ISO/IEC 18000-6的标准协议。上位机、频谱分析仪以及上位机与频谱分析仪之间的通信均为本技术领域人员所熟知,上位机可以通过SCPI指令或所需的方式能够控制频谱分析仪。
经过判断后,若RFID读卡器的发射信号不能反映RFID读卡器全部特征,则适当延长频谱分析仪的信号采集时长,重新抓取RFID读卡器的发射信号,直至获取符合要求的读卡器特征信号sig0。
一般来说,能否捕获到一段具有RFID读卡器信号全部特征的读卡器特征信号取决于对采集时长的设定,采集时长设定的越长,就越易抓到具有RFID读卡器信号全部特征的读卡器特征信号。但是,由于采样点数是一定的,采集时间设置的越长,所获得的信号与原信号的偏差就越大,导致采集到的信号不能反映出RFID读卡器的全部特征;而采样时间过短,则要反复抓取多次才能获得能反映RFID读卡器信号全部特征的读卡器特征信号,这样做耗费时间。所以本发明实施例中,采集时长的设定标准是:连续十次以内能够抓到具有RFID读卡器信号全部特征的读卡器特征信号。所述采集时长是可以根据需要在频谱分析仪内设置的一个时间范围,具体设置过程对于不同的频谱分析仪有所不同,具体不再赘述。
b、利用小波变换方法对读卡器特征信号进行处理,以得到读卡器特征变换信号;对所述读卡器特征变换信号进行检测,以提取得到所需的读卡器协议参数;
本发明实施例中,所述步骤b中,包括如下步骤:
b1、利用小波变换的多孔算法对读卡器特征信号进行处理,以得到读卡器特征变换信号;
利用小波多孔算法具有平移不变性和每个尺度下数据长度不变等优点,小波变换用于表征信号的突变(瞬态)特征,直接分析读卡器特征信号sig0很难得到想要的结果,因而对读卡器特征信号sig0进行变换,读卡器特征信号sig0经小波变换处理后得到了读卡器特征变换信号sig1,读卡器特征变换信号sig1反映了读卡器特征信号sig0的突变特征,对读卡器特征变换信号sig1进行处理可提取出信号的一些特征。
对于小波多孔算法的过程为:
其中,上述公式(1)以及公式(2)中,参数j为分解级数,且j<N,N为最大分解级数;本发明实施例中,在利用小波变换的多孔算法对标签特征信号进行处理时,所述多孔算法中的分解级数为3,4或5,在具体实施时,N优选取值为4。为高通滤波器系数,为低通滤波器系数,为第j级逼近信号,在具体实施时,为了简化计算,取
b2、设定动态阈值,并利用所述动态阈值以及斜率对读卡器特征变换信号进行处理,以得到所述模极大值序列Maxs以及用于记录所述模极大值序列Maxs内每一个值对应在读卡器特征变换信号中对应序号的序号序列Loc;
设定动态阈值处理读卡器特征变换信号sig1,得到序列sigMaxs和序列sigMaxs内每一个值在对应的读卡器特征变换信号sig1中对应序号构成的序列Loc。由于序列sigMaxs所对应的点与其前一点和后一点构成的直线的斜率具有相反的数学符号,所以判定当sigMaxs[i]-sigMaxs[i-1]与sigMaxs[i+1]-sigMaxs[i]符号相反时,sigMaxs[i]即为模极大值,igMaxs[i-1]为点sigMaxs[i]的前一点,sigMaxs[i+1]为点sigMaxs[i]的后一点,根据序列sigMaxs的取值不同,变量i具有不同的取值,i的取值为本技术领域人员所熟知,此处不再赘述。
序号序列Loc表示模极大值序列Maxs中的每一个值在读卡器特征变换信号sig1中的序号,模极大值序列Maxs中的每一个值对应着读卡器特征变换信号sig1中脉冲的上升沿与下降沿。
动态阈值的取值方法:设置初始值Th0=Max(|sig1|),Max(|sig1|)为序列|sig1|(序列读卡器特征变换信号sig1取绝对值)的最大值,若初始值Th0取值过小则设定新的阈值Th1=Th0+Inc,若初始值Th0取值过大则设定Th1=Th0-Inc,Inc的取值可以通过实验获得,其中,初始值Th0取值过小和过大的判定依据是:依据RFID信号波形的特点,模极大值之间的数据间隔是有规律的,根据这个规律来判定,具体为本技术领域人员所熟知,此处不再赘述。
b3、利用上述模极大值序列Maxs以及序号序列Loc,提取得到读卡器协议参数,所述读卡器协议参数包括读卡器数据编码、射频包络参数、读卡器上电包络参数、读卡器断电包络参数、前同步码以及帧同步码。
具体地,提取Data-0、Data-1、PW、Tari。Data-0和Data-1分别代表了PIE编码中的0和1,PW为脉冲宽度,Tari为询问机对标签发信的基准时间间隔,是数据0的持续时间,一般为6.25μs、12.5μs和25μs。计算(Loc[t+7]-Loc[t+5])*LengT/Num与(Loc[t+9]-Loc[t+7])*LengT/Num的值并比较他们的大小,较大的为Data-1,较小的为Data-0。
脉冲宽度PW的计算公式为:PW=(Loc[t+9]-Loc[t+8])*LengT/Num,其中,Num为数据长度(数据长度也即是频谱分析仪采集数据一次获得的数据点数,取决于频谱分析仪),LengT为频谱分析仪的数据采集时间。根据Data-0计算Tari值:若|Data-0-6.25|<REM,则Tari=6.25μs;若6.25<|Data-0-12.5|<REM,则Tari=12.5μs;若|Data-0-25|<REM,则Tari=25μs。其中,REM的取值不应大于3.125。不同标准的协议一致性测试中,上述t的取值可能会不同,根据ISO/IEC18000-6协议,本发明实施例中,在具体实施时t=0。
前同步码的一部分与帧同步码是相同的,所以先求前同步码的各项参数。根据ISO/IEC 18000-6协议对各脉冲宽度的限定来设计算法检测编码,在ISO/IEC 18000-6c标准中,规定RTcal的宽度在2.5Tari至3.0Tari之间,TRcal的宽度在1.1RTcal至3.0Tari之间。RTcal为读写器到标签校准符号,TRcal为标签到读写器校准符号,RTcal与TRcal在协议18000-6中都有规定。
计算射频包络参数、读写器上电包络参数、读写器断电包络参数,根据模极大值序列Maxs序列确定读卡器特征信号sig0中Data-0所对应的波形,找到数据点Maxs[w]所对应的点sig0[k],检测点sig0[k]的前n个点相邻两点间斜率的值(为负数),其中,通过数值w、数值k分别能检索模极大值序列Maxs、读卡器特征信号sig0中相对应的数值,若sig0[k-l]-sig0[k-1-l]的值小于某一阈值ThresholdRL0,则记录sig0[k-l]在读卡器特征信号sig0中的位置LsL[k-l];检测数据点sig0[k]的后m个点相邻两点间斜率的值(为负数),若sig0[k+j+1]-sig0[k+j]的值小于某一阈值ThresholdRL1,则记录点sig0[k+j+1]在读卡器特征信号sig0中的位置LsL[k+j+1],射频包络的下降时间为(LsL[k+j+1]-LsL[k-l])*LengT/Num。找到数据点Max[t+1]所对应的点sig0[p],检测sig0[p]的后M个点相邻两点间斜率的值(为正数),若sig0[p+j+1]-sig0[p+j]的值小于某一阈值ThresholdRR0,则记录sig0[p-j+1]在读卡器特征信号sig0中的位置LsR[p-j+1];检测sig0[p]的前N个点相邻两点间斜率的值(为正数),若sig0[p-l+1]-sig0[p-l]的值小于某一阈值ThresholdRR1,则记录sig0[p-l]在读卡器特征信号sig0中的位置LsR[p-l],射频包络的上升时间为(LsR[p-j+1]-LsR[p-l])*LengT/Num。其中Num为数据长度,LengT为频谱分析仪的数据采集时间。本发明实施例中,设定阈值ThresholdRL0、阈值ThresholdRL1、阈值ThresholdRR0、阈值ThresholdRR1均为0.3。数值m、n、M、N的具体数值RFID超高频协议有关,本发明实施例中,数值m、n、M、N的取值与ISO/IEC 18000-6协议有关,具体数值一般通过实验和经验选取。上述对于读卡器特征信号sig0内数值以及位置检索的变量k、j、p等的取值根据需要进行选择设定,具体取值情况为本技术领域人员所熟知,此处不再赘述。
RFID读卡器的上电包络参数与读写器断电包络参数的计算方法上述方法类似,可以参考射频包络参数的计算过程,具体不再赘述。
c、将上述提取得到的读卡器协议参数与协议规定的标准参数值进行比较,得到并输出比较结果。
将上述的读写器数据编码、射频包络参数、读写器上电包络参数、读写器断电包络参数、前同步码、帧同步码等参数与ISO/IEC18000-6协议规定的参数值进行比较,将每个参数值比较的结果进行输出,即得到与协议规定的标准参数值相一致的协议参数以及与协议规定的标准参数值不一致的协议参数,以完成对RFID标签协议一致性的测试。
与现有的一些方案相比,本发明的有益效果是:本发明上位机对读卡器特征信号sig0进行上述自动处理,实现了RFID读卡器协议一致性测试的自动化,且采用动态阈值与小波变换理论来分析信号,能够准确地提取信号的特征参数,由于在上位机上处理RFID信号而不是借助智能仪器本身对信号进行处理与分析,所以采用本方法搭建超高频RFID读卡器协议一致性自动测试系统不必使用功能强大的智能信号分析设备,从而减少自动测试成本的投入。

Claims (1)

1.一种超高频RFID读卡器协议一致性测试方法,其特征是,所述读卡器协议一致性测试方法包括如下步骤:
(a)、上位机与频谱分析仪连接,并通过所述频谱分析仪捕获RFID读卡器的发射信号,以获取能反映RFID读卡器全部特征的读卡器特征信号;
(b)、利用小波变换方法对读卡器特征信号进行处理,以得到读卡器特征变换信号;对所述读卡器特征变换信号进行检测,以提取得到所需的读卡器协议参数;
(c)、将上述提取得到的读卡器协议参数与协议规定的标准参数值进行比较,得到并输出比较结果;
所述步骤(a)中,能反映RFID读卡器全部特征的读卡器特征信号包括读卡器数据编码、射频包络参数、读卡器上电包络参数、读卡器断电包络参数、前同步码以及帧同步码;
所述步骤(b)中,包括如下步骤:
(b1)、利用小波变换的多孔算法对读卡器特征信号进行处理,以得到读卡器特征变换信号;
(b2)、设定动态阈值,并利用所述动态阈值以及斜率对读卡器特征变换信号进行处理,以得到模极大值序列Maxs以及用于记录所述模极大值序列Maxs内每一个值对应在读卡器特征变换信号中对应序号的序号序列Loc;
(b3)、利用上述模极大值序列Maxs以及序号序列Loc,提取得到读卡器协议参数,所述读卡器协议参数包括读卡器数据编码、射频包络参数、读卡器上电包络参数、读卡器断电包络参数、前同步码以及帧同步码;
所述步骤(b1)中,在利用小波变换的多孔算法对读卡器特征信号进行处理时,所述多孔算法中的分解级数为3,4或5。
CN201410380849.6A 2014-08-04 2014-08-04 超高频rfid读卡器协议一致性测试方法 Active CN104125050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410380849.6A CN104125050B (zh) 2014-08-04 2014-08-04 超高频rfid读卡器协议一致性测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410380849.6A CN104125050B (zh) 2014-08-04 2014-08-04 超高频rfid读卡器协议一致性测试方法

Publications (2)

Publication Number Publication Date
CN104125050A CN104125050A (zh) 2014-10-29
CN104125050B true CN104125050B (zh) 2017-07-25

Family

ID=51770324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410380849.6A Active CN104125050B (zh) 2014-08-04 2014-08-04 超高频rfid读卡器协议一致性测试方法

Country Status (1)

Country Link
CN (1) CN104125050B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656712B (zh) * 2015-12-22 2019-01-29 山东大学 一种基于zynq的rfid协议一致性测试平台及其工作方法
CN105844190B (zh) * 2016-03-18 2017-12-29 东南大学 基于虚拟仪器的rfid标签空中接口协议符合性自动化测试方法
CN108256365B (zh) * 2018-01-26 2021-01-15 山东大学 一种评价rfid阅读器信号调制特性的测试方法
CN116739007B (zh) * 2023-08-11 2023-10-20 成都航空职业技术学院 一种基于动态阈值及信号能量等级判定的读卡器保护装置
CN116778623B (zh) * 2023-08-16 2023-11-24 南方电网调峰调频发电有限公司信息通信分公司 电网运维信息的安全预警装置及其操作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592704A (zh) * 2008-05-28 2009-12-02 北京中食新华科技有限公司 电子标签rfid测试方法
CN102539970A (zh) * 2012-01-04 2012-07-04 华北电网有限公司计量中心 Rfid设备测试方法及系统
CN103838665A (zh) * 2012-11-27 2014-06-04 中兴通讯股份有限公司 一种rfid自动化测试系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7394324B2 (en) * 2004-04-13 2008-07-01 Impinj, Inc. Method and system to calibrate an oscillator within an RFID circuit utilizing a test signal supplied to the RFID circuit
TWI490691B (zh) * 2008-08-29 2015-07-01 Mstar Semiconductor Inc 晶片測試裝置及其測試方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592704A (zh) * 2008-05-28 2009-12-02 北京中食新华科技有限公司 电子标签rfid测试方法
CN102539970A (zh) * 2012-01-04 2012-07-04 华北电网有限公司计量中心 Rfid设备测试方法及系统
CN103838665A (zh) * 2012-11-27 2014-06-04 中兴通讯股份有限公司 一种rfid自动化测试系统及方法

Also Published As

Publication number Publication date
CN104125050A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
CN104125050B (zh) 超高频rfid读卡器协议一致性测试方法
CN108030494B (zh) 基于交叉验证的心电信号错误标记训练样本识别方法
CN108573225B (zh) 一种局部放电信号模式识别方法及系统
CN104008551B (zh) 一种基于可见光图像的柑橘黄龙病检测方法
CN110059556A (zh) 一种基于深度学习的变电站开关分合状态检测方法
CN101226133B (zh) 一种血细胞脉冲信号的分类识别方法
CN104849633A (zh) 一种开关柜局部放电模式识别方法
CN112036450B (zh) 一种基于迁移学习的高压电缆局放模式识别方法及系统
CN106291275A (zh) 一种局部放电超高频单次波形频域特征提取及识别方法
CN106951863B (zh) 一种基于随机森林的变电站设备红外图像变化检测方法
CN112528774B (zh) 一种复杂电磁环境下未知雷达信号智能分选系统及方法
CN113283331A (zh) 用于无人值守传感器系统的多类别目标识别方法及系统
CN114700587B (zh) 一种基于模糊推理和边缘计算的漏焊缺陷实时检测方法及系统
CN103902798B (zh) 数据预处理方法
CN116243115A (zh) 基于时序拓扑数据分析的高压电缆模式识别方法及装置
CN109782158B (zh) 一种基于多级分类的模拟电路诊断方法
CN107578016B (zh) 一种基于稀疏表示的剩余电流波形自动识别方法
CN110197120B (zh) 用于无人值守传感器系统的人员目标识别方法
CN106406257A (zh) 一种基于案例推理的铁矿浮选精矿品位软测量方法及系统
CN111950606B (zh) 一种刀闸状态识别方法、装置、设备和存储介质
CN104125026B (zh) 超高频rfid标签协议一致性测试方法
CN116552306B (zh) 直流桩的监控系统及其方法
CN112766201A (zh) 基于csi数据的行为跨域识别模型建立、识别方法及系统
CN117056865A (zh) 一种基于特征融合的机泵设备运行故障诊断方法及装置
CN112285632A (zh) 一种基于vmd和样本熵的电磁式电流互感器故障诊断方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230720

Address after: 214135 Building C, Weina Sensor Network International Innovation Park, No. 200, Linghu Avenue, the Taihu Lake International Science Park, Wuxi New District, Jiangsu Province

Patentee after: JIANGSU CAS INTERNET-OF-THINGS TECHNOLOGY VENTURE CAPITAL CO.,LTD.

Address before: 214135 Block C, International Innovation Park of China Sensor Network, 200 Linghu Avenue, Wuxi New District, Jiangsu Province

Patentee before: JIANGSU R & D CENTER FOR INTERNET OF THINGS

TR01 Transfer of patent right