CN104118555B - 一种无人自主飞艇及其飞行控制系统的建立方法 - Google Patents

一种无人自主飞艇及其飞行控制系统的建立方法 Download PDF

Info

Publication number
CN104118555B
CN104118555B CN201410333398.0A CN201410333398A CN104118555B CN 104118555 B CN104118555 B CN 104118555B CN 201410333398 A CN201410333398 A CN 201410333398A CN 104118555 B CN104118555 B CN 104118555B
Authority
CN
China
Prior art keywords
dirigible
flight
coefficient
moment
computing formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410333398.0A
Other languages
English (en)
Other versions
CN104118555A (zh
Inventor
宋艺
麦金耿
杨思强
王启宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201410333398.0A priority Critical patent/CN104118555B/zh
Publication of CN104118555A publication Critical patent/CN104118555A/zh
Application granted granted Critical
Publication of CN104118555B publication Critical patent/CN104118555B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种无人自主飞艇及其飞行控制系统的建立方法,它包括三个并排设置的椭球形气囊,中间的椭球形气囊大于两侧的两个椭球形气囊,两侧的两个椭球形气囊对称设置在中间的椭球形气囊两侧,且分别与中间的椭球形气囊侧部连接,使三个椭球形气囊内部连通;中间的椭球形气囊的腹部设置的吊舱内设置有一飞行控制系统,飞行控制系统包括传感器信息预处理单元和飞行控制器单元。飞行控制器接收传感器信息预处理器的传感器信息,并通过两个数据链路和遥控通道与地面控制中心进行信息交互,实现飞艇的自主控制或手动控制。本发明采用的三椭球形飞艇显著增加了飞艇的载荷能力,飞行控制系统的建立方法可以广泛应用于各种无人飞艇的自主飞行控制。

Description

一种无人自主飞艇及其飞行控制系统的建立方法
技术领域
本发明涉及一种飞艇及其飞行控制系统的建立方法,特别是关于一种无人自主飞艇及其飞行控制系统的建立方法。
背景技术
飞艇是21世纪初发展起来的新兴技术,属于轻于空气(LTA)的航空器,与重于空气(HTA)的航空器升空的原理完全不同,飞艇是依靠空气静浮力升空。飞艇具备许多无可比拟的优点,比如:起降场地不受条件限制,能长时间悬停空中,低速巡航,能源消耗少,经济成本低和环境污染小等,但是不可避免的也存在着操纵不够灵活,飞行速度较慢和易受风力影响等缺点。飞艇有着非常广泛的应用,在军事领域,飞艇可以用于空中预警、侦察巡视、武器发射、通信中继、电子战和后勤补给;在民用领域,飞艇可以用于物资运输、环境监测、城市交通指挥、森林火警监控、工程勘测、航空拍摄、旅游观光和广告宣传。
常见的飞艇多为纺锤形,这是因为这种流线型的旋转体形状能够获得空气升力与空气阻力之间的最佳比例。当飞艇因为搭载应用设备而需要提高载荷能力的时候,可以通过增加飞艇长度的方式来实现。然而,飞艇长度的不断增加,一方面加大了生产难度和成本,另一方面降低了空中飞行的可控性和稳定性。因此,单纯通过增加飞艇长度的方式来提高载荷能力的方法并不可取。
目前,大多数的飞艇为载人飞艇或遥控飞艇,但是无论是载人飞艇或是遥控飞艇,都需要熟练的驾驶人员或操纵人员,而且为了保证人员的安全性,对于一些难以进入或危险的环境区域,无论是载人飞艇还是遥控飞艇都无法完成作业任务。因此,为了在未知区域或者受到核污染、化学污染的危险环境中完成探索、搜救等作业任务,必须让飞艇脱离人为干预和操纵,实现飞艇的自主控制,让飞艇自动完成各项飞行任务。
发明内容
针对上述问题,本发明的目的是提供一种载荷能力显著提高,可自动完成滞空、巡航等飞行作业任务,完全避免人员安全性问题的无人自主飞艇及其飞行控制系统的建立方法。
为实现上述目的,本发明采取以下技术方案:一种无人自主飞艇,其特征在于:它包括三个并排设置的椭球形气囊,中间的椭球形气囊大于两侧的两个椭球形气囊,所述两侧的两个椭球形气囊对称设置在所述中间的椭球形气囊两侧,且分别与所述中间的椭球形气囊侧部连接,使三个椭球形气囊内部连通;所述中间的椭球形气囊的腹部设置有一吊舱,所述吊舱内设置有一飞行控制系统,所述飞行控制系统包括传感器信息预处理单元和飞行控制器单元;所述传感器信息预处理单元包括九轴惯导、多模卫星定位、气压高度传感器、温度传感器、湿度传感器和无线传感器,以及用于接收各传感器数据的传感器信息预处理器;其中,所述九轴惯导由加速度传感器、三轴陀螺仪和地磁传感器集成,所述多模卫星定位由GPS和北斗系统集成;所述飞行控制器单元包括一飞行控制器、两个数据链路、一遥控通道和一地面控制中心;所述飞行控制器采用一高速数字信号处理器。
所述数字信号处理器包括一150MHz/150MIPS的32位中央处理器,一128K字节内置闪存,一18K字节静态随机存储器,十六个十二位模拟数字转换通道,两个非同步串联端口,一串行外设接口和一控制器局域网络端口。
所述飞行控制器接收所述传感器信息预处理器传输的传感器信息,并通过两个所述数据链路和所述遥控通道与所述地面控制中心进行信息交互,实现飞艇姿态和速度的自主控制或通过所述遥控通道实现手动控制。
所述的一种无人自主飞艇的飞行控制系统的建立方法,包括以下步骤:
1)根据牛顿-欧拉方程推导飞艇的动力学模型;
2)根据飞艇的动力学模型计算飞艇的浮力FB、重力FG和推进力FP
3)根据飞艇的动力学模型计算飞艇的气动压力FA和流体惯性力FI
4)由飞艇的动力学模型推导出飞艇飞行的状态方程;
5)在飞行过程中,根据预设航线和实时指令,通过改变控制变量,进而改变飞艇的飞行状态变量,实现对飞艇飞行姿态和轨迹的自动控制。
所述步骤1)中,飞艇的动力学模型为:
Mx = F B M B + F G M G + F A M A + F I M I + F P M P ,
其中,方程左边的M=diag(m m m Ix Iy Iz)是质量矩阵,m是飞艇的质量,Ix、Iy和Iz是飞艇滚转、俯仰和偏航的转动惯量;x=[u v w p q r]T表示飞艇的飞行状态变量,即x表示飞艇的线速度和角速度,其中u、v和w分别表示从飞艇的体积中心沿着艇身对称轴指向艇头、艇腹和右舷三个方向的线速度,p、q和r分别代表飞艇滚转、俯仰和偏航运动三个方向轴的角速度;方程右边表示飞艇所受的合力和合力矩,其中,FB、FG、FA、FI、FP分别表示浮力、重力、气动压力、流体惯性力和推进力;MB、MG、MA、MI、MP分别表示浮力、重力、气动压力、流体惯性力和推进力的力矩。
所述步骤2)中,所述浮力FB的计算公式为:
FB=ρV,
其中,ρ表示空气密度,V表示飞艇体积;
所述重力FG的计算公式为:
FG=mg,
其中,g表示重力加速度;
所述推进力FP的计算公式为:
FP=c1n2+c2nv,
其中,c1、c2表示推进装置固有的参数,n表示推进电机的转速,v表示飞艇的速率。
所述步骤3)中,所述飞艇的气动压力FA以及由气动压力FA产生的气动力矩MA包括阻力Xa、侧力Ya、升力Za以及滚转力矩La、俯仰力矩Ma和偏航力矩Na;所述气动压力FA和所述气动力矩MA由气动系数决定,所述气动系数包括阻力系数CX、侧力系数CY、升力系数CZ、滚转力矩系数Cl、俯仰力矩系数Cm和偏航力矩系数Cn,所述气动系数通过飞艇网格模型进行仿真计算获得;所述气动压力FA和所述气动力矩MA与所述气动系数的关系如下:
所述阻力Xa的计算公式为:
X a = - Q V 2 3 C X ,
其中, Q = 1 2 ρ v 2 ;
所述侧力Ya的计算公式为:
Y a = QV 2 3 C Y ,
所述升力Za的计算公式为:
Z a = - QV 2 3 C Z ,
所述滚转力矩La的计算公式为:
La=QVCl
所述俯仰力矩Ma的计算公式为:
Ma=QVCm
所述偏航力矩Na的计算公式为:
Na=QVCn
所述流体惯性力FI采用附加质量矩阵Madd的形式来计算:
M add = m 11 0 0 0 0 0 0 m 22 0 0 0 0 0 0 m 33 0 0 0 0 0 0 m 44 0 0 0 0 0 0 m 55 0 0 0 0 0 0 m 66 ,
其中,m11=k1m,m22=m33=k2m,m44=0,m55=m66=k'Iz;k1,k2,k'是Lamb k系数,这些参数均通过飞艇模型实测得到。
所述步骤4)中,由飞艇的数学模型推导出飞艇飞行的状态方程:
x=f(x,u),
其中,向量x=[u v w p q r]T表示飞艇的飞行状态变量,向量u=(n δe δd)T表示控制变量,n表示推进电机的转速,δe表示推进舵的调节角度,δd表示尾舵的调节角度,f()是映射函数。
本发明由于采取以上技术方案,其具有以下优点:1、本发明无人自主飞艇由于采用的是三椭球形,不但基本保持了空气升力和空气阻力之间的最佳比例,而且在保持飞艇长度一定的前提下,显著增加了飞艇的载荷能力,实验数据表明,三椭球形飞艇的载荷能力是同样长度的纺锤形飞艇的载荷能力的4倍以上。2、本发明采用的三椭球形飞艇的侧面积与纺锤形飞艇相近,因而飞艇所受大气气流的影响,尤其是侧风的影响并未随飞艇体积增大而增大,提高了飞艇飞行的稳定性和可控性。3、本发明由于建立的飞行控制系统能够使飞艇在无人干预的情况下进入危险环境或未知区域,可以有效的实现飞艇的自动升空、着陆、悬停、定点飞行和巡航,自动完成滞空、巡航等飞行作业任务,可以完全避免人员安全性的问题。4、本发明飞行控制系统由于采用多传感器相互补偿,并且通过冗余设计,保证了飞行控制系统的稳定性和可靠性。5、本发明采用的飞行控制电路板设有充足的模拟数字转换通道及通讯端口,能够支持众多外接器件,如GPS、无线数据传输模块,声纳、激光陀螺仪等传感器,具备良好的扩展性。6、本发明飞行控制系统由于将多种传感器、飞行控制电路板和无线通信模块进行系统集成,可以在最大程度上实现整个飞行控制系统的紧凑和高效。本发明可以广泛应用于各种无人飞艇的自主飞行控制,完成预设的飞行作业任务。
附图说明
图1是本发明三椭球形飞艇的六视图,其中图1(a)是飞艇的俯视图顺时针旋转90度;图1(b)是飞艇的前视图;图1(c)是飞艇的俯视图;图1(d)是飞艇的后视图;图1(e)是飞艇的仰视图;图1(f)是飞艇的俯视图逆时针旋转90度;
图2是本发明飞行控制系统的设计框架图。
具体实施方式
下面结合附图和实施例对本发明的技术方案做详细描述。
如图1所示,本发明无人自主飞艇包括三个并排设置的椭球形气囊,中间的椭球形气囊1大于两侧的两个椭球形气囊2,两侧的两个椭球形气囊2对称设置在中间的椭球形气囊1两侧,且分别与中间的椭球形气囊1侧部连接,使三个椭球形气囊内部连通。在中间的椭球形气囊1的腹部设置有一吊舱3,吊舱3内设置有一飞行控制系统,该飞行控制系统包括传感器信息预处理单元和飞行控制器单元(如图2所示)。传感器信息预处理单元包括九轴惯导、多模卫星定位、气压高度传感器、温度传感器、湿度传感器和无线传感器,以及用于接收处理各传感器数据的传感器信息预处理器。其中,九轴惯导由加速度传感器、三轴陀螺仪和地磁传感器集成;多模卫星定位由GPS和北斗系统集成。飞行控制器单元包括一飞行控制器、两个数据链路、一遥控通道、一地面控制中心,飞行控制器采用高速数字信号处理器,该数字信号处理器包括一150MHz/150MIPS的32位中央处理器,一128K字节内置闪存,一18K字节静态随机存储器,16个十二位模拟数字转换通道,一非同步串联端口,一串行外设接口和一控制器局域网络端口。为控制飞艇的推进电机,飞行控制系统提供8路飞行控制伺服电机输出和6路负载伺服电机输出。
上述实施例中,如图2所示,飞行控制器接收传感器信息预处理器传输的传感器信息,并通过两个数据链路和遥控通道与地面控制中心进行信息交互,实现飞艇姿态和速度的自主控制或通过遥控通道实现手动控制。该飞行控制器单元的核心是飞行控制器,该飞行控制器装载了自动飞行控制程序,能够实现的功能包括:接收传感器的数据、故障处理、数据记录、与地面控制中心的三个数据链路通信并实现遥控操作、推进电机控制、推进舵控制和尾舵控制。其中,地面站的三个数据链路指的是数据链路1、数据链路2和遥控通道;推进电机、推进舵和尾舵分别决定飞艇的飞行速度、航向和姿态。
上述实施例中,本发明中传感信息预处理器单元的功能是对多传感器的信息进行采集和预处理,并对多传感器的误差进行补偿。通过采用多传感器相互补偿,并且通过冗余设计来保证飞艇运动状态信息的可靠性,为自动飞行控制提供所需要的控制信息,如飞艇的飞行高度、经纬度、速度、航向角和姿态角等。九轴惯导通过加速度传感器、三轴陀螺仪和地磁传感器相互补偿计算出比较准确的包括俯仰角和偏航角的飞艇姿态角,并将数据传输给传感器信息预处理器。多模卫星定位通过集成GPS和北斗两套卫星定位系统,将飞艇的海拔高度、经纬度、速度和航向角传输至传感器信息预处理器,不但确保了在恶劣环境下卫星定位的可靠性,而且显著提高了卫星定位的精度。气压高度传感器测量大气压力来计算飞艇的海拔高度信息,将数据传输至传感器信息预处理器,有效补偿多模卫星定位系统的高度误差。温度和湿度传感器测量的温度和湿度信息传输至传感器信息预处理器为气压高度传感器提供所需的温度和湿度信息。此外,传感器信息预处理器还可以通过无线传感网技术接收飞艇中所搭载应用设备的信息。
本实施例中,为满足实际的载荷能力要求,实际测得生产的飞艇模型中间的椭球形气囊1的长度为17014mm,最大半径为2073mm;两侧的椭球形气囊2大小相同,长度为13788mm,最大半径1685mm。
本发明的飞行控制系统可以实现三椭球形无人自主飞艇的手动遥控和自动驾驶两种飞行控制方式。在飞艇的起飞和降落阶段,当飞艇处于遥控人员的视距范围内时,可以采用手动遥控方式,当飞艇超出遥控人员的视距范围后,即可切换到自动驾驶方式。在自动驾驶时,由地面站负责对空中飞艇实施自动控制,根据飞艇上搭载的传感器采集的数据,通过自动控制程序完成预先设定的飞行任务,如滞空、巡航、定点飞行等。本发明飞艇的自动控制需要对飞艇进行数学建模,然后在数学模型基础上分析飞艇的运动状态变量和控制变量之间的关系,进而推导出飞艇飞行的状态方程。本发明无人自主飞艇的飞行自动控制系统的建立方法,包括以下步骤:
1)根据牛顿-欧拉方程推导飞艇的动力学模型:
Mx = F B M B + F G M G + F A M A + F I M I + F P M P - - - ( 1 )
其中,方程左边的M=diag(m m m Ix Iy Iz)是质量矩阵,m是飞艇的质量,Ix、Iy和Iz是飞艇滚转、俯仰和偏航的转动惯量;x=[u v w p q r]T表示飞艇的飞行状态变量,即x表示飞艇的线速度和角速度,其中u、v和w分别表示从飞艇的体积中心沿着艇身对称轴指向艇头、艇腹和右舷三个方向的线速度,p、q和r分别代表飞艇滚转、俯仰和偏航运动三个方向轴的角速度;方程右边表示飞艇所受的合力和合力矩,其中,FB、FG、FA、FI、FP分别表示浮力、重力、气动压力、流体惯性力和推进力;MB、MG、MA、MI、MP分别表示浮力、重力、气动压力、流体惯性力和推进力的力矩。
2)根据飞艇的动力学模型计算飞艇的浮力FB、重力FG和推进力FP
飞艇的浮力和重力均属于空气静力,推进力是由推进装置产生,因而这些力及其产生的力矩基本不受飞艇形状的影响。浮力FB的计算公式为:
FB=ρV (2)
其中,ρ表示空气密度,V表示飞艇体积。
重力FG的计算公式为:
FG=mg (3)
其中,g表示重力加速度。
推进力FP的计算公式为:
FP=c1n2+c2nv (4)
其中,c1、c2表示推进装置固有的参数,n表示推进电机的转速,v表示飞艇的速率。
3)根据飞艇的动力学模型计算飞艇的气动压力FA和流体惯性力FI,这两种力都属于空气动力。本发明设计的三椭球形飞艇由于形状独特,因此在空气动力学方面的计算方面与传统飞艇有着显著的差异。
飞艇所受的气动压力FA以及由气动压力产生的气动力矩MA包括阻力Xa、侧力Ya、升力Za以及滚转力矩La、俯仰力矩Ma和偏航力矩Na;气动压力和气动力矩由气动系数决定,气动系数包括阻力系数CX、侧力系数CY、升力系数CZ、滚转力矩系数Cl、俯仰力矩系数Cm和偏航力矩系数Cn,气动系数可以通过飞艇网格模型进行仿真计算获得。本发明的三椭球形飞艇网格模型采用GAMBIT程序作为面网格的生成工具,采用TGrid程序作为体网格的生成工具生成。根据该网格模型进行仿真计算,就可以得到气动系数,进而得到气动压力FA和气动力矩MA
阻力Xa的计算公式为:
X a = - Q V 2 3 C X - - - ( 5 )
其中, Q = 1 2 ρ v 2 .
侧力Ya的计算公式为:
Y a = QV 2 3 C Y - - - ( 6 )
升力Za的计算公式为:
Z a = - QV 2 3 C Z - - - ( 7 )
滚转力矩La的计算公式为:
La=QVCl (8)
俯仰力矩Ma的计算公式为:
Ma=QVCm (9)
偏航力矩Na的计算公式为:
Na=QVCn (10)
飞艇所受的流体惯性力一般采用附加质量矩阵Madd的形式来计算:
M add = m 11 0 0 0 0 0 0 m 22 0 0 0 0 0 0 m 33 0 0 0 0 0 0 m 44 0 0 0 0 0 0 m 55 0 0 0 0 0 0 m 66 - - - ( 11 )
其中,m11=k1m,m22=m33=k2m,m44=0,m55=m66=k'Iz;k1,k2,k'是Lamb k系数,这些参数均可以通过飞艇模型实测得到。
4)由飞艇的动力学模型推导出飞艇飞行的状态方程,形式可以简写如下:
x=f(x,u) (12)
其中,向量x=[u v w p q r]T表示飞艇的飞行状态变量,向量u=(n δe δd)T表示控制变量,n表示推进电机的转速,δe表示推进舵的调节角度,δd表示尾舵的调节角度,f()是映射函数。
5)在飞行过程中,根据预设航线和实时指令,通过改变控制变量,进而改变飞艇的飞行状态变量,实现对飞艇飞行姿态和轨迹的自动控制。
基于式(12)所示的飞艇飞行状态方程,技术人员可以编写出本发明三椭球形飞艇自动飞行控制系统的控制软件。在飞行过程中,根据预设航线和实时指令,通过改变控制变量,进而改变飞艇的飞行状态变量,实现对飞艇飞行姿态和轨迹的自动控制。
上述各实施例仅用于说明本发明,其中各部件的结构、连接方式和制作工艺等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (7)

1.一种无人自主飞艇的飞行控制系统的建立方法,其特征在于:所述无人自主飞艇包括三个并排设置的椭球形气囊,中间的椭球形气囊大于两侧的两个椭球形气囊,所述两侧的两个椭球形气囊对称设置在所述中间的椭球形气囊两侧,且分别与所述中间的椭球形气囊侧部连接,使三个椭球形气囊内部连通;所述中间的椭球形气囊的腹部设置有一吊舱,所述吊舱内设置有一飞行控制系统,所述飞行控制系统包括传感器信息预处理单元和飞行控制器单元;所述传感器信息预处理单元包括九轴惯导、多模卫星定位、气压高度传感器、温度传感器、湿度传感器和无线传感器,以及用于接收各传感器数据的传感器信息预处理器;其中,所述九轴惯导由加速度传感器、三轴陀螺仪和地磁传感器集成,所述多模卫星定位由GPS和北斗系统集成;所述飞行控制器单元包括一飞行控制器、两个数据链路、一遥控通道和一地面控制中心;所述飞行控制器采用一高速数字信号处理器;
所述数字信号处理器包括一150MHz/150MIPS的32位中央处理器,128K字节内置闪存,18K字节静态随机存储器,十六个十二位模拟数字转换通道,两个非同步串联端口,一个串行外设接口和一个控制器局域网络端口;
所述飞行控制器接收所述传感器信息预处理器传输的传感器信息,并通过所述两个数据链路和遥控通道与所述地面控制中心进行信息交互;
所述方法包括以下步骤:
1)根据牛顿-欧拉方程推导飞艇的动力学模型;
2)根据飞艇的动力学模型计算飞艇的浮力FB、重力FG和推进力FP
3)根据飞艇的动力学模型计算飞艇的气动压力FA和流体惯性力FI
4)由飞艇的动力学模型推导出飞艇飞行的状态方程;
5)在飞行过程中,根据预设航线和实时指令,通过改变控制变量,进而改变飞艇的飞行状态变量,实现对飞艇飞行姿态和轨迹的自动控制。
2.如权利要求1所述的一种无人自主飞艇的飞行控制系统的建立方法,其特征在于:所述步骤1)中,飞艇的动力学模型为:
M x = F B M B + F G M G + F A M A + F I M I + F P M P ,
其中,方程左边的M=diag(m m m Ix Iy Iz)是质量矩阵,m是飞艇的质量,Ix、Iy和Iz是飞艇滚转、俯仰和偏航的转动惯量;x=[u v w p q r]T表示飞艇的飞行状态变量,即x表示飞艇的线速度和角速度,其中u、v和w分别表示从飞艇的体积中心沿着艇身对称轴指向艇头、艇腹和右舷三个方向的线速度,p、q和r分别代表飞艇滚转、俯仰和偏航运动三个方向轴的角速度;方程右边表示飞艇所受的合力和合力矩,其中,FB、FG、FA、FI、FP分别表示浮力、重力、气动压力、流体惯性力和推进力;MB、MG、MA、MI、MP分别表示浮力、重力、气动压力、流体惯性力和推进力的力矩。
3.如权利要求1或2所述的一种无人自主飞艇的飞行控制系统的建立方法,其特征在于:所述步骤2)中,所述浮力FB的计算公式为:
FB=ρV,
其中,ρ表示空气密度,V表示飞艇体积;
所述重力FG的计算公式为:
FG=mg,
其中,g表示重力加速度;
所述推进力FP的计算公式为:
FP=c1n2+c2nv,
其中,c1、c2表示推进装置固有的参数,n表示推进电机的转速,v表示飞艇的速率。
4.如权利要求1或2所述的一种无人自主飞艇的飞行控制系统的建立方法,其特征在于:所述步骤3)中,所述飞艇的气动压力FA以及由气动压力FA产生的气动力矩MA包括阻力Xa、侧力Ya、升力Za以及滚转力矩La、俯仰力矩Ma和偏航力矩Na;所述气动压力FA和所述气动力矩MA由气动系数决定,所述气动系数包括阻力系数CX、侧力系数CY、升力系数CZ、滚转力矩系数Cl、俯仰力矩系数Cm和偏航力矩系数Cn,所述气动系数通过飞艇网格模型进行仿真计算获得;所述气动压力FA和所述气动力矩MA与所述气动系数的关系如下:
所述阻力Xa的计算公式为:
X a = - QV 2 3 C X ,
其中, Q = 1 2 ρv 2 ;
所述侧力Ya的计算公式为:
Y a = QV 2 3 C Y ,
所述升力Za的计算公式为:
Z a = - QV 2 3 C Z ,
所述滚转力矩La的计算公式为:
La=QVCl
所述俯仰力矩Ma的计算公式为:
Ma=QVCm
所述偏航力矩Na的计算公式为:
Na=QVCn
所述流体惯性力FI采用附加质量矩阵Madd的形式来计算:
M a d d = m 11 0 0 0 0 0 0 m 22 0 0 0 0 0 0 m 33 0 0 0 0 0 0 m 44 0 0 0 0 0 0 m 55 0 0 0 0 0 0 m 66 ,
其中,m11=k1m,m22=m33=k2m,m44=0,m55=m66=k'Iz;k1,k2,k'是Lamb k系数,这些参数均通过飞艇模型实测得到。
5.如权利要求3所述的一种无人自主飞艇的飞行控制系统的建立方法,其特征在于:所述步骤3)中,所述飞艇的气动压力FA以及由气动压力FA产生的气动力矩MA包括阻力Xa、侧力Ya、升力Za以及滚转力矩La、俯仰力矩Ma和偏航力矩Na;所述气动压力和所述气动力矩由气动系数决定,所述气动系数包括阻力系数CX、侧力系数CY、升力系数CZ、滚转力矩系数Cl、俯仰力矩系数Cm和偏航力矩系数Cn,所述气动系数通过飞艇网格模型进行仿真计算获得;所述气动压力FA和所述气动力矩MA与所述气动系数的关系如下:
所述阻力Xa的计算公式为:
X a = - QV 2 3 C X ,
其中, Q = 1 2 ρv 2 ;
所述侧力Ya的计算公式为:
Y a = QV 2 3 C Y ,
所述升力Za的计算公式为:
Z a = - QV 2 3 C Z ,
所述滚转力矩La的计算公式为:
La=QVCl
所述俯仰力矩Ma的计算公式为:
Ma=QVCm
所述偏航力矩Na的计算公式为:
Na=QVCn
所述流体惯性力FI采用附加质量矩阵Madd的形式来计算:
M a d d = m 11 0 0 0 0 0 0 m 22 0 0 0 0 0 0 m 33 0 0 0 0 0 0 m 44 0 0 0 0 0 0 m 55 0 0 0 0 0 0 m 66 ,
其中,m11=k1m,m22=m33=k2m,m44=0,m55=m66=k'Iz;k1,k2,k'是Lamb k系数,这些参数均通过飞艇模型实测得到。
6.如权利要求1或2或5所述的一种无人自主飞艇的飞行控制系统的建立方法,其特征在于:所述步骤4)中,由飞艇的数学模型推导出飞艇飞行的状态方程:
x=f(x,u),
其中,向量x=[u v w p q r]T表示飞艇的飞行状态变量,向量u=(n δe δd)T表示控制变量,n表示推进电机的转速,δe表示推进舵的调节角度,δd表示尾舵的调节角度,f( )是映射函数。
7.如权利要求2所述的一种无人自主飞艇的飞行控制系统的建立方法,其特征在于:所述步骤4)中,由飞艇的数学模型推导出飞艇飞行的状态方程:
x=f(x,u),
其中,向量x=[u v w p q r]T表示飞艇的飞行状态变量,向量u=(n δe δd)T表示控制变量,n表示推进电机的转速,δe表示推进舵的调节角度,δd表示尾舵的调节角度,f( )是映射函数。
CN201410333398.0A 2014-07-14 2014-07-14 一种无人自主飞艇及其飞行控制系统的建立方法 Expired - Fee Related CN104118555B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410333398.0A CN104118555B (zh) 2014-07-14 2014-07-14 一种无人自主飞艇及其飞行控制系统的建立方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410333398.0A CN104118555B (zh) 2014-07-14 2014-07-14 一种无人自主飞艇及其飞行控制系统的建立方法

Publications (2)

Publication Number Publication Date
CN104118555A CN104118555A (zh) 2014-10-29
CN104118555B true CN104118555B (zh) 2016-08-24

Family

ID=51764244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410333398.0A Expired - Fee Related CN104118555B (zh) 2014-07-14 2014-07-14 一种无人自主飞艇及其飞行控制系统的建立方法

Country Status (1)

Country Link
CN (1) CN104118555B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015005153T5 (de) * 2014-11-14 2017-08-03 Christopher Betts Ein verbessertes Luftschiff
CN104749965B (zh) * 2015-03-24 2018-06-19 北方工业大学 非线性多舱混联欧拉定步长仿真方法
CN104793498B (zh) * 2015-05-04 2016-03-23 中国人民解放军国防科学技术大学 一种自主飞艇定点驻留控制方法
CN104793629B (zh) * 2015-05-04 2017-09-26 中国人民解放军国防科学技术大学 一种飞艇三维航迹跟踪的反步神经网络控制方法
CN104943844A (zh) * 2015-05-21 2015-09-30 东莞市诸葛流智能系统有限公司 可在室内漂浮飞行工作的机器人
CN105425814A (zh) * 2015-11-24 2016-03-23 木牛(青岛)科技有限公司 一种无人机控制系统及控制方法
CN106292695A (zh) * 2015-12-11 2017-01-04 中国特种飞行器研究所 一种用于小型无人飞艇的自动飞控系统
CN108216548A (zh) * 2016-12-15 2018-06-29 深圳光启空间技术有限公司 一种用于飞艇的控制方法和装置
CN107117280A (zh) * 2017-05-11 2017-09-01 南方科技大学 飞艇降落控制方法和装置
CN107544532B (zh) * 2017-10-11 2020-07-03 中国人民解放军63653部队 一种低空飞艇的长航程高海拔飞行任务规划方法
CN113212728B (zh) * 2021-05-31 2023-03-31 中国航空工业集团公司西安航空计算技术研究所 一种飞艇气囊压力采集、控制系统及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315242B1 (en) * 1999-12-21 2001-11-13 Lockheed Martin Corporation Propulsion system for a semi-buoyant vehicle with an aerodynamic
WO2001094172A1 (en) * 2000-06-05 2001-12-13 Advanced Technologies Group Limited Hybrid air vehicle
CN100458624C (zh) * 2004-01-13 2009-02-04 上海大学 无人飞艇的半自主飞行控制系统及其控制方法
CN1305194C (zh) * 2004-12-17 2007-03-14 华北电力大学(北京) 电力线路巡检机器人飞机及其控制系统
US8016229B2 (en) * 2008-07-07 2011-09-13 Lockheed Martin Corporation Retracting air cushioned landing system for air vehicles
US8167240B2 (en) * 2009-03-13 2012-05-01 Lockheed Martin Corporation System and methods for buoyancy management in an airship
CN102360218A (zh) * 2011-10-14 2012-02-22 天津大学 基于arm和fpga的无人直升机导航与飞行控制系统
CN102874399A (zh) * 2012-10-13 2013-01-16 广西电网公司南宁供电局 用于输电线路巡视的无人自动驾驶飞艇

Also Published As

Publication number Publication date
CN104118555A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
CN104118555B (zh) 一种无人自主飞艇及其飞行控制系统的建立方法
CN107368091A (zh) 一种基于有限时间神经动力学的多旋翼无人飞行器的稳定飞行控制方法
US9849983B2 (en) Aerodynamically shaped, active towed body
CN103294064A (zh) 一种自动驾驶飞行控制系统
CN107264813A (zh) 一种尾坐式垂直起降飞行器飞行控制系统
Heim et al. NASA's Learn-to-Fly Project Overview
Sheng et al. Autonomous takeoff and landing control for a prototype unmanned helicopter
CN103847963A (zh) 一种无人驾驶动力三角翼飞行器
CN105468010A (zh) 多自由度惯性传感器四轴无人机自主导航飞行控制器
US20180286255A1 (en) Autonomously operated dirigible
CN114740762A (zh) 一种基于自抗扰解耦控制策略的动力翼伞半实物仿真系统
CN102902204A (zh) 一种飞艇遥控起飞/着陆预警方法
CN105292472A (zh) 多用途软翼无人机
Ferrell et al. Dynamic flight modeling of a multi-mode flying wing quadrotor aircraft
Inamoto et al. Flight control testing for the development of stratospheric platform airships
Zheng et al. Modeling and path-following control of a vector-driven stratospheric satellite
CN204021249U (zh) 多用途软翼无人机
CN207242004U (zh) 一种低空飞行作业无人机
US20230264838A1 (en) Multipurpose and long endurance hybrid unmanned aerial vehicle
Al-Radaideh et al. UAV testbed building and development for research purposes at the american university of sharjah
Elfes et al. Modelling, control and perception for an autonomous robotic airship
RU2652373C1 (ru) Воздухоплавательный аппарат
CN106585963A (zh) 空中机器人
Fan Flight Control System Simulation for Quadcopter Unmanned Aerial Vehicle (UAV) based on Matlab Simulink
Nshuti et al. Modeling, Simulation and Flight Testing to Support Proof of a Stratospheric Dual Aircraft Platform Concept

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160824

Termination date: 20200714

CF01 Termination of patent right due to non-payment of annual fee