CN104116519B - 基于多边形视野对称性的旋转双平板pet系统及其成像方法 - Google Patents

基于多边形视野对称性的旋转双平板pet系统及其成像方法 Download PDF

Info

Publication number
CN104116519B
CN104116519B CN201410369884.8A CN201410369884A CN104116519B CN 104116519 B CN104116519 B CN 104116519B CN 201410369884 A CN201410369884 A CN 201410369884A CN 104116519 B CN104116519 B CN 104116519B
Authority
CN
China
Prior art keywords
voxel
crystal
submodule
response
sector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410369884.8A
Other languages
English (en)
Other versions
CN104116519A (zh
Inventor
陈雪利
孟凡珍
梁继民
张春晖
曹旭
朱守平
田捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201410369884.8A priority Critical patent/CN104116519B/zh
Publication of CN104116519A publication Critical patent/CN104116519A/zh
Application granted granted Critical
Publication of CN104116519B publication Critical patent/CN104116519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nuclear Medicine (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于多边形视野对称性的旋转双平板PET系统,可以获取多角度投影数据,解决了平板PET系统无法获得完整角度投影数据的问题。本发明还公开了一种基于该系统的成像方法,包括以下步骤:通过数据采集模块获取完整角度投影数据;划分视野、编码晶体和响应线,确定计算所需的体素和相应线编码;计算多边形视野系统响应矩阵利用系统响应矩阵和投影数据进行迭代重建;进行多面体体素到正方体体素的转化,并进行图像显示。本发明提出了利用多边形视野结构的对称性,打破了正方形视野结构对旋转系统对称性的限制,减小了系统矩阵的计算量,提高了PET系统的重建效率;通过调整视野中扇区的大小,本发明可以广泛的应用于旋转平板PET系统中。

Description

基于多边形视野对称性的旋转双平板PET系统及其成像方法
技术领域
本发明涉及核医学影像成像领域,具体涉及一种基于多边形视野对称性的旋转双平板PET系统及其成像方法,可应用于小动物在体成像。
背景技术
PET(Positron Emission Tomography,PET)全称为正电子发射计算机断层扫描,是核医学领域先进的影像技术。PET技术采用解剖形态方式进行功能、代谢和受体显像技术,尤其在肿瘤的早期检测方面占据不可忽视的地位。传统的PET探测器大多采用静态环形模式,虽然可以获得完整角度的角度的采样,但系统的复杂度高,代价大,同时环形结构封闭性强,给采样对象造成不必要的精神压力,同时不便于医生或实验员对采样对象的技术指导;为了降低成本,增加探测器的灵活度,有研究者提出平板PET探测器,由于无法获得完整角度的投影数据,同时,存在严重的反应深度响应,对成像效果有所影响,例如Chien-MinKao等人在“Evaluation of 3D Image Reconstruction Methods for a Dual-HeadSmall-Animal PET Scanner”文章中提出一种静态的双头平板PET探测器,在降低了系统结构的复杂度,但是无法获得完整角度的投影数据;
系统响应矩阵(System Response Matrix,SRM)是联系探测器和示踪剂的桥梁,作为探测器系统成像过程的一种数学描述,其计算主要有实验方法,解析方法和蒙特卡罗仿真方法,实验方法对实验条件的要求较高,而且操作复杂,蒙特卡罗仿真方法对噪声的抑制能力比较低,容易受到噪声的影响,而且仿真时间比较长,解析方法虽然无法精确的描述示踪剂衰变的物理过程,但计算时间较少,而且方便实现;系统响应矩阵的计算作为PET重建的一个关键因素,其规模往往非常大,很难保证对其进行实时处理,其计算、存储和调用效率成为研究者研究的一个主要方向;为了减少系统响应矩阵的复杂度,有研究者提出利用探测器系统的对称性,减少计算响应线的条数或者减少计算体素的数目。清华大学在其申请专利“一种用于双平板PET探测器的图像重建方法”(专利申请号201310055434.7,公开号CN 103099637 A)中公开了基于响应线的静态双平板PET对称性方法,一定程度上简化了系统响应矩阵的计算,提高了系统响应矩阵的压缩比,但在仿真时需要将体素进行扩展,增加了仿真过程的复杂度,因此在一定程度上限制了系统响应矩阵的计算效率,而且这种方法只适用于静态平板PET,对于旋转系统不再具有适用性;June等人在“Efficientmethodologies for system matrix modelling in iterative image reconstructionfor rotating high-resolution PET”文章中提出利用系统的轴向对称性和面间对称性提高系统矩阵的计算效率,鉴于其正方体像素结构,限制了旋转系统对称性的发挥。
发明内容
针对现有技术的不足,本发明旨在提供一种基于多边形视野对称性的旋转双平板PET系统及其成像方法,通过采用多边形视野结构,打破正方形视野结构对旋转系统对称性的限制,缩减需要计算的像素数、提高重建效率;
为了实现上述目的,本发明采用如下技术方案:
基于多边形视野对称性的旋转双平板PET系统包括数据采集模块、控制模块、成像模块和传输模块,所述数据采集模块、成像模块和传输模块均与所述控制模块相连接,所述数据采集模块同时还与所述成像模块相互连接,其中:
数据采集模块:负责进行数据采集,包括双平板PET探测器,所述双平板PET探测器由两个相距一定距离的相对摆放的PET探测板组成,两个探测板绕中心轴旋转;每个PET探测板由一定数目且大小相等的晶体组成,晶体接收核素衰变过程中产生的光子;
控制模块:由计算机系统控制完成,包括系统控制子模块和数据处理子模块,所述系统控制子模块负责完成对数据采集模块采样间隔、采样时刻、旋转速率等方面的控制,所述数据处理子模块负责处理采集到的数据进行信号增强、滤波、衰减校正;
成像模块:由多核计算机系统完成,主要负责进行核素重建,获取核素的分布情况,其中包括负责多线程处理数据的系统矩阵处理子模块以及完成对体素的核素重建以及体素的转化工作的重建子模块;
进一步地,所述系统矩阵处理子模块包括如下四个子模块:
视野划分子模块:用来对成像视野空间进行多面体体素划分,划分视野边界保持与数据采集模块的双平板PET探测器平行;
晶体编码子模块:用来对数据采集模块旋转过程中晶体所在位置的编码,将晶体编码为一个虚拟晶体环;
系统矩阵计算子模块:利用类线追踪方式,完成对重建过程中系统响应矩阵的生成;
对称性处理子模块:用于对视野空间和探测器结构对称性的处理;
进一步地,所述重建子模块包括体素重建子模块和转化子模块两个子模块:
体素重建子模块:利用计算所得系统响应矩阵,利用迭代MLEM算法完成对划分多面体体素的重建工作;
转化子模块:完成由多面体体素到正方体体素的转化,获取核素分布;
传输模块:由帽式滑环组成,用于数据采集模块与计算机处理系统的数据传输。
需要说明的是,组成所述数据采集模块的双平板PET探测器的初始位置保持与水平地面平行,在空间旋转时,所述两个PET探测板之间的间距保持不变并且始终保持平行。
一种基于上述系统的成像方法包括如下步骤:
步骤1,采集数据
利用所述数据采集模块进行数据采集,采集的过程由所述控制模块的系统控制子模块对所述数据采集模块的采样间隔、采样时刻和旋转速率进行控制;
步骤2,数据预处理
将采集到的数据通过所述传输模块传送至所述控制模块的数据处理子模块,完成对采集数据的信号增强、滤波和衰减校正;
步骤3,划分视野空间
利用所述视野划分子模块,保持视野空间的多边形结构,并按层、扇区、环、体素逐步细化的方式,将视野步步细化为截面为三角形的多面体体素;
步骤4,编码晶体
通过所述晶体编码子模块,对所述数据采集模块旋转过程中晶体所在位置的编码,将晶体编码为一个虚拟晶体环;将连接晶体的连线作为响应线,响应线采用(晶体i,晶体j)的方式进行调用,其起始点设在晶体的中心位置,若晶体j和晶体i不在两条相对边界上,剔除连接该晶体j和晶体i的响应线,只对连接相对边界晶体的响应线进行保存处理;
步骤5,通过所述系统矩阵计算子模块,利用类线追踪方式,完成对重建过程中系统响应矩阵的计算;
步骤5.1,确定响应线穿过扇区的每个扇区环的交点坐标hr=(xr,yr,zr),r表示环编码;通过线面交点确定此条响应线穿过本环的体素数,并确定穿过第一体素的长度;
步骤5.2,利用交点坐标hr,确定响应线穿过每层的第一个体素索引为:
index=t+(h-1)2+(z-1)×H2×S
其中,t为此体素在所在环的位置,h为体素所在环,z为体素所在层,H为环总数,S为扇区总数;
步骤5.3,确定响应线穿过本环其他体素的长度;通过判断体素是否在本环,若在,利用点面间的距离公式计算两者的交点坐标,以步骤5.2的方式获取交点索引值,并计两交点长度,作为系统响应矩阵元素;否则,结束计算;
步骤6,通过所述对称性处理子模块,利用视野空间和双平板PET探测器结构对称性,简化系统响应矩阵的计算;
步骤6.1,利用扇区间对称性,确定计算所需体素数和响应线:
只需确定一个扇区的体素,选取一个扇区中体素作为计算体素,记所述计算体素数为M;针对确定计算体素,利用数据采集模块旋转过程的对称性,只需确定在起始位置时的晶体构成的响应线,记响应线条数为N;
步骤6.2,利用扇区内对称性,进一步减少计算响应线数:
对于平行响应线满足穿过体素的上截面的位置相同时,只计算穿过扇区最长的响应线与相交体素的长度;对于与之平行的响应线,只计算穿过扇区的体素数目即可。
步骤7,重建体素
在所述体素重建子模块内,利用计算所得系统响应矩阵,通过迭代算法MLEM重建算法重建出多面体体素的体素值,对划分多面体体素进行重建;
步骤8,体素转化,获取成像结果
由所述转化子模块完成由多面体体素到正方体体素的转化,获取体内核素分布,以显示核素成像结果。
需要说明的是,所述步骤3的具体实施方法如下:
顺时针编码扇区,记扇区总数为S,由里及外等高度编码环数,记环总数为H,每一环划分为不同的三角体素,三角截面为等腰三角形,正三角体素和倒三角体素交叉排列,组成多边形视野空间;每个环上的三角体素数与环总数H保持正比例增加,呈2×H-1的关系。
需要说明的是,步骤4中对晶体编码的具体实施方法是,以数据采集模块起始位置为起点,将停留时刻的晶体进行统一编码,虚拟成一个晶体环,晶体编码以顺时针方向依次递增,两条相对的边界的晶体编码相差n×m,其中n为晶体采样次数,m为每条边的晶体数。
需要进一步说明的是,所述步骤6.1利用扇区间对称性,确定计算所需体素数和响应线,包括具体步骤如下:
步骤6.1.1,确定与第一个扇区体素index1相对应的第s个扇区的体素indexs
由层c,扇区s,环h,体素v的体素索引方式,对于第一个扇区的体素标记为(c,1,h,v),则第s个扇区上的体素标记为(c1,s,h1,v1),若第s个扇区的体素与第一个扇区相对应,则需满足:
c=c1
h=h1
v=v1
indexs=v1+(h1-1)2+H2×(s-1)+c×Cnum
index1=v+(h-1)2+c×Cnum
其中,Cnum表示每层的体素数;
步骤6.1.2,确定体素indexs与体素index1对应的响应线编码:
设定穿过体素index1的响应线l为(晶体i',晶体j'),计算晶体i'和晶体j'在探测板晶体环上的所在边晶体位置:
ci'=i'/CRnum
cj'=(j'+n×m)/CRnum
其中/表示取余操作,CRnum表示每个扇区的体素总数,n为晶体采样次数,m为每条边的晶体数。;
设定穿过体素indexs的响应线ls为(晶体ii,晶体jj),计算晶体ii与晶体jj在探测板晶体环上所在边的晶体位置:
cii=(ii+(i-1)×n)/CRnum
cjj=(jj+(i-1)×n)/CRnum
其中/表示取余操作,CRnum表示每个扇区的体素总数;
如果满足条件
ci'=cii
cj'=cjj
则系统响应矩阵为:
Q(ls,indexs)=Q(l,index1)
需要说明的是,步骤8体素转化,获取成像结果的具体实施流程如下:
步骤8.1,令多面体体素的厚度和正方体体素的边界长度相等,记正方体截面面积为SF,正方体体素数为FCnum,多面体体素数为VCnum
步骤8.2,计算体素的重叠体积RP,确定转化矩阵T,T的行列数分别为VCnum,FCnum;T(vi,vj)表示第vi个三角体素与第vj个正方体体素的截面的重叠面积和正方体体素截面积的比值,即
步骤8.3,利用转化矩阵T求解出每层上正方体体素的体素值:
FC v i = T ( v i , v j ) × VC v j ;
步骤8.4,对每层重复步骤8.3,获取最终的正方体体素划分体素值。
本发明的有益效果在于:
第一、采用多边形视野结构,打破了正方形视野结构对旋转系统对称性的限制,充分利用扇区间对称性和扇区内对称性,大幅度的缩减了所需计算的像素数,以此为基础,系统响应矩阵的计算也大幅度的降低,因而可以在不减弱PET重建质量的同时,缩短PET重建时间,提高重建效率;
第二、采用旋转系统结构,在保留平板PET成本低,灵活性强等优点的同时,可以获取完整角度的投影数据,改善了平板PET重建效果差等问题;
第三、采用三角体素进行像素划分以及采用解析方法获取系统响应矩阵,提高了系统响应矩阵的计算效率,加快了图像重建速率;
第四、特殊的视野结构不需要对平板探测器晶体或者体素数进行扩展,相比于现有技术更方便、快捷。
附图说明
图1为基于多边形视野对称性的旋转双平板PET系统示意图;
图2为基于多边形视野对称性的旋转双平板PET系统成像方法的实施流程图;
图3为图1中数据采集模块1的位置结构图;
图4为旋转双平板PET系统视野划分图,其中左图为视野扇区编码分布图,右图为扇区内像素编码分布图;
图5为晶体结构二维编码图;
图6为基于多边形视野对称性的旋转双平板PET系统对称性分析图;
图7为多边形视野到四边形视野过程转化示意图。
具体实施方式
以下将结合附图对本发明作进一步的描述,需要说明的是,本实施例以本技术方案为前提,给出了详细的实施方式和实施步骤,但并不限于本实施例。
如图1所示,一种基于多边形视野对称性的旋转双平板PET系统包括数据采集模块1、控制模块2、成像模块3和传输模块4,所述数据采集模块1、成像模块3和传输模块4均与所述控制模块2相连接,所述数据采集模块1同时还与所述成像模块3相互连接,其中:
数据采集模块1:负责进行数据采集,其中包括双平板PET探测器101;所述双平板PET探测器101由两个相距一定距离的相对摆放的PET探测板组成,两个探测板绕中心轴旋转;每个PET探测板由一定数目且大小相等的晶体组成,晶体接收核素衰变过程中产生的光子;如图3所示,组成所述数据采集模块1的双平板PET探测器101的初始位置T201保持与水平地面平行,在空间旋转时,所述两个PET探测板之间的间距保持不变并且始终保持平行。
控制模块2:由计算机系统控制完成,包括系统控制子模块201和数据处理子模块202,所述系统控制子模块201负责完成对数据采集模块1的控制,所述数据处理子模块202负责处理采集到的数据;
成像模块3:由多核计算机系统完成,主要负责进行核素重建,获取核素的分布情况,包括负责多线程处理数据的系统矩阵处理子模块31以及完成对体素的核素重建以及体素的转化工作的重建子模块32;
其中,所述系统矩阵处理子模块31由视野划分子模块311、晶体编码子模块312、系统矩阵计算子模块313和对称性处理子模块314构成:
视野划分子模块311用于对成像视野空间进行多面体体素划分,划分视野边界保持与数据采集模块1的双平板PET探测器101平行;
晶体编码子模块312用于对所述数据采集模块1旋转过程中晶体所在位置的编码,将晶体编码为一个虚拟晶体环;
系统矩阵计算子模块313负责利用类线追踪方式,完成对重建过程中系统响应矩阵的生成;
对称性处理子模块314用于对视野空间和双平板PET探测器101结构对称性的处理;
所述重建子模32块则由体素重建子模块321和转化子模块322构成,体素重建子模块321利用计算所得系统响应矩阵,通过MLEM迭代算法完成对多面体体素的重建工作;转化子模块322负责完成由多面体体素到正方体体素的转化,获取核素分布;
传输模块4:由帽式滑环组成,用于数据采集模块1与控制模块2的数据传输。
如图2所示,基于上述系统,一种基于多边形视野对称性的旋转双平板PET系统成像方法包括如下步骤:
步骤1,采集数据
利用所述数据采集模块1进行数据采集,采集的过程由所述控制模块2的系统控制子模块201对所述数据采集模块1的采样间隔、采样时刻和旋转速率进行控制;
步骤2,数据预处理
将采集到的数据通过所述传输模块4传送至所述控制模块2的数据处理子模块202,所述数据处理子模块202对采集到的数据进行信号增强、滤波和衰减校正;
步骤3,划分视野空间
利用所述视野划分子模块311,保持视野空间的多边形结构,并按层、扇区、环、体素逐步细化的方式,将视野步步细化为截面为三角形的多面体体素;
进一步地,所述步骤3的具体实施流程如下:
如图4所示,顺时针编码扇区,扇区总数为S,分别为扇区编码为S1-S8,由里及外等高度编码环H301,环总数为H,每一环划分为不同的三角体素,三角截面为等腰三角形,正三角体素V301和倒三角体素V302交叉排列;每个环上的体素数与环数H保持正比例增加,呈2×H-1的关系;
步骤4,编码晶体
通过所述晶体编码子模块,对数据采集模块旋转过程中晶体所在位置的编码,将晶体编码为一个虚拟晶体环;将连接探测器晶体的连线作为响应线,起始点设在晶体的中心位置,响应线采用(晶体i,晶体j)的方式进行调用;晶体i(C401)和晶体j(C402)不在两条相对边界上,故对响应线L401进行剔除,只对连接相对边界晶体的响应线L402进行保存处理;
其中,将晶体编码为一个虚拟晶体环的具体方法为:
如图5所示,利用所述晶体编码子模块312,以对数据采集模块初始位置T201为起点,将停留时刻的晶体进行统一编码,虚拟成一个晶体环403,晶体编码以顺时针方向依次递增,如图5中将晶体按顺时针编码为1-14、15-28、29-42、43-56、57-70、71-84、85-98、99-112;两条相对的边界(401、402)的晶体编码相差n×m,其中n为晶体采样次数,m为每条边的晶体数;
步骤5,通过所述系统矩阵计算子模块313,利用类线追踪方式,完成对重建过程中系统响应矩阵的计算;所述步骤5具体包括如下步骤:
步骤5.1,确定响应线穿过扇区的每个扇区环的交点坐标;hr=(xr,yr,zr),r表示环编码,通过线面交点确定此条响应线穿过本体素环的体素数,并确定穿过第一体素的长度;
步骤5.2,利用交点坐标hr,确定响应线穿过每层的第一个体素索引;
index=t+(h-1)2+(z-1)×H2×S;
其中,t为此体素在所在环的位置,h为体素所在环,z为体素所在层;
步骤5.3,确定响应线穿过本环其他体素的长度;通过判断体素是否在本环,若在,利用点面间的距离公式计算两者的交点坐标,以步骤5.2的方式获取交点索引值,并计算两交点长度,作为系统响应矩阵元素;否则,结束计算。
步骤6,如图4、图5、图6所示,通过所述对称性处理子模块314,利用视野空间F401和双平板PET探测器101结构对称性,简化系统响应矩阵的计算,具体为:
步骤6.1,利用扇区间对称性,确定计算所需体素数和响应线:
只需确定一个扇区的体素,选取一个扇区中体素S1作为计算体素,体素数为M;针对确定体素,利用数据采集模块1旋转过程的对称性,只需确定在起始位置T201时的晶体构成的响应线,响应线条数为N:
步骤6.1.1,确定与第一个扇区体素V502相对应的第s个扇区的体素V501的索引号index1、indexs;由体素索引方式(层c,扇区s,环h,体素v),对于第一个扇区的体素标记为(c,1,h,v),则第s个扇区上的体素标记为(c1,s,h1,v1),若第s个扇区的体素与第一个扇区S1相对应,则需满足
其中,Cnum表示每层的体素数;
步骤6.1.2,确定体素V501与体素V502对应的响应线编码
设定穿过体素V502的响应线l为(晶体i',晶体j'),计算晶体i'和晶体j'在探测板晶体环上的所在边晶体位置;
ci'=i'/CRnum
cj'=(j'+n×m)/CRnum
其中,/表示取余操作,CRnum表示每个扇区的体素总数,n为晶体采样次数,m为每条边的晶体数;
设定穿过体素V501的响应线ls为(晶体ii,晶体jj),计算晶体ii与晶体jj在探测板晶体环406上所在边的晶体位置:
其中,/表示取余操作,CRnum表示每个扇区的体素总数;
如果,则系统响应矩阵为:
Q(ls,indexs)=Q(l,index1);
步骤6.2,利用扇区内对称性,进一步减少计算响应线数
对于平行响应线满足穿过体素的上截面的位置相同时,只需计算穿过扇区最长的响应线L502与相交体素的长度;对于与之平行的响应线L501,只需计算穿过扇区的体素数目即可;
以二维情况进行说明,如图6所示,L502穿过的像素为C”=(611,610,69,68,55,54,53),其中ij表示第i个像素环的第j个像素,n为7,计算穿过此n个像素长度值存储在数据D中,假定D=(a,b,c,d,e,f,g),对于响应线L501穿过的像素为C=(67,66,65,64,41),n为5,则有以下参数化表示:
h(C(i),L501)=h(C”(i),L502);
步骤7,在所述体素重建子模块321内,利用计算所得系统响应矩阵,通过迭代算法MLEM重建算法重建出多面体体素的体素值,对划分多面体体素进行重建;
步骤8,由所述转化子模块322完成由多面体体素到正方体体素的转化,获取核素分布。如图7所示,转化是设定多面体体素与正方体体素的厚度相同,通过计算两者截面的重叠面积,如M601、M602,获取转化矩阵元素。具体步骤如下:
步骤8.1,令多面体体素的厚度和正方体体素的边界长度相等,记正方体截面面积为SF,正方体体素数为FCnum,多面体体素数为VCnum
步骤8.2,计算体素的重叠体积RP,确定转化矩阵T,T的行列数分别为VCnum,FCnum;T(vi,vj)表示第vi个三角体素与第vj个正方体体素的截面的重叠面积和正方体体素截面积的比值,即
步骤8.3,利用转化矩阵T求解出每层上正方体体素的体素值
FC v i = T ( v i , v j ) × VC v j ;
步骤8.4,对每层重复步骤步骤8.3,获取最终的正方体体素划分体素值。
对于本领域的技术人员来说,可以根据以上的技术方案和构思,做出各种相应的改变和变形,而所有的这些改变和变形都应该包括在本发明权利要求的保护范围之内。

Claims (7)

1.基于多边形视野对称性的旋转双平板PET系统,其特征在于,所述系统包括数据采集模块、控制模块、成像模块和传输模块,所述数据采集模块、成像模块和传输模块均与所述控制模块相连接,所述数据采集模块同时还与所述成像模块相互连接,其中:
数据采集模块:负责进行数据采集,包括双平板PET探测器,所述双平板PET探测器由两个相距一定距离的相对摆放的PET探测板组成,两个探测板绕中心轴旋转,每个PET探测板由一定数目且大小相等的晶体组成,晶体接收核素衰变过程中产生的光子;
控制模块:由计算机系统控制完成,包括系统控制子模块和数据处理子模块,所述系统控制子模块负责完成对数据采集模块的控制,所述数据处理子模块负责处理采集到的数据;
成像模块:由多核计算机系统完成,主要负责进行核素重建,获取体内核素的分布情况,包括系统矩阵处理子模块以及重建子模块,所述系统矩阵处理子模块多线程处理数据,利用类线追踪方式实现对系统响应矩阵的计算;而所述重建子模块,用于完成对体素的核素重建以及体素的转化工作;
其中,所述系统矩阵处理子模块由视野划分子模块、晶体编码子模块、系统矩阵计算子模块和对称性处理子模块构成:
视野划分子模块用于对成像视野空间进行多面体体素划分,划分视野边界保持与数据采集模块的双平板PET探测器平行;
晶体编码子模块用于对所述数据采集模块旋转过程中晶体所在位置的编码,将晶体编码为一个虚拟晶体环;
系统矩阵计算子模块负责利用类线追踪方式,完成对重建过程中系统响应矩阵的生成;
对称性处理子模块用于对视野空间和双平板PET探测器结构对称性的处理;
所述重建子模块则由体素重建子模块和转化子模块构成,体素重建子模块利用计算所得系统响应矩阵,通过MLEM迭代算法完成对多面体体素的重建工作;转化子模块负责完成由多面体体素到正方体体素的转化,获取核素分布;
传输模块:由帽式滑环组成,用于数据采集模块与控制模块的数据传输。
2.根据权利要求1所述的基于多边形视野对称性的旋转双平板PET系统,其特征在于,组成所述数据采集模块的双平板PET探测器的初始位置保持与水平地面平行,在空间旋转时,所述两个PET探测板之间的间距保持不变并且始终保持平行。
3.一种根据权利要求1的基于多边形视野对称性的旋转双平板PET系统成像方法,其特征在于,所述方法包括如下步骤:
步骤1,采集数据
利用所述数据采集模块进行数据采集,采集的过程由所述控制模块的系统控制子模块对所述数据采集模块的采样间隔、采样时刻和旋转速率进行控制;
步骤2,数据预处理
将采集到的数据通过所述传输模块传送至所述控制模块的数据处理子模块,完成对采集数据的信号增强、滤波和衰减校正;
步骤3,利用所述视野划分子模块,划分视野空间
保持视野空间的多边形结构,并按层、扇区、环、体素逐步细化的方式,将视野步步细化为截面为三角形的多面体体素;
步骤4,编码晶体
通过所述晶体编码子模块,对所述数据采集模块旋转过程中晶体所在位置的编码,将晶体编码为一个虚拟晶体环;将连接晶体的连线作为响应线,响应线采用(晶体i,晶体j)的方式进行调用,其起始点设在晶体的中心位置,若晶体j和晶体i不在两条相对边界上,剔除连接该晶体j和晶体i的响应线,只对连接相对边界晶体的响应线进行保存处理;
步骤5,通过所述系统矩阵计算子模块,利用类线追踪方式,完成对重建过程中系统响应矩阵的计算:
步骤5.1,确定响应线穿过扇区的每个扇区环的交点坐标hr=(xr,yr,zr),r表示环编码;通过线面交点确定此条响应线穿过本环的体素数,并确定穿过第一体素的长度;
步骤5.2,利用交点坐标hr,确定响应线穿过每层的第一个体素索引为:
index=t+(h-1)2+(z-1)×H2×S
其中,t为此体素在所在环的位置,h为体素所在环,z为体素所在层,H为环总数,S为扇区总数;
步骤5.3,确定响应线穿过本环其他体素的长度:通过判断体素是否在本环,若在,利用点面间的距离公式计算两者的交点坐标,以步骤5.2的方式获取交点索引值,并计两交点长度,作为系统响应矩阵元素;否则,结束计算;
步骤6,通过所述对称性处理子模块,利用视野空间和双平板PET探测器结构对称性,简化系统响应矩阵的计算:
步骤6.1,利用扇区间对称性,确定计算所需体素数和响应线:
只需确定一个扇区的体素,选取一个扇区中体素作为计算体素,记所述计算体素数为M;针对确定计算体素,利用数据采集模块旋转过程的对称性,只需确定在起始位置时的晶体构成的响应线,记响应线条数为N;
步骤6.2,利用扇区内对称性,进一步减少计算响应线数:
对于平行响应线满足穿过体素的上截面的位置相同时,只计算穿过扇区最长的响应线与相交体素的长度;对于与之平行的响应线,只计算穿过扇区的体素数目即可;
步骤7,重建体素
在所述体素重建子模块内,利用计算所得系统响应矩阵,通过迭代算法MLEM算法重建出多面体体素的体素值,对划分多面体体素进行重建;
步骤8,体素转化,获取成像结果
由所述转化子模块完成由多面体体素到正方体体素的转化,获取体内核素分布,以显示核素成像结果。
4.根据权利要求3所述的基于多边形视野对称性的旋转双平板PET系统成像方法,其特征在于,所述步骤3的具体实施流程如下:
顺时针编码扇区,记扇区总数为S,由里及外等高度编码环数,记环总数为H,每一环划分为不同的三角体素,三角截面为等腰三角形,正三角体素和倒三角体素交叉排列,组成多边形视野空间;每个环上的三角体素数与环总数H保持正比例增加,呈2×H-1的关系。
5.根据权利要求3所述的基于多边形视野对称性的旋转双平板PET系统成像方法,其特征在于,步骤4中对晶体编码的具体方法是,以所述数据采集模块起始位置为起点,将停留时刻的晶体进行统一编码,虚拟成一个晶体环,晶体编码以顺时针方向依次递增,两条相对的边界的晶体编码相差n×m,其中n为晶体采样次数,m为每条边的晶体数。
6.根据权利要求3所述的基于多边形视野对称性的旋转双平板PET系统成像方法,其特征在于,步骤6.1中利用扇区间对称性,确定计算所需体素数和响应线,实施步骤如下:
步骤6.1.1,确定与第一个扇区体素index1相对应的第s个扇区的体素indexs
由层c,扇区s,环h,体素v的体素索引方式,对于第一个扇区的体素标记为(c,1,h,v),则第s个扇区上的体素标记为(c1,s,h1,v1),若第i个扇区的体素与第一个扇区相对应,则需满足
c=c1
h=h1
v=v1
其中,Cnum表示每层的体素数;
步骤6.1.2,确定体素indexs与体素index1对应的响应线编码:
设定穿过体素index1的响应线l为(晶体i',晶体j'),计算晶体i'和晶体j'在探测板晶体环上的所在边晶体位置:
c i ′ = i ′ / CR n u m c j ′ = ( j ′ + n × m ) / CR n u m ;
其中/表示取余操作,CRnum表示每个扇区的体素总数,其中n为晶体采样次数,m为每条边的晶体数;
设定穿过体素indexs的响应线ls为(晶体ii,晶体jj),计算晶体ii与晶体jj在探测板晶体环上所在边的晶体位置:
c i i ( i i + ( i - 1 ) × n ) / CR n u m c j j ( j j + ( i - 1 ) × n ) / CR n u m ;
其中/表示取余操作;
如果满足条件
c i ′ = c i i c j ′ = c j j ;
则系统响应矩阵为
Q(ls,indexs)=Q(l,index1)。
7.根据权利要求3所述的基于多边形视野对称性的旋转双平板PET系统成像方法,其特征在于,所述步骤8的具体步骤如下:
步骤8.1,令多面体体素的厚度和正方体体素的边界长度相等,记正方体截面面积为SF,正方体体素数为FCnum,多面体体素数为VCnum
步骤8.2,计算体素的重叠体积RP,确定转化矩阵T,T的行列数分别为VCnum,FCnum;T(vi,vj)表示第vi个三角体素与第vj个正方体体素的截面的重叠面积和正方体体素截面积的比值,即
步骤8.3,利用转化矩阵T求解出每层上正方体体素的体素值
FC v i = T ( v j , v i ) × VC v j ;
步骤8.4,对每层重复步骤8.3,获取最终的正方体体素划分体素值。
CN201410369884.8A 2014-07-30 2014-07-30 基于多边形视野对称性的旋转双平板pet系统及其成像方法 Active CN104116519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410369884.8A CN104116519B (zh) 2014-07-30 2014-07-30 基于多边形视野对称性的旋转双平板pet系统及其成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410369884.8A CN104116519B (zh) 2014-07-30 2014-07-30 基于多边形视野对称性的旋转双平板pet系统及其成像方法

Publications (2)

Publication Number Publication Date
CN104116519A CN104116519A (zh) 2014-10-29
CN104116519B true CN104116519B (zh) 2016-09-07

Family

ID=51762307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410369884.8A Active CN104116519B (zh) 2014-07-30 2014-07-30 基于多边形视野对称性的旋转双平板pet系统及其成像方法

Country Status (1)

Country Link
CN (1) CN104116519B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105832358B (zh) * 2016-03-16 2019-02-19 西安电子科技大学 一种基于系统校准的旋转双平板pet系统的成像方法
CN107220924B (zh) * 2017-04-11 2019-10-22 西安电子科技大学 一种基于gpu加速pet图像重建的方法
CN108542409B (zh) * 2018-03-29 2020-06-30 中国科学院高能物理研究所 一种测量双平板pet系统噪声等效计数率的方法
CN108763758B (zh) * 2018-05-29 2022-05-03 南京航空航天大学 一种非完备环状pet旋转扫描模式的gate仿真方法
CN109035409B (zh) * 2018-07-05 2023-06-23 西安电子科技大学 一种基于简化的距离驱动与立体角模型的srm及其构建方法
CN109498048B (zh) * 2019-01-04 2020-08-04 南京航空航天大学 一种加速正电子图像重建的系统矩阵生成与处理方法
CN115330900B (zh) * 2022-10-13 2022-12-27 中加健康工程研究院(合肥)有限公司 一种用于pet图像重构的系统矩阵快速迭代计算方法
CN117648195B (zh) * 2024-01-29 2024-04-16 北京大学 一种基于lor编码及负载均衡的pet图像重建方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203668A (zh) * 1995-10-12 1998-12-30 阿达克实验室 用于双头伽马照相机的分辨率增强
US6171243B1 (en) * 1997-05-30 2001-01-09 Picker International, Inc. Combination of collimated and coincidence information for positron imaging
CN101680953A (zh) * 2007-05-16 2010-03-24 皇家飞利浦电子股份有限公司 虚拟pet探测器和用于pet的准像素化读出方案
CN101990643A (zh) * 2008-04-10 2011-03-23 皇家飞利浦电子股份有限公司 模块化多几何结构pet系统
CN102497815A (zh) * 2009-01-23 2012-06-13 杰弗逊科研有限责任公司 利用两个共配准的相对的伽马成像头系统的高分辨率单光子平面和spect成像脑和颈部
CN103099637A (zh) * 2013-02-21 2013-05-15 清华大学 一种用于双平板pet探测器的图像重建方法
CN103190929A (zh) * 2013-03-23 2013-07-10 明峰医疗系统股份有限公司 一种pem探测器装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236050B1 (en) * 1996-02-02 2001-05-22 TüMER TüMAY O. Method and apparatus for radiation detection
US8698087B2 (en) * 2008-11-03 2014-04-15 The Trustees Of The University Of Pennsylvania Limited angle tomography with time-of-flight PET

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203668A (zh) * 1995-10-12 1998-12-30 阿达克实验室 用于双头伽马照相机的分辨率增强
US6171243B1 (en) * 1997-05-30 2001-01-09 Picker International, Inc. Combination of collimated and coincidence information for positron imaging
CN101680953A (zh) * 2007-05-16 2010-03-24 皇家飞利浦电子股份有限公司 虚拟pet探测器和用于pet的准像素化读出方案
CN101990643A (zh) * 2008-04-10 2011-03-23 皇家飞利浦电子股份有限公司 模块化多几何结构pet系统
CN102497815A (zh) * 2009-01-23 2012-06-13 杰弗逊科研有限责任公司 利用两个共配准的相对的伽马成像头系统的高分辨率单光子平面和spect成像脑和颈部
CN103099637A (zh) * 2013-02-21 2013-05-15 清华大学 一种用于双平板pet探测器的图像重建方法
CN103190929A (zh) * 2013-03-23 2013-07-10 明峰医疗系统股份有限公司 一种pem探测器装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Study of the performance of a novel 1mm resolution dual-panel PET camera design dedicated to breast cancer imaging using Monte Carlo simulation;Jin Zhang,et al.,;《Medical Physics》;20070228;第34卷(第2期);第689-702页 *
基于GATE的双平板正电子发射乳腺断层成像系统的仿真研究;董晓霞等;《核技术》;20120131;第35卷(第1期);第60-64页 *

Also Published As

Publication number Publication date
CN104116519A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
CN104116519B (zh) 基于多边形视野对称性的旋转双平板pet系统及其成像方法
CN106887025B (zh) 一种基于栈式自编码器的混合示踪剂动态pet浓度分布图像重建的方法
CN109615674B (zh) 基于混合损失函数3d cnn的动态双示踪pet重建方法
Gong et al. Designing a compact high performance brain PET scanner—simulation study
CN109009179B (zh) 基于深度置信网络的相同同位素标记双示踪剂pet分离方法
CN103099637B (zh) 一种用于双平板pet探测器的图像重建方法
CN102779350B (zh) 一种锥束ct迭代重建算法投影矩阵构建方法
Cheng et al. Applications of artificial intelligence in nuclear medicine image generation
CN109009199A (zh) 用于正电子发射断层扫描中的图像数据处理的系统和方法
CN106251380A (zh) 图像重建方法
CN106264529A (zh) 用于三维动态磁共振成像的圆柱形k空间采集方法和系统
CN106251381A (zh) 图像重建方法
CN103445780B (zh) 一种扩散加权磁共振成像多纤维重建方法
CN102831627A (zh) 一种基于gpu多核并行处理的pet图像重建方法
CN104331914A (zh) 重建心脏相位图像的方法和装置
US20200349746A1 (en) System and method for 3d image reconstruction from axial step-and-shoot ct
CN105844599A (zh) 一种图像重建的去噪声方法和装置
Lee et al. Impact of system design parameters on image figures of merit for a mouse PET scanner
CN104424625A (zh) 一种gpu加速cbct图像重建方法和装置
Farag Biomedical image analysis: Statistical and variational methods
CN105832358B (zh) 一种基于系统校准的旋转双平板pet系统的成像方法
Shrestha et al. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration
WO2023216057A1 (en) System and method for medical imaging
CN112258506B (zh) 基于数值计算的正电子发射型断层成像仿真方法及系统
US11857357B2 (en) Imaging systems and methods

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant