CN104112290A - RGB color image processing method and system - Google Patents
RGB color image processing method and system Download PDFInfo
- Publication number
- CN104112290A CN104112290A CN201410277499.0A CN201410277499A CN104112290A CN 104112290 A CN104112290 A CN 104112290A CN 201410277499 A CN201410277499 A CN 201410277499A CN 104112290 A CN104112290 A CN 104112290A
- Authority
- CN
- China
- Prior art keywords
- rgb
- image
- yiq
- color space
- rgb color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 16
- 238000012545 processing Methods 0.000 claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims description 26
- 239000011159 matrix material Substances 0.000 claims description 24
- 230000009466 transformation Effects 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 8
- 238000004364 calculation method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 101100072002 Arabidopsis thaliana ICME gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Processing Of Color Television Signals (AREA)
- Image Processing (AREA)
Abstract
本发明涉及一种RGB彩色图像处理方法和系统。所述方法包括以下步骤:将RGB图像转换为YIQ色彩空间;提取所述YIQ色彩空间中的表示图像亮度的Y分量;对所述Y分量进行去雨处理;将去雨后的Y分量结合I和Q分量,并将结合后的YIQ转换为RGB色彩空间,得到去雨后的RGB图像。上述RGB彩色图像处理方法和系统,通过将RGB图像转换为YIQ色彩空间,然后仅对Y分量进行去雨处理,将去雨处理后的Y分量和I、Q分量结合,转换为RGB图像,实现了单幅彩色图像的去雨处理,保证图像色彩不失真,提高了单幅图像去雨算法的使用范围。
The invention relates to a RGB color image processing method and system. The method comprises the steps of: converting an RGB image into a YIQ color space; extracting a Y component representing image brightness in the YIQ color space; carrying out derain processing on the Y component; combining the Y component after deraining with I and Q components, and convert the combined YIQ to RGB color space to obtain the RGB image after rain removal. The above-mentioned RGB color image processing method and system, by converting the RGB image into the YIQ color space, and then only performing rain removal processing on the Y component, combining the Y component after the rain removal processing with the I and Q components, and converting it into an RGB image, realizes The rain-removing processing of a single color image is realized, the color of the image is not distorted, and the application range of the rain-removing algorithm of a single image is improved.
Description
技术领域technical field
本发明涉及图像处理领域,特别是涉及一种RGB彩色图像处理方法和系统。The invention relates to the field of image processing, in particular to an RGB color image processing method and system.
背景技术Background technique
雨对图像成像有很大的影响,会造成图像成像模糊和信息覆盖,其直接结果是视频图像的清晰度下降,视频图像的数字化处理也会受此影响而性能下降。对受雨滴污染的视频图像进行修复处理有利于图像的进一步处理,包括基于图像的目标检测、识别、追踪、分割和监控等技术性能的提高。Rain has a great impact on image imaging, which will cause image blur and information coverage. The direct result is that the clarity of video images will decrease, and the digital processing of video images will also be affected by this and the performance will decrease. Repairing the video image polluted by raindrops is beneficial to the further processing of the image, including the improvement of the technical performance of image-based target detection, recognition, tracking, segmentation and monitoring.
传统的去雨算法有很多,如基于偏度计算、K均值聚类、卡尔曼滤波、字典学习和稀疏编码、引导滤波、帧间亮度差等方法的视频图像去雨算法。其中,单幅图像去雨算法种类很多,如通过图像分解的方法进行单幅图像去雨,通过情景感知去雨等,然而,传统的单幅图像去雨算法处理后得到的都是灰度图像,无法对彩色图像进行处理以保证图像色彩不失真。There are many traditional rain removal algorithms, such as video image rain removal algorithms based on skewness calculation, K-means clustering, Kalman filter, dictionary learning and sparse coding, guided filtering, and brightness difference between frames. Among them, there are many types of single image deraining algorithms, such as deraining a single image through image decomposition, deraining through scene perception, etc. However, the traditional single image deraining algorithm is all grayscale images. , the color image cannot be processed to ensure that the color of the image is not distorted.
发明内容Contents of the invention
基于此,有必要针对传统的单幅去雨方法得到的均为灰度图像,无法对彩色图像进行处理的问题,提供一种RGB彩色图像处理方法和系统,能实现对彩色图像进行去雨处理,保证图像色彩不失真。Based on this, it is necessary to provide a RGB color image processing method and system for the problem that the traditional single-image deraining method obtains grayscale images and cannot process color images, which can realize deraining processing of color images , to ensure that the image color is not distorted.
一种RGB彩色图像处理方法,包括以下步骤:A kind of RGB color image processing method, comprises the following steps:
将RGB图像转换为YIQ色彩空间;Convert RGB image to YIQ color space;
提取所述YIQ色彩空间中的表示图像亮度的Y分量;Extracting the Y component representing image brightness in the YIQ color space;
对所述Y分量进行去雨处理;performing rain removal processing on the Y component;
将去雨后的Y分量结合I和Q分量,并将结合后的YIQ转换为RGB色彩空间,得到去雨后的RGB图像。Combine the I and Q components of the Y component after rain removal, and convert the combined YIQ to RGB color space to obtain the RGB image after rain removal.
在其中一个实施例中,所述将RGB图像转换为YIQ色彩空间采用矩阵转换。In one of the embodiments, the conversion of the RGB image into the YIQ color space adopts matrix conversion.
在其中一个实施例中,所述将RGB图像转换为YIQ色彩空间采用矩阵转换的公式为:In one of the embodiments, the formula for converting the RGB image into the YIQ color space using matrix conversion is:
在其中一个实施例中,所述将结合后的YIQ转换为RGB色彩空间采用求取矩阵
在其中一个实施例中,所述将结合后的YIQ转换为RGB色彩空间的公式为:In one of the embodiments, the formula for converting the combined YIQ to RGB color space is:
一种RGB彩色图像处理系统,包括:A RGB color image processing system, comprising:
第一转换模块,用于将RGB图像转换为YIQ色彩空间;The first conversion module is used to convert the RGB image into the YIQ color space;
提取模块,用于提取所述YIQ色彩空间中的表示图像亮度的Y分量;An extraction module, configured to extract a Y component representing image brightness in the YIQ color space;
去雨模块,用于对所述Y分量进行去雨处理;A deraining module, configured to perform deraining processing on the Y component;
第二转换模块,用于将去雨后的Y分量结合I和Q分量,并将结合后的YIQ转换为RGB色彩空间,得到去雨后的RGB图像。The second conversion module is used to combine the Y component after rain removal with I and Q components, and convert the combined YIQ into RGB color space to obtain the RGB image after rain removal.
在其中一个实施例中,所述将RGB图像转换为YIQ色彩空间采用矩阵转换。In one of the embodiments, the conversion of the RGB image into the YIQ color space adopts matrix conversion.
在其中一个实施例中,所述将RGB图像转换为YIQ色彩空间采用矩阵转换的公式为:In one of the embodiments, the formula for converting the RGB image into the YIQ color space using matrix conversion is:
在其中一个实施例中,所述将结合后的YIQ转换为RGB色彩空间采用求取矩阵
在其中一个实施例中,所述将结合后的YIQ转换为RGB色彩空间的公式为:In one of the embodiments, the formula for converting the combined YIQ to RGB color space is:
上述RGB彩色图像处理方法和系统,通过将RGB图像转换为YIQ色彩空间,然后仅对Y分量进行去雨处理,将去雨处理后的Y分量和I、Q分量结合,转换为RGB图像,实现了单幅彩色图像的去雨处理,保证图像色彩不失真,提高了单幅图像去雨算法的使用范围。The above-mentioned RGB color image processing method and system, by converting the RGB image into the YIQ color space, and then only performing rain removal processing on the Y component, combining the Y component after the rain removal processing with the I and Q components, and converting it into an RGB image, realizes The rain-removing processing of a single color image is realized, the color of the image is not distorted, and the application range of the rain-removing algorithm of a single image is improved.
附图说明Description of drawings
图1为一个实施例中RGB彩色图像处理方法的流程图;Fig. 1 is the flowchart of RGB color image processing method in an embodiment;
图2为雨滴影响的示意图;Figure 2 is a schematic diagram of the impact of raindrops;
图3为一个实施例中RGB彩色图像处理系统的结构框图。Fig. 3 is a structural block diagram of an RGB color image processing system in an embodiment.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
图1为一个实施例中RGB彩色图像处理方法的流程图。如图1所示,该RGB(Red-Green-Blue,红-绿-蓝)彩色图像处理方法,包括以下步骤:FIG. 1 is a flow chart of an RGB color image processing method in an embodiment. As shown in Figure 1, this RGB (Red-Green-Blue, red-green-blue) color image processing method comprises the following steps:
步骤102,将RGB图像转换为YIQ色彩空间。Step 102, convert the RGB image into YIQ color space.
具体的,YIQ是NTSC(National Television Standards Committee)电视系统标准。Y是提供亮度信号,I代表In-phase,色彩从橙色到青色,Q代表Quadrature-phase,色彩从紫色到黄绿色。Specifically, YIQ is an NTSC (National Television Standards Committee) television system standard. Y is to provide brightness signal, I stands for In-phase, the color is from orange to cyan, Q stands for Quadrature-phase, the color is from purple to yellow-green.
因被覆盖像素的亮度不仅受雨滴影响,也会受背景影响。考虑相机曝光时间为T,假设雨滴在这段时间内覆盖某一像素的时间为τ,且τ远小于相机曝光时间T。图像上该像素在曝光时间T内的雨线亮度Ibr由雨滴和背景亮度共同决定,计算公式如式(1)和(2):Because the brightness of covered pixels is not only affected by raindrops, but also by the background. Considering that the camera exposure time is T, it is assumed that the time for raindrops to cover a certain pixel during this period is τ, and τ is much smaller than the camera exposure time T. The rain line brightness I br of the pixel on the image within the exposure time T is determined by the raindrops and the background brightness, and the calculation formulas are as follows: (1) and (2):
Ibr=Ib+ΔI (2)I br =I b +ΔI (2)
其中,Er是有雨滴覆盖时的瞬时雨滴亮度,Eb是无雨滴覆盖时的瞬时背景亮度。Ib是T时间内没有雨滴覆盖的背景亮度,ΔI是T时间内受雨滴影响的亮度变化量。雨线的亮度高于背景亮度主要是因为雨滴在成像的时候由于镜面反射、内反射、折射等作用汇聚了更广视场角范围内的光线,如图2所示,镜面反射内反射折射雨线亮度
本实施例中,该将RGB图像转换为YIQ色彩空间采用矩阵转换。In this embodiment, matrix conversion is used to convert the RGB image into the YIQ color space.
具体的,该将RGB图像转换为YIQ色彩空间采用矩阵转换的公式为:Specifically, the formula for converting an RGB image into a YIQ color space using matrix conversion is:
根据式(2)可知,未被雨滴影响的像素其RGB值保持不变,而被雨滴影响的像素亮度会变化,RGB转换成YIQ后,Y代表像素的亮度,即灰度图像的灰度值,而I和Q则为:According to formula (2), the RGB values of pixels not affected by raindrops remain unchanged, while the brightness of pixels affected by raindrops will change. After RGB is converted into YIQ, Y represents the brightness of the pixel, that is, the gray value of the grayscale image , while I and Q are:
I=0.596(Rb+ΔR)-0.274(Gb+ΔG)-0.322(Bb+ΔB) (4)I=0.596(R b +ΔR)-0.274(G b +ΔG)-0.322(B b +ΔB) (4)
Q=0.211(Rb+ΔR)-0.523(Gb+ΔG)+0.312(Bb+ΔB) (5)Q=0.211(R b +ΔR)-0.523(G b +ΔG)+0.312(B b +ΔB) (5)
式(4)和(5)中,Rb、Gb、Bb分别是红、绿、蓝三通道未受雨滴影响的背景亮度值,由雨滴的色彩特性可知,ΔR、ΔG、ΔB近似相等,则:In formulas (4) and (5), R b , G b , and B b are the background brightness values of the red, green, and blue channels that are not affected by raindrops, respectively. According to the color characteristics of raindrops, ΔR, ΔG, and ΔB are approximately equal ,but:
I=0.596Rb-0.274Gb-0.322Bb (6)I=0.596R b -0.274G b -0.322B b (6)
Q=0.211Rb-0.523Gb+0.312Bb (7)Q=0.211R b -0.523G b +0.312B b (7)
故I和Q通道的值未受到雨滴亮度变化的影响,只有Y通道受影响。Therefore, the values of the I and Q channels are not affected by changes in the brightness of raindrops, and only the Y channel is affected.
步骤104,提取该YIQ色彩空间中的表示图像亮度的Y分量。Step 104, extracting the Y component representing the brightness of the image in the YIQ color space.
步骤106,对该Y分量进行去雨处理。Step 106, perform rain removal processing on the Y component.
具体的,采用单幅图像去雨算法对该Y分量进行去雨处理。单幅图像去雨算法可包括Yu-Hsiang Fu等(Fu Y H,Kang L W,Lin C W,et al.Single-frame-based rain removal via image decomposition.In:Proceeding of2011IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Prague,Czech:IEEE Press,2011:1453-1456.)和Li-Wei Kang等(KangL W,Lin C W,Fu Y H.Automatic single-image-based rain streaks removal via imagedecomposition.Image Processing,IEEE Transactions on,2012,21(4):1742-1755.)提出了通过图像分解的方法进行单幅图像去雨;De-An Huang等(Huang D A,KangL W,Yang M C,et al.Context-aware single image rain removal.In:Proceeding of2012IEEE International Conference on Multimedia and Expo(ICME).Melbourne,Australia:IEEEPress,2012:164-169.)提出了通过情景感知去雨;Jaina George等(George J,Bhavani S,Jaya J.Certain explorations on removal of rain streaks usingmorphological component analysis.International Journal of Engineering Research &Technology.2013,2(2).)提出使用形态学成分分析的方法进行去雨;Duan-Yu Chen等(Chen D Y,Chen C C,Kang L W.Visual depth guided image rain streaks removalvia sparse coding.In:Proceeding of2012International Symposium on IntelligentSignal Processing and Communications Systems.New Taipei,Taiwan:IEEE,2012:151-156.)通过引导滤波和稀疏编码进行去雨。Specifically, a single image deraining algorithm is used to perform deraining processing on the Y component. Single image rain removal algorithm can include Yu-Hsiang Fu et al. (Fu Y H, Kang L W, Lin C W, et al.Single-frame-based rain removal via image decomposition.In: Proceeding of2011IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech: IEEE Press, 2011: 1453-1456.) and Li-Wei Kang et al. (KangL W, Lin C W, Fu Y H. Automatic single-image-based rain streaks removal via imagedecomposition .Image Processing, IEEE Transactions on, 2012,21(4):1742-1755.) proposed a single image deraining method by image decomposition; De-An Huang et al. (Huang D A, Kang L W, Yang M C ,et al.Context-aware single image rain removal.In:Proceeding of2012IEEE International Conference on Multimedia and Expo(ICME).Melbourne,Australia:IEEEPress,2012:164-169.) proposed to remove rain through context awareness; Jaina George et al. (George J, Bhavani S, Jaya J. Certain explorations on removal of rain streaks using morphological component analysis. International Journal of Engineering Research & Technology. 2013, 2(2).) proposed to use the method of morphological component analysis to remove rain; Duan- Yu Chen et al. (Chen D Y, Chen C C, Kang L W. Visual depth guided image rain streaks removal via sparse coding. In: Proceeding of20 12 International Symposium on Intelligent Signal Processing and Communications Systems. New Taipei, Taiwan: IEEE, 2012: 151-156.) Rain removal by guided filtering and sparse coding.
步骤108,将去雨后的Y分量结合I和Q分量,并将结合后的YIQ转换为RGB色彩空间,得到去雨后的RGB图像。Step 108, combine the I and Q components of the Y component after rain removal, and convert the combined YIQ into RGB color space to obtain the RGB image after rain removal.
在一个实施例中,该将结合后的YIQ转换为RGB色彩空间采用求取矩阵
在一个实施例中,该将结合后的YIQ转换为RGB色彩空间的公式为:In one embodiment, the formula for converting the combined YIQ to RGB color space is:
上述RGB彩色图像处理方法,通过将RGB图像转换为YIQ色彩空间,然后仅对Y分量进行去雨处理,将去雨处理后的Y分量和I、Q分量结合,转换为RGB图像,实现了单幅彩色图像的去雨处理,保证图像色彩不失真,提高了单幅图像去雨算法的使用范围。The above-mentioned RGB color image processing method converts the RGB image into the YIQ color space, then only performs rain removal processing on the Y component, and combines the Y component after the rain removal processing with the I and Q components, and converts it into an RGB image. The deraining process of a color image ensures that the color of the image is not distorted, and improves the application range of the single image deraining algorithm.
图3为一个实施例中RGB彩色图像处理系统的结构框图。如图3所示,该RGB彩色图像处理系统,包括第一转换模块320、提取模块340、去雨模块360和第二转换模块380。其中:Fig. 3 is a structural block diagram of an RGB color image processing system in an embodiment. As shown in FIG. 3 , the RGB color image processing system includes a first conversion module 320 , an extraction module 340 , a rain removal module 360 and a second conversion module 380 . in:
第一转换模块320用于将RGB图像转换为YIQ色彩空间。The first conversion module 320 is used to convert the RGB image into YIQ color space.
在一个实施例中,该将RGB图像转换为YIQ色彩空间采用矩阵转换。In one embodiment, the conversion of RGB image into YIQ color space adopts matrix conversion.
该将RGB图像转换为YIQ色彩空间采用矩阵转换的公式为:The formula for converting an RGB image to a YIQ color space using matrix conversion is:
提取模块340用于提取该YIQ色彩空间中的表示图像亮度的Y分量。The extraction module 340 is used for extracting the Y component representing the brightness of the image in the YIQ color space.
去雨模块360用于对该Y分量进行去雨处理。The deraining module 360 is used for deraining the Y component.
第二转换模块380用于将去雨后的Y分量结合I和Q分量,并将结合后的YIQ转换为RGB色彩空间,得到去雨后的RGB图像。The second conversion module 380 is used for combining the Y component after deraining with I and Q components, and converting the combined YIQ into RGB color space to obtain the RGB image after deraining.
在一个实施例中,该将结合后的YIQ转换为RGB色彩空间采用求取矩阵
在一个实施例中,该将结合后的YIQ转换为RGB色彩空间的公式为:In one embodiment, the formula for converting the combined YIQ to RGB color space is:
上述RGB彩色图像处理系统,通过将RGB图像转换为YIQ色彩空间,然后仅对Y分量进行去雨处理,将去雨处理后的Y分量和I、Q分量结合,转换为RGB图像,实现了单幅彩色图像的去雨处理,保证图像色彩不失真,提高了单幅图像去雨算法的使用范围。The above-mentioned RGB color image processing system converts the RGB image into the YIQ color space, and then only performs rain removal processing on the Y component, and combines the Y component after the rain removal processing with the I and Q components, and converts it into an RGB image. The deraining process of a color image ensures that the color of the image is not distorted, and improves the application range of the single image deraining algorithm.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410277499.0A CN104112290A (en) | 2014-06-19 | 2014-06-19 | RGB color image processing method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410277499.0A CN104112290A (en) | 2014-06-19 | 2014-06-19 | RGB color image processing method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104112290A true CN104112290A (en) | 2014-10-22 |
Family
ID=51709067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410277499.0A Pending CN104112290A (en) | 2014-06-19 | 2014-06-19 | RGB color image processing method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104112290A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080107333A1 (en) * | 2006-11-08 | 2008-05-08 | Amir Mazinani | Method and apparatus for color image correction |
CN102110289A (en) * | 2011-03-29 | 2011-06-29 | 东南大学 | Method for enhancing color image contrast ratio on basis of variation frame |
CN102186089A (en) * | 2011-04-19 | 2011-09-14 | 南京航空航天大学 | Simple-component video image rain field removing method |
CN102231206A (en) * | 2011-07-14 | 2011-11-02 | 浙江理工大学 | Colorized night vision image brightness enhancement method applicable to automotive assisted driving system |
CN103440623A (en) * | 2013-08-02 | 2013-12-11 | 中北大学 | Method for improving image definition in foggy days based on imaging model |
CN103632351A (en) * | 2013-12-16 | 2014-03-12 | 武汉大学 | All-weather traffic image enhancement method based on brightness datum drift |
CN103761714A (en) * | 2014-01-23 | 2014-04-30 | 武汉大学 | Color image enhancement method based on HIS color space |
-
2014
- 2014-06-19 CN CN201410277499.0A patent/CN104112290A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080107333A1 (en) * | 2006-11-08 | 2008-05-08 | Amir Mazinani | Method and apparatus for color image correction |
CN102110289A (en) * | 2011-03-29 | 2011-06-29 | 东南大学 | Method for enhancing color image contrast ratio on basis of variation frame |
CN102186089A (en) * | 2011-04-19 | 2011-09-14 | 南京航空航天大学 | Simple-component video image rain field removing method |
CN102231206A (en) * | 2011-07-14 | 2011-11-02 | 浙江理工大学 | Colorized night vision image brightness enhancement method applicable to automotive assisted driving system |
CN103440623A (en) * | 2013-08-02 | 2013-12-11 | 中北大学 | Method for improving image definition in foggy days based on imaging model |
CN103632351A (en) * | 2013-12-16 | 2014-03-12 | 武汉大学 | All-weather traffic image enhancement method based on brightness datum drift |
CN103761714A (en) * | 2014-01-23 | 2014-04-30 | 武汉大学 | Color image enhancement method based on HIS color space |
Non-Patent Citations (2)
Title |
---|
耿彪等: "《视频图像中雨滴去除技术研究》", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
董书莉等: "《视频图像雨场去除仿真研究》", 《计算机仿真》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104112255A (en) | Rain removing method and system for single image | |
KR102523505B1 (en) | Method and Apparatus for Inverse Tone Mapping | |
CN104751432B (en) | A kind of visible ray and infrared image fusion method based on Image Reconstruction | |
CN108269244A (en) | It is a kind of based on deep learning and prior-constrained image defogging system | |
CN109949247A (en) | A Gradient Domain Adaptive Gain Underwater Image Enhancement Method Based on YIQ Spatial Optical Imaging Model | |
CN110310238B (en) | A single image deraining method based on compressed reward-punishment neural network that reuses original information | |
CN113168669B (en) | Image processing method, device, electronic device and readable storage medium | |
CN108154492B (en) | An image haze removal method based on non-local mean filtering | |
CN104537634A (en) | Method and system for removing raindrop influences in dynamic image | |
CN105205792A (en) | Underwater image enhancement method based on brightness and chrominance separation | |
CN107871302A (en) | A Pseudo-color Processing Method of Infrared Image Based on YUV Color Space | |
CN108711160B (en) | Target segmentation method based on HSI (high speed input/output) enhanced model | |
CN104112259A (en) | Rain removing method and system for single image | |
CN104933728A (en) | Mixed motion target detection method | |
CN110648297B (en) | Image defogging method, system, electronic device and storage medium | |
CN104112258A (en) | Method and system for realizing RGB color image processing | |
CN103747222A (en) | Method and apparatus for suppressing color artifact of image | |
CN106408617A (en) | Interactive single image material acquiring system based on YUV color space and method | |
CN104112254A (en) | Method and system for processing RGB color image | |
CN106846234B (en) | Image video enhancement method, system and equipment based on FPGA | |
CN104299200A (en) | Color-enhanced single image rain removing processing method | |
CN105184746B (en) | Color image enhancement processing method based on histogram equalization | |
CN107358592A (en) | A kind of iterative global method for adaptive image enhancement | |
CN111611940A (en) | Rapid video face recognition method based on big data processing | |
US11593918B1 (en) | Gradient-based noise reduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20141022 |
|
RJ01 | Rejection of invention patent application after publication |