CN104102066A - 基于光纤耦合器双泵浦光调制方式的全光逻辑器 - Google Patents

基于光纤耦合器双泵浦光调制方式的全光逻辑器 Download PDF

Info

Publication number
CN104102066A
CN104102066A CN201410298479.1A CN201410298479A CN104102066A CN 104102066 A CN104102066 A CN 104102066A CN 201410298479 A CN201410298479 A CN 201410298479A CN 104102066 A CN104102066 A CN 104102066A
Authority
CN
China
Prior art keywords
port
division multiplexer
optical
polarization controller
optoisolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410298479.1A
Other languages
English (en)
Other versions
CN104102066B (zh
Inventor
李齐良
张真
朱梦云
李冬强
胡淼
唐向宏
曾然
魏一振
周雪芳
卢旸
钱正丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201410298479.1A priority Critical patent/CN104102066B/zh
Publication of CN104102066A publication Critical patent/CN104102066A/zh
Application granted granted Critical
Publication of CN104102066B publication Critical patent/CN104102066B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种基于光纤耦合器双泵浦光调制的全光逻辑器。本发明中的第一束泵浦光依次通过第一光隔离器、第一偏振控制器、第一光纤放大器、第一带通滤波器与第一波分复用器的第一端口连接;第一束信号光依次通过第二光隔离器,第二偏振控制器与第一波分复用器的第二端口连接;第一波分复用器的第三端口与光纤耦合器的第一端口连接;第二束泵浦光依次通过第三光隔离器、第三偏振控制器、第二光纤放大器、第二带通滤波器与第三波分复用器的第一端口连接,第三波分复用器的第三端口与光纤耦合器的第二端口连接。本发明不仅灵敏度高,开关响应速度快,而且实现了传统全光逻辑器不能实现的逻辑非门,具有较高的消光比,大大提高了开关性能。

Description

基于光纤耦合器双泵浦光调制方式的全光逻辑器
技术领域
本发明属于光信息技术领域,具体涉及一种基于光纤耦合器双泵浦光调制方式的全光逻辑器。
背景技术
全光逻辑器是光子技术领域的关键技术,对未来全光网络的实现有着重要的作用,全光开关以及数字光逻辑运算成为光通信与光信息处理的研究热点。全光逻辑器具有多个可供选择的输入、输出端口,能够实现光信号的各种逻辑运算,目前人们采用了多种方式实现全光开关和全光逻辑运算。基于光纤耦合器双泵浦光调制的全光逻辑器,具有更好的开关性能。
发明内容
本发明提供了一种基于光纤耦合器双泵浦光调制方式的全光逻辑器,不仅灵敏度高,开关响应速度快,而且实现了传统全光逻辑器不能实现的逻辑非门,具有较高的消光比,大大提高了开关性能。
本发明采取以下技术方案:
本发明包括第一泵浦源(1-1)、第二泵浦源(1-2);第一光隔离器(2-1)、第二光隔离器(2-2)、第三光隔离器(2-3)和第四光隔离器(2-4);第一偏振控制器(3-1)、第二偏振控制器(3-2)、第三偏振控制器(3-3)、第四偏振控制器(3-4);第一光纤放大器(4-1)、第二光纤放大器(4-2),第一带通滤波器(5-1)、第二带通滤波器(5-2);第一波分复用器(6-1)、第二波分复用器(6-2)、第三波分复用器(6-3)、第四波分复用器(6-4);光纤耦合器(7),第一信号源(8-1)和第二信号源(8-2)。第一泵浦源与第一光隔离器的第一端口(a1)连接,第一光隔离器的第二端口(a2)与第一偏振控制器的第一端口(b1)连接,第一偏振控制器的第二端口(b2)与第一光纤放大器的第一端口(c1)连接,第一光纤放大器的第二端口(c2)与第一带通滤波器的第一端口(d1)连接,第一带通滤波器的第二端口(d2)与第一波分复用器的第一端口(f1)连接。第一信号源与第二光隔离器的第一端口(e1)连接,第二光隔离器的第二端口(e2)与第二偏振控制器的第一端口(h1)连接,第二偏振控制器的第二端口(h2)与第一波分复用器的第二端口(f2)连接。第二泵浦源与第三光隔离器的第一端口(a3)连接,第三光隔离器的第二端口(a4)与第三偏振控制器的第一端口(b3)连接,第三偏振控制器的第二端口(b4)与第二光纤放大器的第一端口(c3)连接,第二光纤放大器的第二端口(c4)与第二带通滤波器的第一端口(d3)连接,第二带通滤波器的第二端口(d4)与第三波分复用器的第一端口(t1)连接。第二信号源与第四光隔离器的第一端口(e3)连接,第四光隔离器的第二端口(e4)与第四偏振控制器的第一端口(h3)连接,第四偏振控制器的第二端口(h4)与第三波分复用器的第二端口(t2)连接。第一波分复用器的第三端口(f3)与光纤耦合器的第一端口(i1)连接,第三波分复用器的第三端口(t3)与光纤耦合器的第二端口(i2)连接,光纤耦合器的第三端口(i3)与第二波分复用器的第一端口(k1)连接,光纤耦合器的第四端口(i4)与第四波分复用器的第一端口(r1)连接。 
优选的,波分复用器(6-1)、(6-2)、(6-3)、(6-4)的第一端口为50%端口,第二端口为50%端口。
优选的,该光纤耦合器(7)的交叉耦合系数为0.05cm-1
优选的,信号源(8-1)、(8-2)产生的信号波长范围为1500nm-1550nm,功率为10mW。
优选的,泵浦源(1)、(2)所产生的泵浦波波长范围为800-900 nm,功率范围为0~20W。
本发明的特点是在光纤耦合器的第一输入端口与第二输入端口,通过波分复用器都加入一束强度可调的泵浦光,同时在第一端口输入一弱信号光而第二端口不输入信号光。用两束泵浦光p1和p2作逻辑值来调节信号光,从而实现信号光在输出端口的逻辑转换功能。
本发明全光逻辑器不仅灵敏度高,开关响应速度快,而且实现了传统全光逻辑器不能实现的逻辑非门,具有较高的消光比,大大改善了开关性能。
附图说明
图1为基于光纤耦合器双泵浦光调制的全光逻辑器的结构示意图。
图2为p2为0时,消光比随泵浦光功率p1变化的逻辑器特性曲线。
图2中X 12 表示光纤耦合器第三端口信号光与第四端口信号光的消光比,X 21 表示光纤耦合器第四端口信号光与第三端口信号光的消光比。第二波分复用器和第四波分复用器的作用是分离出信号光和泵浦光。
具体实施方式
以下结合附图对本发明作进一步说明。
如图1所示,本实施例一种基于光纤耦合器双泵浦光调制的全光逻辑器包括第一泵浦源(1-1)、第二泵浦源(1-2);第一光隔离器(2-1)、第二光隔离器(2-2)、第三光隔离器(2-3)和第四光隔离器(2-4);第一偏振控制器(3-1)、第二偏振控制器(3-2)、第三偏振控制器(3-3)、第四偏振控制器(3-4);第一光纤放大器(4-1)、第二光纤放大器(4-2),第一带通滤波器(5-1)、第二带通滤波器(5-2);第一波分复用器(6-1)、第二波分复用器(6-2)、第三波分复用器(6-3)、第四波分复用器(6-4);光纤耦合器(7),第一信号源(8-1)和第二信号源(8-2)。 泵浦源(1)、(2)所产生的泵浦波波长范围为800-900 nm,功率范围为0~20W。信号源(8-1)、(8-2)产生的信号波长范围为1500nm-1550nm,功率为10mW。
第一泵浦源与第一光隔离器的第一端口(a1)连接,第一光隔离器的第二端口(a2)与第一偏振控制器的第一端口(b1)连接,第一偏振控制器的第二端口(b2)与第一光纤放大器的第一端口(c1)连接,第一光纤放大器的第二端口(c2)与第一带通滤波器的第一端口(d1)连接,第一带通滤波器的第二端口(d2)与第一波分复用器的第一端口(f1)连接。第一信号源与第二光隔离器的第一端口(e1)连接,第二光隔离器的第二端口(e2)与第二偏振控制器的第一端口(h1)连接,第二偏振控制器的第二端口(h2)与第一波分复用器的第二端口(f2)连接。第二泵浦源与第三光隔离器的第一端口(a3)连接,第三光隔离器的第二端口(a4)与第三偏振控制器的第一端口(b3)连接,第三偏振控制器的第二端口(b4)与第二光纤放大器的第一端口(c3)连接,第二光纤放大器的第二端口(c4)与第二带通滤波器的第一端口(d3)连接,第二带通滤波器的第二端口(d4)与第三波分复用器的第一端口(t1)连接。第二信号源与第四光隔离器的第一端口(e3)连接,第四光隔离器的第二端口(e4)与第四偏振控制器的第一端口(h3)连接,第四偏振控制器的第二端口(h4)与第三波分复用器的第二端口(t2)连接。第一波分复用器的第三端口(f3)与光纤耦合器的第一端口(i1)连接,第三波分复用器的第三端口(t3)与光纤耦合器的第二端口(i2)连接,光纤耦合器的第三端口(i3)与第二波分复用器的第一端口(k1)连接,光纤耦合器的第四端口(i4)与第四波分复用器的第一端口(r1)连接。可通过有无泵浦光输入,计算光纤耦合器输出端口信号光的不同输出功率,根据消光比判定逻辑器逻辑功能。
图2显示了:在第二泵浦光功率p2为0时,两输出端口信号光的消光比随第一泵浦光功率p1变化的逻辑器特性曲线。
表1表示令泵浦光功率p1=p2=8W时,根据不同的输入组合得出的全光逻辑器的真值表。
表1
表1中两泵浦光功率分别为p1和p2,令p1=p2=8W,逻辑值“0”和“1”表示有无泵浦光输入。X ij 是信号光的消光比,用来判定输出逻辑值。
本发明全光逻辑器的实现过程:
1、根据耦合模型得到开关特性曲线,找出光纤耦合器的阈值功率。
2、选择不同的泵浦功率,同时结合不同的输入组合,实现不同的光开关逻辑门。
以上对本发明的优选实施例及原理进行了详细说明,对本领域的普通技术人员而言,依据本发明提供的思想,在具体实施方式上会有改变之处,而这些改变也应视为本发明的保护范围。

Claims (5)

1. 基于光纤耦合器双泵浦光调制方式的全光逻辑器,包括第一泵浦源(1-1)、第二泵浦源(1-2);第一光隔离器(2-1)、第二光隔离器(2-2)、第三光隔离器(2-3)和第四光隔离器(2-4);第一偏振控制器(3-1)、第二偏振控制器(3-2)、第三偏振控制器(3-3)、第四偏振控制器(3-4);第一光纤放大器(4-1)、第二光纤放大器(4-2),第一带通滤波器(5-1)、第二带通滤波器(5-2);第一波分复用器(6-1)、第二波分复用器(6-2)、第三波分复用器(6-3)、第四波分复用器(6-4);光纤耦合器(7),第一信号源(8-1)和第二信号源(8-2),其特征在于:
第一泵浦源与第一光隔离器的第一端口(a1)连接,第一光隔离器的第二端口(a2)与第一偏振控制器的第一端口(b1)连接,第一偏振控制器的第二端口(b2)与第一光纤放大器的第一端口(c1)连接,第一光纤放大器的第二端口(c2)与第一带通滤波器的第一端口(d1)连接,第一带通滤波器的第二端口(d2)与第一波分复用器的第一端口(f1)连接;第一信号源与第二光隔离器的第一端口(e1)连接,第二光隔离器的第二端口(e2)与第二偏振控制器的第一端口(h1)连接,第二偏振控制器的第二端口(h2)与第一波分复用器的第二端口(f2)连接;第二泵浦源与第三光隔离器的第一端口(a3)连接,第三光隔离器的第二端口(a4)与第三偏振控制器的第一端口(b3)连接,第三偏振控制器的第二端口(b4)与第二光纤放大器的第一端口(c3)连接,第二光纤放大器的第二端口(c4)与第二带通滤波器的第一端口(d3)连接,第二带通滤波器的第二端口(d4)与第三波分复用器的第一端口(t1)连接;第二信号源与第四光隔离器的第一端口(e3)连接,第四光隔离器的第二端口(e4)与第四偏振控制器的第一端口(h3)连接,第四偏振控制器的第二端口(h4)与第三波分复用器的第二端口(t2)连接;第一波分复用器的第三端口(f3)与光纤耦合器的第一端口(i1)连接,第三波分复用器的第三端口(t3)与光纤耦合器的第二端口(i2)连接,光纤耦合器的第三端口(i3)与第二波分复用器的第一端口(k1)连接,光纤耦合器的第四端口(i4)与第四波分复用器的第一端口(r1)连接。
2.如权利要求1所述全光逻辑器,其特征在于:光纤耦合器(7)的交叉耦合系数为0.05cm-1
3.如权利要求1所述全光逻辑器,其特征在于:波分复用器(6-1)、(6-2)、(6-3)、(6-4)的第一端口为50%端口,第二端口为50%端口。
4.如权利要求1所述全光逻辑器,其特征在于:信号源(8-1)、(8-2)产生的信号波长范围为1500nm-1550nm,功率为10mW。
5.如权利要求1所述全光逻辑器,其特征在于:泵浦源(1)所产生的泵浦波波长为800-900 nm,功率范围为0~20W。
CN201410298479.1A 2014-06-26 2014-06-26 基于光纤耦合器双泵浦光调制方式的全光逻辑器 Expired - Fee Related CN104102066B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410298479.1A CN104102066B (zh) 2014-06-26 2014-06-26 基于光纤耦合器双泵浦光调制方式的全光逻辑器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410298479.1A CN104102066B (zh) 2014-06-26 2014-06-26 基于光纤耦合器双泵浦光调制方式的全光逻辑器

Publications (2)

Publication Number Publication Date
CN104102066A true CN104102066A (zh) 2014-10-15
CN104102066B CN104102066B (zh) 2017-01-04

Family

ID=51670321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410298479.1A Expired - Fee Related CN104102066B (zh) 2014-06-26 2014-06-26 基于光纤耦合器双泵浦光调制方式的全光逻辑器

Country Status (1)

Country Link
CN (1) CN104102066B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629624A (zh) * 2016-01-19 2016-06-01 杭州电子科技大学 基于光纤光栅交叉相位调制的全光逻辑门
CN106468843A (zh) * 2015-08-18 2017-03-01 邱富春 特定的二进制光信号实现基本逻辑门光路
CN106797254A (zh) * 2014-11-12 2017-05-31 华为技术有限公司 一种实现光逻辑的装置和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368793B1 (ko) * 2000-08-29 2003-01-24 한국과학기술연구원 전광 nor 논리소자 구현장치 및 그 방법
ITMI20041286A1 (it) * 2004-06-24 2004-09-24 Marconi Comm Spa Porte logiche ottiche ultraveloci riconfigurabili e rigenerative
CN101840126B (zh) * 2010-04-21 2012-05-23 中国科学院半导体研究所 一种可降低功耗的硅基级联谐振腔全光逻辑与门结构
CN103529569B (zh) * 2013-10-14 2016-04-27 杭州电子科技大学 基于非对称耦合器交叉相位调制的全光逻辑器
CN203982049U (zh) * 2014-06-26 2014-12-03 杭州电子科技大学 一种基于光纤耦合器双泵浦光调制方式的全光逻辑器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797254A (zh) * 2014-11-12 2017-05-31 华为技术有限公司 一种实现光逻辑的装置和方法
CN106797254B (zh) * 2014-11-12 2019-05-10 华为技术有限公司 一种实现光逻辑的装置和方法
CN106468843A (zh) * 2015-08-18 2017-03-01 邱富春 特定的二进制光信号实现基本逻辑门光路
CN105629624A (zh) * 2016-01-19 2016-06-01 杭州电子科技大学 基于光纤光栅交叉相位调制的全光逻辑门

Also Published As

Publication number Publication date
CN104102066B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
Haas et al. Optical wireless communication
CN103529569B (zh) 基于非对称耦合器交叉相位调制的全光逻辑器
Amiri et al. Quantum information generation using optical potential well
CN104007512B (zh) 一种光偏振分束器
CN104102066A (zh) 基于光纤耦合器双泵浦光调制方式的全光逻辑器
CN203982049U (zh) 一种基于光纤耦合器双泵浦光调制方式的全光逻辑器
CN203982048U (zh) 一种环中偏置放大器的Sagnac干涉仪全光逻辑器
CN106100735A (zh) 一种远距离可见光通信系统
CN103969913A (zh) 掺铒光纤耦合器交叉相位调制全光逻辑器
CN203838457U (zh) 一种掺铒光纤耦合器交叉相位调制全光逻辑器
CN105137694B (zh) 基于非线性相移光纤光栅的全光逻辑门
CN103969912B (zh) 基于电光调制的Sagnac环全光逻辑器
Kao et al. Optical multilevel signaling for high bandwidth and power-efficient on-chip interconnects
CN104391418A (zh) 基于掺铒光纤耦合器的Sagnac干涉仪全光逻辑器
CN104280975B (zh) 一种基于级联半导体光放大器的全光异或门装置
CN109254470B (zh) 基于非线性材料介质的全光控制逻辑门器件
Chen et al. Hybrid integrated DWDM silicon photonic transceiver with self-adaptive CMOS circuits
CN104166292A (zh) 环中偏置放大器的Sagnac干涉仪全光逻辑器
CN105676370A (zh) 一种基于微环谐振腔的全光分组交换开关
CN203675112U (zh) 一种适用于波分复用技术的探测器结构
CN103676215B (zh) 渠道形电温双调控太赫兹波开关
CN103955025B (zh) 用于光学延迟线的环联分形拓扑结构微环阵列
CN104393920A (zh) 一种基于相移光纤光栅光纤环镜的全光采样器
Egawa et al. Multi-level optimization for large fan-in optical logic circuits using integrated nanophotonics
CN206042001U (zh) 一种数字视频光端机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170104

Termination date: 20170626