CN104100841A - 一种基于分布式光纤传感器和声波的管道监测方法 - Google Patents

一种基于分布式光纤传感器和声波的管道监测方法 Download PDF

Info

Publication number
CN104100841A
CN104100841A CN201410332580.4A CN201410332580A CN104100841A CN 104100841 A CN104100841 A CN 104100841A CN 201410332580 A CN201410332580 A CN 201410332580A CN 104100841 A CN104100841 A CN 104100841A
Authority
CN
China
Prior art keywords
pipeline
sound wave
distributed fiberoptic
fiberoptic sensor
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410332580.4A
Other languages
English (en)
Inventor
解思亮
赵洪波
曹慧子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QINGDAO HOUKE CHEMICAL CO Ltd
Original Assignee
QINGDAO HOUKE CHEMICAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QINGDAO HOUKE CHEMICAL CO Ltd filed Critical QINGDAO HOUKE CHEMICAL CO Ltd
Priority to CN201410332580.4A priority Critical patent/CN104100841A/zh
Publication of CN104100841A publication Critical patent/CN104100841A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种基于分布式光纤传感器和声波的管道监测方法,包括在管道监测区域铺设分布式光纤传感器,同时在该管道的两端、或者在该管道上分段安装声波传感单元的步骤,利用分布式光纤传感器和声波传感单元同时对管道进行实时监测;为分布式光纤传感器配置光功率检测模块,并为声波传感单元配置声波信号接收与处理装置的步骤;当管道泄漏时,综合分布式光纤传感器检测到的泄漏信号和声波传感单元检测到的泄漏信号判断的步骤。本发明将分布式光纤传感技术与声波检测技术进行结合,两种方式互相互补,降低了误报率,提高了定位精度。

Description

一种基于分布式光纤传感器和声波的管道监测方法
 
技术领域
本发明涉及一种管道监测方法,特别是涉及一种基于分布式光纤传感器和声波的管道监测方法,用于对管道泄漏情况实时在线监测,实现精确自动预警。
 
背景技术
随着社会经济和人民生活水平的提高,各种建筑物群越来越多,与其配套的水、电、暖、燃气等管道、电线电缆以及通信光缆等管道在地下四处延伸,因此,管道的安全性是城市建设中不可忽视的重要部分。
目前,用于管道泄漏的监测可以使用管外检测法,主要包括负压波检测法和声发射检测法。负压波检测法能够快速地判断管道泄漏的发生并准确定位,但此技术的重要特点是需要产生压力下降,压力下降产生的波动是否能够有效检测也很大程度取决于所采用的仪表精度,如在 1Mpa工况压力下,1/4英寸孔径产生的泄漏在经过20千米管道衰减后产生的压降约为0.001Mpa,一般一个满量程为1Mpa 的压力表,很难有效检测到如此小的压降,虽然有分辨率更高的压力表,但不符合大的压降的检测量程要求,因此负压波检测法对诊断实时性有非常高的要求,即诊断系统必须能及时捕捉泄漏刚发生时产生的负压波信号;声发射检测法是在管道外部安装对泄漏噪声敏感的传感器,通过分析管道应力波信号功率谱的变化即可检测出管内介质的泄漏。例如:公开号为101270853的中国发明专利申请“基于次声波的天然气管道泄漏远程检测装置、方法及系统”中通过在管道上安装次声波传感单元,用于对管道内的泄漏次声波信号进行检测。
如图1所示为基于声波的管道泄漏检测原理示意图,在管道11上每隔一定距离(也可以在管道11的两端)分别设置声波传感单元12、13,相邻两个声波传感单元之间的距离为L,当泄漏点14发生泄漏时,管内流体弹性力量释放,以及泄漏点14的多向湍射流与管壁相互作用后会产生声波,声波以管道内输送介质为媒介,向上下游传播。安装在上、下游的声波传感单元12、13通过采用先进的微弱信号检测技术,提取泄漏声波信号,同时,通过先进的模式识别技术进行波形识别,实现泄漏的准确判断。利用泄漏信号到达上下游传感器的时间差,结合声波在介质中的传播速度和管道的长度,实现泄漏的精确定位,计算公式如下:
其中,X为泄漏点14至声波传感单元12的距离,V为声波在介质中的传播速度,Δt为泄漏声波传播到声波传感单元12和声波传感单元13的时间差。
然而,当一条管道上多个点同时、或先后发生泄漏时,多个泄漏点产生的同向传输的声波会发生混叠,当这些混叠的声波同时到达声波传感单元时,将无法区分该泄漏信号是由单点泄漏产生的,还是由多点泄漏产生的,最终检测结果可能错误地定位到了一个泄漏点上。
为了能够实现管道全线各点、多点的实时、准确监测,分布式光纤传感被应用到管道监测方法中。例如,公开号为1414283的中国发明专利“基于分布式光纤传感器的油气管道泄漏智能在线监测方法”中通过在管道附近与管道并行铺设一条或几条光缆,利用分布式光纤作为传感器,拾取管道周围的压力和振动信号,光脉冲在光纤中传播时,由于瑞利散射和菲涅尔反射会出现背向散射光和能量损耗,通过对背向散射光和光纤输出光功率的大小和频谱的测量,获得光纤上各点损耗的特征。也就是说,分布式光纤传感器能够测量光纤所在的任何一点的信号,因此,当管道中的油气发生泄漏或在管道附近有机械工和人为破坏时,产生的应力或冲击力将改变光纤的特性和损耗,从而改变光纤背向散射光功率和/或输出光功率,通过光功率检测模块和计算机完成管道泄漏的判断和准确定位。
然而,虽然分布式光纤可以全线监测,即每一个点都可以进行传感,但是在跨越地区广泛、施工环境不定的地下管道监测的应用中,由于分布式光纤过于敏感的特性很容易导致误报情况的发生,具有很高的系统虚警率,抗干扰能力较差。
 
发明内容
本发明克服现有技术存在的不足,所要解决的技术问题为提供一种基于分布式光纤传感器和声波的管道监测方法,本方法同时利用分布式光纤传感器和声波传感单元对管道进行实时监测,在判断时综合考虑分布式光纤传感器和声波传感单元的检测结果,实现高可靠性的检测。
为了实现上述目的,本发明采用如下技术方案:
一种基于分布式光纤传感器和声波的管道监测方法,包括如下步骤:
    步骤1:在管道监测区域铺设分布式光纤传感器,同时在该管道的两端、或者在该管道上分段安装声波传感单元,利用分布式光纤传感器和声波传感单元同时对管道进行实时监测;
步骤2:为分布式光纤传感器配置光功率检测模块;并为声波传感单元配置声波信号接收与处理装置;
步骤3:当管道泄漏时,利用分布式光纤传感器和声波传感单元检测泄漏信号,综合分布式光纤传感器检测到的泄漏信号和声波传感单元检测到的泄漏信号判断泄漏类型。
进一步地,所述步骤3中的判断泄漏类型的方法为:当分布式光纤传感器由于外界干扰检测到至少一个泄漏点,而声波传感单元并没有检测到泄漏点时,则作出管道未发生泄漏的判断,此时分布式光纤传感器所检测的泄漏点均为外界干扰或其他非泄漏原因所导致的虚报。
进一步地,所述步骤3中的判断泄漏类型的方法为:当声波传感单元按单点泄漏进行定位计算出泄漏点,同时分布式光纤传感器检测到至少一个泄漏点,且其中包含声波传感单元检测出的泄漏点时,则作出管道存在一个泄漏点的判断,且该泄漏点为声波传感单元检测出的泄漏点。
进一步地,所述步骤3中的判断泄漏类型的方法为:当声波传感单元按单点泄漏进行定位计算出泄漏点,同时分布式光纤传感器检测到至少一个泄漏点,但不包含声波传感单元检测出的泄漏点时,则作出管道存在多个泄漏点的判断,以分布式光纤传感器检测的至少一个泄漏点作为参考进行排查。
进一步地,所述步骤1中的所述管道监测区域为管道外、管道外壁表面、管道外壁内和管道内部中的至少一处。
进一步地,所述声波传感单元为次声传感器。
进一步地,所述的光功率检测模块为设置在分布式光纤传感器输入端的背向散射光检测模块,和/或设置在分布式光纤传感器输出端的输出光功率检测模块。
本发明基于分布式光纤传感器和声波的管道监测方法将分布式光纤传感技术与声波检测技术进行结合,使管道的安全性与检测可靠性得到了很大的提升,既弥补了分布式光纤误报率高的缺点,又弥补了声波检测无法区分单点或多点泄漏的不足,降低了误报率,提高了定位精度。
 
附图说明
    下面结合附图和具体实施方式对本发明作详细阐述:
图1为基于声波的管道泄漏检测原理示意图。
图2为本发明基于分布式光纤传感器和声波的管道监测方法一种实施方式的流程图。
图3为本发明基于分布式光纤传感器和声波的管道监测方法一种实施方式的其中一种管道泄漏判断情况的示意图;
图4为本发明基于分布式光纤传感器和声波的管道监测方法另一种实施方式的其中一种管道泄漏判断情况的示意图。
图5为本发明基于分布式光纤传感器和声波的管道监测方法另一种实施方式的其中一种管道泄漏判断情况的示意图。
图中:11:管道;12:声波传感单元;13:声波传感单元;14:泄漏点;31:管道;32:分布式光纤传感器;33:声波传感单元。
 
具体实施方式
    下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
    图2示意性地给出了基于分布式光纤传感器和声波的管道监测方法的流程图,包括如下步骤:
步骤1:在管道监测区域铺设分布式光纤传感器,同时在该管道的两端、或者在该管道上分段安装声波传感单元,利用分布式光纤传感器和声波传感单元同时对管道进行实时监测;所述声波传感单元可以根据实际应用的需求检测到特定频率的声波,例如可以包含次声传感器;但需注意的是,频率较高的声波例如超声波由于纵向传输衰减较快,不利于声波传感单元的检测及后期的分析;
步骤2:为分布式光纤传感器配置光功率检测模块;并为声波传感单元配置声波信号接收与处理装置;
步骤3:当管道泄漏时,利用分布式光纤传感器和声波传感单元检测泄漏信号,综合分布式光纤传感器检测到的泄漏信号和声波传感单元检测到的泄漏信号判断泄漏类型,主要有以下三种情况:
(1)图3示意性地给出了一种管道泄漏类型判断情况示意图,分布式光纤传感器32并行铺设在管道31外表面,两个声波传感单元33分别设置在管道31的输入端和输出端。当分布式光纤传感器32由于外界干扰检测到至少一个泄漏点如图3中的A点、B点、C点和D点,而声波传感单元33并没有检测到泄漏点时,则作出管道31未发生泄漏的判断,此时分布式光纤传感器32所检测的泄漏点A点、B点、C点和D点均为外界干扰或其他非泄漏原因所导致的虚报;
(2)图4示意性地给出了一种管道泄漏类型判断情况示意图,分布式光纤传感器32并行铺设在管道31外表面,两个声波传感单元33分别设置在管道31的输入端和输出端。当声波传感单元33按单点泄漏进行定位计算出泄漏点如图4中的A点,同时分布式光纤传感器32检测到至少一个泄漏点如图4中的A点、B点、C点和D点,且其中包含声波传感单元检测出的泄漏点即A点时,则作出管道31存在一个泄漏点的判断,且该泄漏点为声波传感单元33检测出的泄漏点即A点,此时分布式光纤传感器32所检测的泄漏点B点、C点和D点均为外界干扰或其他非泄漏原因所导致的虚报;
(3)图5示意性地给出了一种管道泄漏类型判断情况示意图,分布式光纤传感器32并行铺设在管道31外表面,两个声波传感单元33分别设置在管道31的输入端和输出端。当实际泄漏点为A点和B点时,A点和B点的泄漏声波传至两端声波传感单元33的时间分别为ta1、ta2、tb1、tb2,由于AB点距离声波传感器的两端的距离不同,所以两端声波传感单元检测到泄漏声波的时间的先后顺序会不同,根据图5中A点、B点的位置可以判断出,A点的泄漏声波会先被左端的声波传感单元33检测到,而右端的声波传感单元33的则会先检测到B点的泄漏声波,在做计算处理时,Δt会由ta1与tb2的差值计算得出,这样计算出的定位就不会是A点或B点,或者由于A点与B点的同向传输的泄漏声波发生混叠,导致声波传感单元33无法检测到ta2与tb1的时间,只能按照单点定位进行计算,这样计算出的定位就不会是A点或B点,本实施例中假设计算出的定位是E点;同时分布式光纤传感器检测到至少一个泄漏点如图5中的A点、B点、C点和D点,其中不包含声波传感单元检测出的泄漏点即E点时,则作出管道存在多个泄漏点的判断,以分布式光纤传感器检测的至少一个泄漏点如图5中的A点、B点、C点和D点作为参考进行排查。
    所述步骤1中的所述管道监测区域为管道外、管道外壁表面、管道外壁内和管道内部中的至少一处,例如可以将分布式光纤传感器设置在管道外附近区域并行铺设,也可以设置在管道外壁表面上并行铺设或者是螺旋状铺设,或者埋设在管道外壁内部,甚至于设置在管道内,当然也可以选择上述几处同时布置分布式光纤传感器,本实施例对此不作限制。
所述的光功率检测模块可以是设置在分布式光纤传感器输入端的背向散射光检测模块,完成分布式光纤传感器上各点的静态和动态损耗的测量和定位;也可以是设置在分布式光纤传感器输出端的输出光功率检测模块,完成光纤全径总损耗动态变化的测量和故障类型的判定,当然也可以同时设置这两类光功率检测模块,本实施方式对此不作限制。所述背向散射光检测模块和输出光功率检测模块可以是现有技术中的光检测模块,例如公开号为1414283的中国发明专利中所描述的背向散射光检测模块和输出光功率检测模块,本实施方式对此不作限制。所述声波信号接收与处理装置可以采用现有技术中的声波信号接收与处理装置,包括例如公开号为101270853的中国发明专利中的数据处理单元、时序采集单元、通信接口单元和显示单元等等,或者例如公开号为101832472的中国发明专利“利用次声波实现管道泄漏检测的系统”中的前置滤波放大器、信号采集分析系统、GPRS/CDMA模块、太阳能加蓄电池供电模块等等,本实施方式对此不作限制。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所作出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (7)

1.一种基于分布式光纤传感器和声波的管道监测方法,其特征在于:主要包含以下步骤:
    步骤1:在管道监测区域铺设分布式光纤传感器,同时在该管道的两端、或者在该管道上分段安装声波传感单元,利用分布式光纤传感器和声波传感单元同时对管道进行实时监测;
步骤2:为分布式光纤传感器配置光功率检测模块,并为声波传感单元配置声波信号接收与处理装置;
步骤3:当管道泄漏时,利用分布式光纤传感器和声波传感单元检测泄漏信号,综合分布式光纤传感器检测到的泄漏信号和声波传感单元检测到的泄漏信号判断泄漏类型。
2.根据权利要求1所述的基于分布式光纤传感器和声波的管道监测方法,其特征在于:所述步骤3中的判断泄漏类型的方法为:当分布式光纤传感器由于外界干扰检测到至少一个泄漏点,而声波传感单元并没有检测到泄漏点时,则作出管道未发生泄漏的判断,此时分布式光纤传感器所检测的泄漏点均为外界干扰或其他非泄漏原因所导致的虚报。
3.根据权利要求1所述的基于分布式光纤传感器和声波的管道监测方法,其特征在于:所述步骤3中的判断泄漏类型的方法为:当声波传感单元按单点泄漏进行定位计算出泄漏点,同时分布式光纤传感器检测到至少一个泄漏点,且其中包含声波传感单元检测出的泄漏点时,则作出管道存在一个泄漏点的判断,且该泄漏点为声波传感单元检测出的泄漏点。
4.根据权利要求1所述的基于分布式光纤传感器和声波的管道监测方法,其特征在于:所述步骤3中的判断泄漏类型的方法为:当声波传感单元按单点泄漏进行定位计算出泄漏点,同时分布式光纤传感器检测到至少一个泄漏点,但不包含声波传感单元检测出的泄漏点时,则作出管道存在多个泄漏点的判断,以分布式光纤传感器检测的至少一个泄漏点作为参考进行排查。
5.根据权利要求1至4任一项所述的基于分布式光纤传感器和声波的管道监测方法,其特征在于:所述步骤1中的所述管道监测区域为管道外、管道外壁表面、管道外壁内和管道内部中的至少一处。
6.根据权利要求5所述的基于分布式光纤传感器和声波的管道监测方法,其特征在于:所述声波传感单元为次声传感器。
7.根据权利要求6所述的基于分布式光纤传感器和声波的管道监测方法,其特征在于:所述的光功率检测模块为设置在分布式光纤传感器输入端的背向散射光检测模块,和/或设置在分布式光纤传感器输出端的输出光功率检测模块。
CN201410332580.4A 2014-07-14 2014-07-14 一种基于分布式光纤传感器和声波的管道监测方法 Pending CN104100841A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410332580.4A CN104100841A (zh) 2014-07-14 2014-07-14 一种基于分布式光纤传感器和声波的管道监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410332580.4A CN104100841A (zh) 2014-07-14 2014-07-14 一种基于分布式光纤传感器和声波的管道监测方法

Publications (1)

Publication Number Publication Date
CN104100841A true CN104100841A (zh) 2014-10-15

Family

ID=51669235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410332580.4A Pending CN104100841A (zh) 2014-07-14 2014-07-14 一种基于分布式光纤传感器和声波的管道监测方法

Country Status (1)

Country Link
CN (1) CN104100841A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611693A (zh) * 2019-01-04 2019-04-12 中国矿业大学 一种瓦斯抽采负压管线泄漏检测装置与方法
CN112483907A (zh) * 2020-11-10 2021-03-12 深圳市祥为测控技术有限公司 管道测漏系统及其测漏方法
CN112484837A (zh) * 2020-11-24 2021-03-12 电子科技大学 光纤空间定位系统及其实现方法
CN117007173A (zh) * 2023-10-07 2023-11-07 山东省科学院激光研究所 一种用于管道泄漏监测的光纤声波传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414283A (zh) * 2002-12-10 2003-04-30 西安交通大学 基于分布式光纤传感器的油气管线泄漏智能在线监测方法
WO2004063623A1 (en) * 2003-01-13 2004-07-29 Pure Technologies Ltd. Pipeline monitoring system
CN101270853A (zh) * 2008-05-15 2008-09-24 中国石油大学(北京) 基于次声波的天然气管道泄漏远程检测装置、方法及系统
CN101832472A (zh) * 2010-06-12 2010-09-15 中国石油化工股份有限公司管道储运分公司 利用次声波实现管道泄漏检测的系统
CN102011940A (zh) * 2010-10-19 2011-04-13 中国船舶重工集团公司第七一九研究所 基于分布式光纤与流量压力值的管路泄漏联合检测方法
CN102997051A (zh) * 2011-09-14 2013-03-27 中国石油天然气集团公司 一种基于光纤传感的天然气管道泄漏监测方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414283A (zh) * 2002-12-10 2003-04-30 西安交通大学 基于分布式光纤传感器的油气管线泄漏智能在线监测方法
WO2004063623A1 (en) * 2003-01-13 2004-07-29 Pure Technologies Ltd. Pipeline monitoring system
CN101270853A (zh) * 2008-05-15 2008-09-24 中国石油大学(北京) 基于次声波的天然气管道泄漏远程检测装置、方法及系统
CN101832472A (zh) * 2010-06-12 2010-09-15 中国石油化工股份有限公司管道储运分公司 利用次声波实现管道泄漏检测的系统
CN102011940A (zh) * 2010-10-19 2011-04-13 中国船舶重工集团公司第七一九研究所 基于分布式光纤与流量压力值的管路泄漏联合检测方法
CN102997051A (zh) * 2011-09-14 2013-03-27 中国石油天然气集团公司 一种基于光纤传感的天然气管道泄漏监测方法和系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611693A (zh) * 2019-01-04 2019-04-12 中国矿业大学 一种瓦斯抽采负压管线泄漏检测装置与方法
CN112483907A (zh) * 2020-11-10 2021-03-12 深圳市祥为测控技术有限公司 管道测漏系统及其测漏方法
CN112484837A (zh) * 2020-11-24 2021-03-12 电子科技大学 光纤空间定位系统及其实现方法
CN112484837B (zh) * 2020-11-24 2021-12-28 电子科技大学 光纤空间定位系统及其实现方法
CN117007173A (zh) * 2023-10-07 2023-11-07 山东省科学院激光研究所 一种用于管道泄漏监测的光纤声波传感器
CN117007173B (zh) * 2023-10-07 2024-01-30 山东省科学院激光研究所 一种用于管道泄漏监测的光纤声波传感器

Similar Documents

Publication Publication Date Title
CN104100842A (zh) 一种基于分布式光纤传感器和声波的管道监测装置及系统
CN101684894B (zh) 一种管道泄漏监测方法及装置
CN201373243Y (zh) 油气管道泄漏智能巡检机
CN104747912B (zh) 流体输送管道泄漏声发射时频定位方法
US20120285221A1 (en) Acoustic probe for leak detection in water pipelines
CN201273457Y (zh) 一种管道泄漏监测装置
CN106352246A (zh) 管道泄漏检测定位实验系统及其检测方法
CN109442561B (zh) 一种分布式热力管道泄漏监测系统
CN104373821A (zh) 基于声学主动激励的天然气管道安全监测装置
CN205640252U (zh) 用于区域常温流体输送管道的光纤检测渗漏系统
ITMI20122196A1 (it) Metodo e sistema per la rilevazione da remoto della posizione di un dispositivo pig all'interno di una condotta in pressione
CN102900955A (zh) 一种基于光纤测温的管道泄漏在线监测装置及其方法
CN104266084A (zh) 基于分布式光纤传感器的输油管道内检测器跟踪定位方法
CN105509979A (zh) 基于光纤负压波的油气管道泄漏监测定位系统及方法
CN110360945A (zh) 基于botdr的管道变形监测和掌上预警系统及方法
CN104100841A (zh) 一种基于分布式光纤传感器和声波的管道监测方法
CN105738028A (zh) 一种非介入式管道内流体压力测量方法
CN206694848U (zh) 一种用于输气管道的泄漏检测装置
CN203940243U (zh) 一种基于分布式光纤传感器和声波的管道监测装置及系统
CN105627107A (zh) 流体管道单一传感器模态声发射时频定位方法
KR102221713B1 (ko) 입출력 음향 데이터 기반의 딥러닝을 활용한 하수관 상태 판별 방법
CN105221936A (zh) 一种监测和定位直埋热力管道泄漏点的装置及其控制方法
CN208721789U (zh) 用于定位卡堵物的装置和包括其的卡堵物定位系统
CN202598147U (zh) 一种基于传感光纤的天然气管道泄漏监测系统
CN101392869A (zh) 管道安全预警与泄漏报警方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20141015

RJ01 Rejection of invention patent application after publication