CN104091004B - A kind of quantitative static pressure turntable Optimization Design based on modified particle swarm optiziation - Google Patents

A kind of quantitative static pressure turntable Optimization Design based on modified particle swarm optiziation Download PDF

Info

Publication number
CN104091004B
CN104091004B CN201410302534.XA CN201410302534A CN104091004B CN 104091004 B CN104091004 B CN 104091004B CN 201410302534 A CN201410302534 A CN 201410302534A CN 104091004 B CN104091004 B CN 104091004B
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mfrac
lubricating pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410302534.XA
Other languages
Chinese (zh)
Other versions
CN104091004A (en
Inventor
刘志峰
张涛
湛承鹏
李小燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201410302534.XA priority Critical patent/CN104091004B/en
Publication of CN104091004A publication Critical patent/CN104091004A/en
Application granted granted Critical
Publication of CN104091004B publication Critical patent/CN104091004B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

The present invention relates to a kind of quantitative static pressure turntable Optimization Design based on modified particle swarm optiziation, belong to static pressure turntable design field.The parameterized model of static pressure turntable table top is set up, rigidity, damping and the general power of turntable oil film are calculated according to hydrodynamics correlation theory;Determine the number of population, the optimization range of Optimal Parameters, the speed that particle maximum is circled in the air, inertial factor parameter, setting up the speed that wherein inertial factor is circled in the air with particle in particle cluster algorithm, algorithm will in real time correct with the change of locally optimal solution and globally optimal solution;Population is write using matlab and calculates optimization program, calculates the optimal design parameters of turntable.The method have the characteristics that optimizing design to turntable using modified particle swarm optiziation, inertial factor and the speed of circling in the air of particle will at any time be corrected with locally optimal solution pbest and globally optimal solution gbest change in algorithm, can so improve convergence of algorithm speed and the accuracy of optimization.

Description

A kind of quantitative static pressure turntable Optimization Design based on modified particle swarm optiziation
Technical field
The present invention relates to a kind of Optimization Design of the quantitative static pressure turntable of double-round lubricating pad supporting, more particularly to one kind Quantitative static pressure turntable Optimization Design based on modified particle swarm optiziation, belongs to static pressure turntable design field.
Background technology
Two tables that static pressure turntable (Hydrostatic Rotary Table) makes to have relative motion with the fluid for having pressure Face separates and carried by hydrostatic pressure.Due to being separated completely by oil film between kinematic pair, so the frictional force between kinematic pair Greatly reduce, while its bearing capacity, kinematic accuracy and life-span but greatly improve.Just because of liquid static-pressure support is many excellent Point, so it is widely used in heavy machine tool and as one of its critical component.The properties of static pressure turntable are for lathe Precision and crudy have important influence, find the optimal design parameters of turntable has for the performance of General Promotion turntable Important function.
The numerous object functions for needing to optimize of design parameter of static pressure turntable are also more more complicated, carrying out the optimization of turntable If being calculated during design each possible value of each design parameter and therefrom choosing optimal solution again, then it is counted Calculation amount will be very huge, so finding a kind of optimization design of the wide optimized algorithm of the good region of search of convergence for lifting turntable Play an important role.
The content of the invention
It is an object of the invention to provide a kind of quantitative static pressure turntable optimization design side based on modified particle swarm optiziation Method, first calculate turntable static pressure oil film stiffness and damping and general power as optimization object function, afterwards using it is improved from Swarm optimization quickly and accurately finds the optimal design parameters of turntable.
To achieve the above object, the technical solution adopted by the present invention is and a kind of quantifying based on modified particle swarm optiziation Formula static pressure turntable Optimization Design, its implementation process is as follows,
S1 sets up the parameterized model of static pressure turntable table top, and the firm of turntable oil film is calculated according to hydrodynamics correlation theory Degree, damping and general power;
S2 determines the number of population, the optimization range of Optimal Parameters, the speed that particle maximum is circled in the air, inertial factor ginseng Number, set up in particle cluster algorithm, algorithm speed that wherein inertial factor is circled in the air with particle will with locally optimal solution with it is global most The change of excellent solution and correct in real time;
S3 writes population using matlab and calculates optimization program, calculates the optimal design parameters of turntable.
Compared with prior art, the present invention has the advantages that.
The method have the characteristics that optimizing inertial factor in design, algorithm to turntable using modified particle swarm optiziation And the speed of circling in the air of particle will at any time be corrected with locally optimal solution pbest and globally optimal solution gbest change, so may be used Improve convergence of algorithm speed and the accuracy of optimization.The content of the invention includes three parts, and static pressure turntable is set up in the first portion The optimization object function of optimization design, sets population number, particle maximum to circle in the air speed, inertial factor etc. in the second portion Parameter;Optimization program calculation optimization solution is write with matlab in Part III.
Brief description of the drawings
Fig. 1 static pressure turntable structure diagrams.
Fig. 2 supports oil pad structure sketch.
Fig. 3 precompressed oil pad structure sketches.
Fig. 4 Optimizing Flow figures.
Fig. 5 rigidity and the parato of damping scheme.
Embodiment
The present invention is described in further detail below with reference to drawings and examples.
The present invention implements a kind of Optimization Design of the static pressure turntable of double-round lubricating pad supporting, below in conjunction with the accompanying drawings, to this The implementation of invention is specifically described.
Fig. 1 is the static pressure turntable mesa structure sketch that double-round is supported, and turntable supports lubricating pad, precompressed by turntable table top, pedestal Lubricating pad is constituted, and the deadweight of turntable is G, and the fuel delivery that each lubricating pad wherein supports lubricating pad by quantitative oil pump feed is Q0, precompressed lubricating pad Fuel delivery be Q1
Fig. 2 Fig. 3 is the structure diagram of supporting lubricating pad and precompressed lubricating pad, and it is round that precompressed lubricating pad, which is annular lubricating pad and supports lubricating pad, Shape lubricating pad.
Step (1), the foundation of object function
According to dimensional analysis by continuity equation and N-S equation simplifications and solve to one-dimensional Reynolds equation and outflow oil sealing The flow of the fluid on side is:
R is radius in above formula, and η is the viscosity of fluid, and p is the pressure of oil film, and h is oil film thickness, t be the time so It is the extrusion speed of upper rail face squeeze film, Q (r) is flow.
1.1st, lubricating pad bearing capacity calculation is supported
Support lubricating pad structure diagram as shown in Figure 2 it be circular shape structure key dimension indicated in figure, R1For Lubricating pad internal diameter R2For the external diameter h of lubricating padiFor the oil film thickness of lubricating pad, then there is boundary condition for the lubricating pad of circular quantitative compensation:
H in above formulaiFor the oil film thickness of i-th of lubricating pad, piFor the oil film pressure distribution of i-th of lubricating pad, p0iFor i-th of oil The oil pocket pressure of pad, Q0For fuel delivery.The oil pocket of each supporting lubricating pad can be solved by bringing boundary condition (3) into equation (1) and (2) Pressure p0iWith pressure distribution pi(r)
And then the bearing capacity F of each supporting lubricating pad can be obtainediFor:
Then the stiffness and damping of supporting lubricating pad is respectively with pump power:
Wherein KSiTo support the rigidity of lubricating pad, CSiTo support the damping of lubricating pad, NTiTo support the general power of lubricating pad, RkFor The radius of support ring R when lubricating pad is first lapk=RL, it is R when lubricating pad is located at the second circlek=RS
1.2nd, the calculating of precompressed lubricating pad bearing capacity
Precompressed lubricating pad as shown in Figure 3 is annular lubricating pad, has the boundary condition to be for annular lubricating pad:
hyFor the oil film thickness of precompressed lubricating pad, pyFor precompressed lubricating pad oil film pressure distribution, p0yFor precompressed lubricating pad oil pocket pressure, Q1For precompressed lubricating pad fuel delivery.(8) formula generation such as (1), (2) formula be can obtain into the oil pocket pressure p of precompressed lubricating pad0ySealing oil edge pressure point Cloth p1y(r)、p2y(r) it is:
And then the bearing capacity F of precompressed lubricating pad can be calculatedyFor:
So the stiffness K of precompressed lubricating padyDamp CyWith general power NTyFor:
The integral rigidity damping and the calculating of pump power of 1.3 turntables
The supporting system of turntable by each supporting lubricating pad and precompressed lubricating pad be formed in parallel so the integral rigidity of turntable, damping with Pump power is:
K in above formulaZFor the axial rigidity of turntable, KtFor rigidity of toppling, CZFor axial damping, CtFor the damping, N of topplingTTo be total Pump power, n1 is the number that first lap supports lubricating pad, and n2 is that the number of the second circle supporting lubricating pad rule of thumb typically has n2= 2n1.The object function of turntable optimization design can be written as:
F=min [KZ,Kt,CZ,Ct,-NT]T (15)
Need optimization parameter be:P=[RS,RL,R1,R2,RC1,RC2,RC3,RC4,hs,hy,Q0,η,n1]
Step (2), modified particle swarm optiziation
Because Optimal Parameters are more and the object function of optimization is also relatively more so being carried out using particle cluster algorithm to it excellent Change.The selection of parameter optimization scope will be in each initial parameter values P0On the basis of change a fixed percentage up and down, then it is each It is limited to above and below parameter:
baIt is exactly that the parameter that adjusts optimization range may be configured as 0.2 for border regulatory factor.Particle number np is set afterwards Be set to 2 times of optimised number of parameters also can suitably increase certainly, then define maximum speed of circling in the air and be:Max_v=P*baIt is used Sex factor is set to wi,j=w0+(pbesti-gbestj), w in formula05, i, which is can use, for the initial inertia factor represents i-th of particle, j Represent iteration j calculating.The circle in the air calculating formula of speed of particle is in modified particle swarm optiziation:
C in formula1,c2,c3For regulatory factor, pbestx is the optimal location that single particle undergoes, and gbestx is global optimum I.e. the optimal location of the whole colony's experience in position, x is the position of particle, vx is the speed that particle circles in the air, and Rand is -1 to 1 Random number.Then the calculating formula of particle new position is:
xi,j=xi,j-1+vxi,j (18)
Fitness function during optimization is exactly that object function is:
Adp=[KZ,Kt,CZ,Ct,-NT]T (19)
Step (3), the implementation of improved particle group optimizing program
Modified particle swarm optiziation calculation procedure is write with matlab, and its calculation process is illustrated in figure 4:(1) presses 2.1 Step sets initial parameter P0, ba, w0, Pmax_bund, Pmin_bund, c1, c2, c3, pbest0, gbest0;(2) presses formula wi,j=w0+ (pbesti-gbestj) calculate the speed vx that circles in the air that inertial parameter w is calculated particle by formula (17) again, back-pushed-type (18) each The new position x of each particlenew;(3) judges whether the position of each particle then needs to recalculate particle speed within the limits prescribed Degree and particle position are untill meeting boundary condition then with new position xnewCalculate new fitness value adpnew;(4) is pressed Globally optimal solution and locally optimal solution are updated according to following formula
(5) whether determining program meets end condition and is so terminated and result of calculation is defeated if program if met after Go out, as being unsatisfactory for, return to second step and proceed to calculate until program determination.
The validity of this method is illustrated in order to provide an example under clearer explanation this method.Select P= (R1,R2,RC1,RC2,RC3,RC4,Q0) it is that the initial value of each parameter of optimised parameter is P0=(0.15,0.165,0.19,0.22, ), 0.24,0.27,1.4e-4 border regulatory factor baJust take 0.2.Particle number np takes 14, w05 are taken, maximum iteration is 100 steps.Then running optimizatin program can be obtained by optimum results.Fig. 5 is the parato figures of rigidity and overall rate, as seen from the figure In reduction, rigidity is increasing the pump power of optimization process intermediate station, and the result of optimization is as shown in table 1:
The stiffness and damping for being not difficult to find out turntable from result has been lifted and pump power is reduced significantly, this Show that this method can carry out the optimization design of turntable.
Table1 optimum results

Claims (1)

1. a kind of quantitative static pressure turntable Optimization Design based on modified particle swarm optiziation, S1 sets up static pressure turntable table top Parameterized model, according to hydrodynamics correlation theory calculate turntable oil film rigidity, damping and general power;
S2 determines the number of population, and the optimization range of Optimal Parameters, the speed that particle maximum is circled in the air, inertial factor parameter is built The speed that wherein inertial factor is circled in the air with particle in vertical particle cluster algorithm, algorithm is by with locally optimal solution and globally optimal solution Change and correct in real time;
S3 writes particle cluster algorithm optimization program using matlab, calculates the optimal design parameters of turntable;
Turntable supports lubricating pad, precompressed lubricating pad composition by turntable table top, pedestal;The deadweight of turntable is G, and each lubricating pad has constant displacement pump Fuel feeding, wherein the fuel delivery of supporting lubricating pad is Q0, the fuel delivery of precompressed lubricating pad is Q1;Precompressed lubricating pad is annular lubricating pad and supports oil Pad is circular lubricating pad;
It is characterized in that:This method to implement process as follows,
Step 1, the foundation of object function,
According to dimensional analysis is by continuity equation and N-S equation simplifications and solution obtains one-dimensional Reynolds equation and outflow sealing oil edge The flow of fluid is:
<mrow> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <mi>r</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>rh</mi> <mn>3</mn> </msup> </mrow> <mrow> <mn>12</mn> <mi>&amp;eta;</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>p</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>r</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>h</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msup> <mi>&amp;pi;rh</mi> <mn>3</mn> </msup> </mrow> <mrow> <mn>6</mn> <mi>&amp;eta;</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>p</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>r</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
R is radius in above formula, and η is the viscosity of fluid, and p is the pressure of oil film, and h is oil film thickness, and t is the time, soIt is The extrusion speed of upper rail face squeeze film, Q (r) is flow;
1.1st, lubricating pad bearing capacity calculation is supported
The structure for supporting lubricating pad is circular shape structure, R1For lubricating pad internal diameter, R2For the external diameter of lubricating pad, hiIt is thick for the oil film of lubricating pad Degree, then have boundary condition for the lubricating pad of circular quantitative compensation:
H in above formulaiFor the oil film thickness of i-th of lubricating pad, piFor the oil film pressure distribution of i-th of lubricating pad, p0iFor i-th lubricating pad Oil pocket pressure, Q0For fuel delivery;Bring boundary condition (3) into equation (1) and (2) solve the oil pocket pressure p of each supporting lubricating pad0iWith Pressure distribution pi(r)
<mrow> <msub> <mi>p</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>6</mn> <mi>&amp;eta;</mi> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mn>2</mn> </msub> <msub> <mi>R</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <msubsup> <mi>&amp;pi;h</mi> <mi>i</mi> <mn>3</mn> </msubsup> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <msub> <mi>Q</mi> <mn>0</mn> </msub> <mo>+</mo> <msubsup> <mi>&amp;pi;R</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mn>2</mn> </msub> <msub> <mi>R</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> <mn>3</mn> <mi>&amp;eta;</mi> </mrow> <mrow> <msubsup> <mi>&amp;pi;h</mi> <mi>i</mi> <mn>3</mn> </msubsup> </mrow> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mfrac> <mi>r</mi> <msub> <mi>R</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mfrac> <mi>r</mi> <msub> <mi>R</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> <mo>-</mo> <msubsup> <mi>R</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mfrac> <mi>r</mi> <msub> <mi>R</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>h</mi> <mi>i</mi> <mn>3</mn> </msubsup> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>l</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mn>2</mn> </msub> <msub> <mi>R</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> 1
And then obtain the bearing capacity F of each supporting lubricating padiFor:
<mrow> <msub> <mi>F</mi> <mi>i</mi> </msub> <mo>=</mo> <msubsup> <mi>&amp;pi;R</mi> <mn>1</mn> <mn>2</mn> </msubsup> <msub> <mi>p</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mn>2</mn> <mi>&amp;pi;</mi> <munderover> <mo>&amp;Integral;</mo> <msub> <mi>R</mi> <mn>1</mn> </msub> <msub> <mi>R</mi> <mn>2</mn> </msub> </munderover> <msub> <mi>rp</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>r</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
Then the stiffness and damping of supporting lubricating pad is respectively with pump power:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mrow> <mi>S</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>9</mn> <msub> <mi>Q</mi> <mn>0</mn> </msub> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>h</mi> <mi>i</mi> <mn>4</mn> </msubsup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>S</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>&amp;pi;</mi> <mi>&amp;eta;</mi> <msup> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mn>1</mn> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>h</mi> <mi>i</mi> <mn>3</mn> </msubsup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>N</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>p</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>Q</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&amp;eta;</mi> <mfrac> <mrow> <msup> <mi>w</mi> <mn>2</mn> </msup> <msubsup> <mi>R</mi> <mi>k</mi> <mn>2</mn> </msubsup> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mfrac> <msubsup> <mi>R</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>6</mn> <mi>&amp;eta;</mi> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mn>2</mn> </msub> <msub> <mi>R</mi> <mn>1</mn> </msub> </mfrac> <mo>)</mo> </mrow> <msubsup> <mi>Q</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> <mrow> <msubsup> <mi>&amp;pi;h</mi> <mi>i</mi> <mn>3</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mi>&amp;eta;</mi> <mfrac> <mrow> <msup> <mi>w</mi> <mn>2</mn> </msup> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mfrac> <msubsup> <mi>R</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Wherein KSiTo support the rigidity of lubricating pad, CSiTo support the damping of lubricating pad, NTiTo support the general power of lubricating pad, RkFor support ring Radius, when lubricating pad be first lap when Rk=RL, it is R when lubricating pad is located at the second circlek=RS
1.2nd, the calculating of precompressed lubricating pad bearing capacity
Precompressed lubricating pad is annular lubricating pad, has the boundary condition to be for annular lubricating pad:
hyFor the oil film thickness of precompressed lubricating pad, pyFor precompressed lubricating pad oil film pressure distribution, p0yFor precompressed lubricating pad oil pocket pressure, Q1For Precompressed lubricating pad fuel delivery;(8) formula generation such as (1), (2) formula is obtained into the oil pocket pressure p of precompressed lubricating pad0y, sealing oil edge pressure distribution p1y (r)、p2y(r) it is:
<mrow> <msub> <mi>p</mi> <mrow> <mn>0</mn> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>6</mn> <mi>&amp;eta;</mi> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> <mrow> <msubsup> <mi>&amp;pi;h</mi> <mi>y</mi> <mn>3</mn> </msubsup> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>+</mo> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>p</mi> <mrow> <mn>1</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> <mn>3</mn> <mi>&amp;eta;</mi> </mrow> <mrow> <msubsup> <mi>&amp;pi;h</mi> <mi>y</mi> <mn>3</mn> </msubsup> </mrow> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mrow> <mn>0</mn> <mi>y</mi> </mrow> </msub> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mfrac> <mi>r</mi> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>)</mo> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mfrac> <mi>r</mi> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> </mfrac> <mo>)</mo> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mfrac> <mi>r</mi> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> </mfrac> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>h</mi> <mi>y</mi> <mn>3</mn> </msubsup> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>l</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>p</mi> <mrow> <mn>2</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> <mn>3</mn> <mi>&amp;eta;</mi> </mrow> <mrow> <msubsup> <mi>&amp;pi;h</mi> <mi>y</mi> <mn>3</mn> </msubsup> </mrow> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mrow> <mn>0</mn> <mi>y</mi> </mrow> </msub> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mfrac> <mi>r</mi> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> </msub> </mfrac> <mo>)</mo> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> <mn>2</mn> </msubsup> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mfrac> <mi>r</mi> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> </msub> </mfrac> <mo>)</mo> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> <mn>2</mn> </msubsup> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mfrac> <mi>r</mi> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> </msub> </mfrac> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <msubsup> <mi>h</mi> <mi>y</mi> <mn>3</mn> </msubsup> </mfrac> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>y</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>l</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> 2
And then calculate the bearing capacity F of precompressed lubricating padyFor:
<mrow> <msub> <mi>F</mi> <mi>y</mi> </msub> <mo>=</mo> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <msub> <mi>p</mi> <mrow> <mn>0</mn> <mi>y</mi> </mrow> </msub> <mo>+</mo> <mn>2</mn> <mi>&amp;pi;</mi> <munderover> <mo>&amp;Integral;</mo> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mn>2</mn> </mrow> </msub> </munderover> <msub> <mi>rp</mi> <mrow> <mn>1</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>r</mi> <mo>+</mo> <mn>2</mn> <mi>&amp;pi;</mi> <munderover> <mo>&amp;Integral;</mo> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>c</mi> <mn>3</mn> </mrow> </msub> </munderover> <msub> <mi>rp</mi> <mrow> <mn>2</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>r</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
So the stiffness K of precompressed lubricating padyDamp CyWith general power NTyFor:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mi>y</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>9</mn> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mi>&amp;eta;</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msubsup> <mi>h</mi> <mi>y</mi> <mn>4</mn> </msubsup> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mi>y</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <msubsup> <mi>h</mi> <mi>y</mi> <mn>3</mn> </msubsup> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mn>3</mn> <mi>&amp;pi;</mi> <mi>&amp;eta;</mi> </mrow> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>(</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> <mi>ln</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> <mi>ln</mi> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> </msub> </mfrac> <mo>)</mo> <mo>-</mo> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> <mo>)</mo> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>N</mi> <mrow> <mi>T</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>p</mi> <mrow> <mn>0</mn> <mi>y</mi> </mrow> </msub> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>+</mo> <mi>&amp;eta;</mi> <mfrac> <mrow> <msup> <mi>w</mi> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mn>4</mn> <msub> <mi>h</mi> <mi>y</mi> </msub> </mrow> </mfrac> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mfrac> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>R</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> </mrow> <mo>)</mo> </mrow> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
The integral rigidity damping and the calculating of pump power of 1.3 turntables
The supporting system of turntable is formed in parallel by each supporting lubricating pad with precompressed lubricating pad, then integral rigidity, damping and the pump of turntable Power is:
K in above formulaZFor the axial rigidity of turntable, KtFor rigidity of toppling, CZFor axial damping, CtFor the damping, N of topplingTFor total pump work Rate, n1 is the number that first lap supports lubricating pad, and n2 is the number of the second circle supporting lubricating pad, rule of thumb there is n2=2n1;Turntable is excellent The object function for changing design is written as:
F=min [KZ,Kt,CZ,Ct,-NT]T (15)
Need optimization parameter be:P=[RS,RL,R1,R2,RC1,RC2,RC3,RC4,hs,hy,Q0,η,n1]
Step 2, modified particle swarm optiziation
Because Optimal Parameters are more and the object function of optimization also compares many, so being optimized using particle cluster algorithm to it; The selection of parameter optimization scope will be in each initial parameter values P0On the basis of up and down change a fixed ratio, then each parameter it is upper Lower limit is:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>max</mi> <mo>_</mo> <mi>b</mi> <mi>u</mi> <mi>n</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mn>0</mn> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>b</mi> <mi>a</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>min</mi> <mo>_</mo> <mi>b</mi> <mi>u</mi> <mi>n</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mn>0</mn> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>b</mi> <mi>a</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> 3
baFor border regulatory factor, the parameter of optimization range is exactly adjusted, 0.2 is set to;Particle number np is set afterwards, is set to 2 times of optimised number of parameters, then defining maximum speed of circling in the air is:Max_v=P*ba, inertial factor is set to wi,j=w0+ (pbesti-gbestj), w in formula05, i is taken to represent i-th of particle for the initial inertia factor, j represents iteration j calculating;Improve Particle cluster algorithm in the circle in the air calculating formula of speed of particle be:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>vx</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>w</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>*</mo> <msub> <mi>vx</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>*</mo> <mi>R</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo>*</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>pbestx</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <mo>*</mo> <mi>R</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo>*</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>gbestx</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>c</mi> <mn>3</mn> </msub> <mo>*</mo> <mi>R</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mo>*</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>pbestx</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>gbestx</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
C in formula1,c2,c3For regulatory factor, pbestx is the optimal location that single particle undergoes, and gbestx is global optimum position Put, that is, whole colony experience optimal location, x is the position of particle, and vx is the speed circled in the air of particle, and Rand is yes and -1 arrived The number randomly generated between 1;Then the calculating formula of particle new position is:
xi,j=xi,j-1+vxi,j (18)
Fitness function during optimization is exactly that object function is:
Adp=[KZ,Kt,CZ,Ct,-NT]T (19)
The implementation of the improved particle group optimizing program of step 3
Modified particle swarm optiziation calculation procedure is write with matlab, and its calculation process is:(1) sets initial ginseng by 2.1 steps Number P0, ba, w0, Pmax_bund, Pmin_bund, c1, c2, c3, pbest0, gbest0;(2) presses formula wi,j=w0+(pbesti-gbestj) Calculate inertial parameter w, then calculate by formula (17) the speed vx that circles in the air of particle, back-pushed-type (18) calculate the new position of each particle Put xnew;(3) judges that whether within the limits prescribed, otherwise the position of each particle needs to recalculate particle rapidity and particle position Put, untill meeting boundary condition;Then with new position xnewCalculate new fitness value adpnew;(4) is according to the following formula more New globally optimal solution and locally optimal solution
(5) whether determining program meets end condition after, is terminated if meeting so program and exports result of calculation, As being unsatisfactory for, return to second step and proceed to calculate until program determination.
CN201410302534.XA 2014-06-27 2014-06-27 A kind of quantitative static pressure turntable Optimization Design based on modified particle swarm optiziation Active CN104091004B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410302534.XA CN104091004B (en) 2014-06-27 2014-06-27 A kind of quantitative static pressure turntable Optimization Design based on modified particle swarm optiziation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410302534.XA CN104091004B (en) 2014-06-27 2014-06-27 A kind of quantitative static pressure turntable Optimization Design based on modified particle swarm optiziation

Publications (2)

Publication Number Publication Date
CN104091004A CN104091004A (en) 2014-10-08
CN104091004B true CN104091004B (en) 2017-09-22

Family

ID=51638720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410302534.XA Active CN104091004B (en) 2014-06-27 2014-06-27 A kind of quantitative static pressure turntable Optimization Design based on modified particle swarm optiziation

Country Status (1)

Country Link
CN (1) CN104091004B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136469A (en) * 2015-07-23 2015-12-09 江苏大学 Unmanned vehicle speed control method based on PSO and RBF neutral network
CN106596462B (en) * 2016-12-19 2019-09-10 中国矿业大学 Page quantification detection method based on Terahertz phase shift characteristics and particle swarm algorithm
CN111069328A (en) * 2019-12-03 2020-04-28 广东工业大学 Isothermal extrusion process parameter optimization method based on particle swarm optimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611725B1 (en) * 1993-02-18 1996-12-27 EC Engineering + Consulting Spezialmaschinen GmbH Vehicle mounted crane
CN103226633A (en) * 2013-04-12 2013-07-31 北京工业大学 Static pressure oil pad flow field characteristic simulation optimizing method
CN103823940A (en) * 2014-03-07 2014-05-28 北京工业大学 Static-pressure turntable dynamic response computing method based on overall dynamical model

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611725B1 (en) * 1993-02-18 1996-12-27 EC Engineering + Consulting Spezialmaschinen GmbH Vehicle mounted crane
CN103226633A (en) * 2013-04-12 2013-07-31 北京工业大学 Static pressure oil pad flow field characteristic simulation optimizing method
CN103823940A (en) * 2014-03-07 2014-05-28 北京工业大学 Static-pressure turntable dynamic response computing method based on overall dynamical model

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Optimizing dynamic characteristics of NC rotary table based on electromechanical-hydraulic coupling;Yu C 等;《Journal of Mechanical Science and Technology》;20131231;第27卷(第4期);第1081-1088页 *
一种动态改变惯性权的自适应粒子群算法;张选平 等;《西安交通大学学报》;20051031;第39卷(第10期);第1039-1042页 *
液体静压导轨转台轴向振动的动力学建模与分析;叶红玲;《工程力学》;20120331;第29卷(第3期);第218-225页 *
液体静压转台系统动力学分析及参数优化设计;文聘;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20140315(第03期);第51-53页第5.1-5.2节 *

Also Published As

Publication number Publication date
CN104091004A (en) 2014-10-08

Similar Documents

Publication Publication Date Title
CN104143026B (en) It is a kind of to consider to tilt the static pressure oil pad Calculation Methods for Performance with heat
CN103823940B (en) Static-pressure turntable dynamic response computing method based on overall dynamical model
CN104091004B (en) A kind of quantitative static pressure turntable Optimization Design based on modified particle swarm optiziation
CN106096158B (en) A kind of method of topological optimization design of flexible hinge
CN104036079B (en) A kind of quantitative static pressure turntable Optimization Design based on sensitivity analysis
CN103632006B (en) Method for determining critical rotating speed of wet rotor of multistage centrifugal pump
CN105201916A (en) Designing method for hydraulic power of space guide-blade centrifugal pump
CN103909469A (en) Thin-film restrictor hybrid bearing for roll grinder grinding wheel spindle
CN104091021B (en) Method for calculating bearing capacity of oil pad when oil pad inclines
CN104636566A (en) Dynamic mesh numerical solution method based on modified fluid motion equation
Zhang et al. New active online balancing method for grinding wheel using liquid injection and free dripping
CN105005705B (en) A kind of improved circular static pressure oil pad centrifugal force computational methods
CN104166752A (en) Hydraulic torque converter full-flow-channel transient numerical simulation calculation method
CN102902859A (en) Hybrid sliding bearing fluid-solid coupling design method based on phase change model
CN104376144A (en) Turbine blade profile line design method
CN106202795A (en) Centrifugal pump impeller and the method for designing thereof of constraint is combined based on entropy product and blade loading
CN103310046A (en) Optimization design method for shape of inner cavity of turbine disc with radial plate based on hyperelliptic curve
Kim et al. Prediction of leakage and rotordynamic coefficients for the circumferential-groove-pump seal using CFD analysis
CN104598666B (en) Large scale hydrostatic support critical load parameter acquiring method
QIAN et al. FE analysis for radial spread behavior in three-roll cross rolling with small-hole and deep-groove ring
Qu et al. Effects of impeller trimming methods on performances of centrifugal pump
CN206162530U (en) Centrifugal pump impeller based on entropy is produced and blade load allies oneself with contract bundle design method manufacturing
CN206918079U (en) A kind of pressurized air journal bearing
CN104978485A (en) Method for calculating wing bending rigidity of high-aspect-ratio aircraft
CN105467928B (en) The engineering method for stablizing working process parameter figure is determined based on two-dimentional flutter instability limiting figure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Liu Zhifeng

Inventor after: Zhang Tao

Inventor after: Zhan Chengpeng

Inventor after: Li Xiaoyan

Inventor before: Liu Zhifeng

Inventor before: Zhan Chengpeng

Inventor before: Li Xiaoyan

Inventor before: Luo Bing

Inventor before: Zhang Jingying

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant